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ABSTRACT. The aim of this paper is to study the existence, uniqueness and other properties
of solutions of a certain Volterra-Fredholm type integral equation. The main tools employed in
the analysis are based on applications of the Banach fixed point theorem and a certain integral
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1. I NTRODUCTION

Consider the following Volterra-Fredholm type integral equation

(1.1) x (t) = f (t) +

∫ t

a

g (t, s, x (s) , x′ (s)) ds +

∫ b

a

h (t, s, x (s) , x′ (s)) ds,

for −∞ < a ≤ t ≤ b < ∞, wherex, f, g, h are inRn, then-dimensional Euclidean space with
appropriate norm denoted by|·|. Let R and ′ denote the set of real numbers and the derivative
of a function. We denote byI = [a, b] , R+ = [0,∞) the given subsets ofR and assume that
f ∈ C (I, Rn), g, h ∈ C (I2 × Rn × Rn, Rn) and are continuously differentiable with respect
to t on the respective domains of their definitions.

The literature provides a good deal of information related to the special versions of equation
(1.1), see [3, 5, 6, 8, 12] and the references cited therein. Recently, in [1] the authors studied a
Fredholm type equation similar to equation (1.1) forg = 0 using Perov’s fixed point theorem,
the method of successive approximations and the trapezoidal quadature rule. The purpose of this
paper is to study the existence, uniqueness and other properties of solutions of equation (1.1)
under various assumptions on the functions involved and their derivatives. The well known
Banach fixed point theorem (see [5, p. 37]) coupled with a Bielecki type norm (see [2]) and an
integral inequality with an explicit estimate given in [10, p. 44] are used to establish the results.
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2. EXISTENCE AND UNIQUENESS

By a solution of equation (1.1) we mean a continuous functionx(t) for t ∈ I which is con-
tinuously differentiable with respect tot and satisfies the equation (1.1). For every continuous
functionu(t) in Rn together with its continuous first derivativeu′ (t) for t ∈ I we denote by
|u (t)|1 = |u (t)| + |u′ (t)| . Let S be a space of those continuous functionsu(t) in Rn together
with the continuous first derivativeu′ (t) in Rn for t ∈ I which fulfil the condition

(2.1) |u (t)|1 = O (exp (λ (t− a))) ,

for t ∈ I, whereλ is a positive constant. In the spaceS we define the norm (see [2, 4, 7, 9, 11])

(2.2) |u|S = sup
t∈I

{|u (t)|1 exp (λ (t− a))} .

It is easy to see thatS with its norm defined in (2.2) is a Banach space. We note that the
condition (2.1) implies that there exists a nonnegative constantN such that

|u (t)|1 ≤ N exp (λ (t− a)) .

Using this fact in (2.2) we observe that

(2.3) |u|S ≤ N.

We need the following special version of the integral inequality given in [10, Theorem 1.5.2,
part(b2), p. 44]. We shall state it in the following lemma for completeness.

Lemma 2.1. Let u (t) ∈ C (I, R+) , k (t, s) , r (t, s) ∈ C (I2, R+) be nondecreasing int ∈ I
for eachs ∈ I and

u (t) ≤ c +

∫ t

a

k (t, s) u (s) ds +

∫ b

a

r (t, s) u (s) ds,

for t ∈ I wherec ≥ 0 is a constant. If

d (t) =

∫ b

a

r (t, s) exp

(∫ s

a

k (s, σ) dσ

)
ds < 1,

for t ∈ I, then

u (t) ≤ c

1− d (t)
exp

(∫ t

a

k (t, s) ds

)
,

for t ∈ I.

The following theorem ensures the existence of a unique solution to equation (1.1).

Theorem 2.2.Assume that

(i) the functionsg, h in equation (1.1) and their derivatives with respect tot satisfy the
conditions

(2.4) |g (t, s, u, v)− g (t, s, ū, v̄)| ≤ p1 (t, s) [|u− ū|+ |v − v̄|] ,

(2.5)

∣∣∣∣ ∂

∂t
g (t, s, u, v)− ∂

∂t
g (t, s, ū, v̄)

∣∣∣∣ ≤ p2 (t, s) [|u− ū|+ |v − v̄|] ,

(2.6) |h (t, s, u, v)− h (t, s, ū, v̄)| ≤ q1 (t, s) [|u− ū|+ |v − v̄|] ,

(2.7)

∣∣∣∣ ∂

∂t
h (t, s, u, v)− ∂

∂t
h (t, s, ū, v̄)

∣∣∣∣ ≤ q2 (t, s) [|u− ū|+ |v − v̄|] ,
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VOLTERRA-FREDHOLM TYPE INTEGRAL EQUATION 3

wherepi (t, s) , qi (t, s) ∈ C (I2, R+) (i = 1, 2),
(ii) for λ as in (2.1)

