Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 7, Issue 5, Article 164, 2006

ON YOUNG'S INEQUALITY

ALFRED WITKOWSKI

MielcZarskiego 4/29, 85-796 Bydgoszcz, Poland. alfred.witkowski@atosorigin.com

Received 24 October, 2006; accepted 20 November, 2006
Communicated by P.S. Bullen

Abstract. In this note we offer two short proofs of Young's inequality and prove its reverse.

Key words and phrases: Young's inequality, convex function.

2000 Mathematics Subject Classification. 26D15.

The famous Young's inequality states that
Theorem 1. If $f:[0, A] \rightarrow \mathbb{R}$ is continuous and a strictly increasing function satisfying $f(0)=$ 0 then for every positive $0<a \leq A$ and $0<b \leq f(A)$,

$$
\begin{equation*}
\int_{0}^{a} f(t) d t+\int_{0}^{b} f^{-1}(t) d t \geq a b \tag{1}
\end{equation*}
$$

holds with equality if and only if $b=f(a)$.
This theorem has an easy geometric interpretation. It is so easy that some monographs simply refer to it omitting the proof ([5]) or give the idea of a proof disregarding the details ([4]). Some authors make additional assumptions to simplify the proof ([3]) while some others obtain the Young inequality as a special case of quite complicated theorems ([2]). An overview of available proofs and a complete proof of Theorem [1] can be found in [1]. In this note we offer two simple proofs of Young's inequality and present its reverse version.

The proofs are based on the following
Lemma 2. If f satisfies the assumptions of Theorem 17 then

$$
\begin{equation*}
\int_{0}^{a} f(t) d t+\int_{0}^{f(a)} f^{-1}(t) d t=a f(a) \tag{2}
\end{equation*}
$$

ISSN (electronic): 1443-5756

(c) 2006 Victoria University. All rights reserved.

289-06

The graph of f divides the rectangle with diagonal $(0,0)-(a, f(a))$ into lower and upper parts, and the integrals represent their respective areas. Of course this is just a geometric idea, so at the end of this note we give the formal proof of Lemma 2 (another proof can be found in [1]).

The first proof is based on the fact that the graph of a convex function lies above its supporting line.

First proof of Theorem 1 As f is strictly increasing its antiderivative is strictly convex. Hence for every $0<c \neq a<A$ we have

$$
\int_{0}^{a} f(t) d t>\int_{0}^{c} f(t) d t+f(c)(a-c)
$$

In particular for $c=f^{-1}(b)$ we obtain

$$
\int_{0}^{a} f(t) d t>\int_{0}^{f^{-1}(b)} f(t) d t+a b-b f^{-1}(b)
$$

Applying now Lemma 2 to the function f^{-1} we see that the right hand side of the last inequality equals $a b-\int_{0}^{b} f^{-1}(t) d t$ and the proof is complete.

The second proof uses the Mean Value Theorem.
Second proof of Theorem $\$ Since f is strictly decreasing, we have

$$
\begin{equation*}
f(a)<\frac{\int_{0}^{f^{-1}(b)} f(t) d t-\int_{0}^{a} f(t) d t}{f^{-1}(b)-a}<f\left(f^{-1}(b)\right)=b \tag{3}
\end{equation*}
$$

if $a<f^{-1}(b)$ and reverse inequalities if $a>f^{-1}(b)$.
Replacing $\int_{0}^{f^{-1}(b)} f(t) d t$ by $b f^{-1}(b)-\int_{0}^{b} f^{-1}(t) d t$ and simplifying we obtain in both cases

$$
a b<\int_{0}^{a} f(t) d t+\int_{0}^{b} f^{-1}(t) d t<a f(a)+f^{-1}(b)(b-f(a)) .
$$

Theorem 3 (Reverse Young's Inequality). Under the assumptions of Theorem 1 the inequality

$$
\min \left\{1, \frac{b}{f(a)}\right\} \int_{0}^{a} f(t) d t+\min \left\{1, \frac{a}{f^{-1}(b)}\right\} \int_{0}^{b} f^{-1}(t) d t \leq a b
$$

holds with equality if and only if $b=f(a)$.
Proof. The function $F(x)=\int_{0}^{x} f(t) d t$ is strictly convex.
If $a<f^{-1}(b)$, this yields

$$
\begin{aligned}
F(a) & <\frac{a}{f^{-1}(b)} F\left(f^{-1}(b)\right) \\
& =\frac{a}{f^{-1}(b)}\left[b f^{-1}(b)-\int_{0}^{b} f^{-1}(t) d t\right] \\
& =a b-\frac{a}{f^{-1}(b)} \int_{0}^{b} f^{-1}(t) d t
\end{aligned}
$$

so

$$
\int_{0}^{a} f(t) d t+\frac{a}{f^{-1}(b)} \int_{0}^{b} f^{-1}(t) d t<a b
$$

If $a>f^{-1}(b)$, we apply the same reasoning to the function $G(x)=\int_{0}^{x} f^{-1}(t) d t$, obtaining

$$
\frac{b}{f(a)} \int_{0}^{a} f(t) d t+\int_{0}^{b} f^{-1}(t) d t<a b
$$

Proof of Lemma 2 Let $0=x_{0}<x_{1}<\cdots<x_{n}=a$ be a partition of the interval [0, a] and let $y_{i}=f\left(x_{i}\right)$ and $\Delta x_{i}=x_{i}-x_{i-1}$.
$\underline{S}(f, \mathbf{x})=\sum_{i=1}^{n} f\left(x_{i-1}\right) \Delta x_{i}$ and $\bar{S}(f, \mathbf{x})=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x_{i}$ are lower and upper Riemann sums for f corresponding to the partition \mathbf{x}.

For $\varepsilon>0$ select \mathbf{x} in such a way that $\Delta y_{i}<\varepsilon / a$. Then

$$
\bar{S}(f, \mathbf{x})-\underline{S}(f, \mathbf{x})=\bar{S}\left(f^{-1}, \mathbf{y}\right)-\underline{S}\left(f^{-1}, \mathbf{y}\right)=\sum_{i=1}^{n} \Delta x_{i} \Delta y_{i}<\varepsilon .
$$

We have

$$
\begin{aligned}
a f(a) & =\sum_{i=1}^{n} \Delta x_{i} \sum_{j=1}^{n} \Delta y_{j}=\sum_{i=1}^{n} \Delta x_{i}\left(\sum_{j=1}^{i} \Delta y_{j}+\sum_{j=i+1}^{n} \Delta y_{j}\right) \\
& =\sum_{i=1}^{n} y_{i} \Delta x_{i}+\sum_{i=1}^{n} \Delta x_{i} \sum_{j=i+1}^{n} \Delta y_{j} \\
& =\bar{S}(f, \mathbf{x})+\sum_{j=2}^{n} \Delta y_{j} \sum_{i=1}^{j-1} \Delta x_{i} \\
& =\bar{S}(f, \mathbf{x})+\underline{S}\left(f^{-1}, \mathbf{y}\right),
\end{aligned}
$$

so

$$
\begin{aligned}
\mid a f(a) & -\int_{0}^{a} f(t) d t-\int_{0}^{f(a)} f^{-1}(t) d t \mid \\
& =\left|\bar{S}(f, \mathbf{x})-\int_{0}^{a} f(t) d t+\underline{S}\left(f^{-1}, \mathbf{y}\right)-\int_{0}^{f(a)} f^{-1}(t) d t\right| \\
& \leq \bar{S}(f, \mathbf{x})-\underline{S}(f, \mathbf{x})+\bar{S}\left(f^{-1}, \mathbf{y}\right)-\underline{S}\left(f^{-1}, \mathbf{y}\right)<2 \varepsilon
\end{aligned}
$$

References

[1] J.B. DIAZ and F.T. METCALF, An analytic proof of Young's inequality, Amer. Math. Monthly, 77 (1970), 603-609.
[2] G.H. HARDY, J.E. LITTLEWOOD and G. PÓLYA, Inequalities, Cambridge University Press, 1952.
[3] D.S. MITRINOVIĆ, Elementarne nierówności, PWN, Warszawa, 1973.
[4] C.P. NICULESCU AND L.-E. PERSSON, Convex Functions and their Applications, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 23. Springer, New York, 2006.
[5] A.W. ROBERTS and D.E. VARBERG, Convex Functions, Academic Press, New York-London, 1973.