(a) there exists a nonnegative constantα such thatα < 1 and

(2.8) p1 (t, t) exp (λ (t− a)) +

∫ t

a

p (t, s) exp (λ (s− a)) ds

+

∫ b

a

q (t, s) exp (λ (s− a)) ds ≤ α exp (λ (t− a)) ,

for t ∈ I, wherep (t, s) = p1 (t, s) + p2 (t, s) , q (t, s) = q1 (t, s) + q2 (t, s) ,
(b) there exists a nonnegative constantβ such that

(2.9) |f (t)|+ |f ′ (t)|+ |g (t, t, 0)|+
∫ t

a

[
|g (t, s, 0, 0)|+

∣∣∣∣ ∂

∂t
g (t, s, 0, 0)

∣∣∣∣]ds

+

∫ b

a

[
|h (t, s, 0, 0)|+

∣∣∣∣ ∂

∂t
h (t, s, 0, 0)

∣∣∣∣]ds ≤ β exp (λ (t− a)) ,

wheref, g, h are the functions given in equation (1.1).
Then the equation (1.1) has a unique solutionx(t) in S on I .

Proof. Let x (t) ∈ S and define the operator

(2.10) (Tx) (t) = f (t) +

∫ t

a

g (t, s, x (s) , x′ (s)) ds +

∫ b

a

h (t, s, x (s) , x′ (s))ds.

Differentiating both sides of (2.10) with respect tot we have

(2.11) (Tx)′ (t) = f ′ (t) + g (t, t, x (t) , x′ (t)) +

∫ t

a

∂

∂t
g (t, s, x (s) , x′ (s)) ds

+

∫ b

a

∂

∂t
h (t, s, x (s) , x′ (s))ds.

Now we show thatTx mapsS into itself. Evidently,Tx, (Tx)′ are continuous onI and
Tx, (Tx)′ ∈ Rn. We verify that (2.1) is fulfilled. From (2.10), (2.11), using the hypotheses
and (2.3) we have

|(Tx) (t)|1(2.12)

= |(Tx) (t)|+
∣∣(Tx)′ (t)

∣∣
≤ |f (t)|+ |f ′ (t)|+ |g (t, t, x (t) , x′ (t))− g (t, t, 0, 0)|+ |g (t, t, 0, 0)|

+

∫ t

a

|g (t, s, x (s) , x′ (s))− g (t, s, 0, 0)| ds +

∫ t

a

|g (t, s, 0, 0)| ds

+

∫ t

a

∣∣∣∣ ∂

∂t
g (t, s, x (s) , x′ (s))− ∂

∂t
g (t, s, 0, 0)

∣∣∣∣ ds +

∫ t

a

∣∣∣∣ ∂

∂t
g (t, s, 0, 0)

∣∣∣∣ ds

+

∫ b

a

|h (t, s, x (s) , x′ (s))− h (t, s, 0, 0)| ds +

∫ b

a

|h (t, s, 0, 0)| ds

+

∫ b

a

∣∣∣∣ ∂

∂t
h (t, s, x (s) , x′ (s))− ∂

∂t
h (t, s, 0, 0)

∣∣∣∣ ds +

∫ b

a

∣∣∣∣ ∂

∂t
h (t, s, 0, 0)

∣∣∣∣ ds
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≤ β exp (λ (t− a)) + p1 (t, t) |x (t)|1 +

∫ t

a

p (t, s) |x (s)|1 ds +

∫ b

a

q (t, s) |x (s)|1 ds

≤ β exp (λ (t− a)) + |x|S
{

p1 (t, t) exp (λ (t− a)) +

∫ t

a

p (t, s) exp (λ (s− a)) ds

+

∫ b

a

q (t, s) exp (λ (s− a)) ds

}
≤ β exp (λ (t− a)) + |x|S α exp (λ (t− a))

≤ [β + Nα] exp (λ (t− a)) .

From (2.12) it follows thatTx ∈ S. This proves thatT mapsS into itself.
Now, we verify that the operatorT is a contraction map. Letx (t) , y (t) ∈ S. From (2.10),

(2.11) and using the hypotheses we have

|(Tx) (t)− (Ty) (t)|1(2.13)

= |(Tx) (t)− (Ty) (t)|+
∣∣(Tx)′ (t)− (Ty)′ (t)

∣∣
≤ |g (t, t, x (t) , x′ (t))− g (t, t, y (t) , y′ (t))|

+

∫ t

a

|g (t, s, x (s) , x′ (s))− g (t, s, y (s) , y′ (s))| ds

+

∫ t

a

∣∣∣∣ ∂

∂t
g (t, s, x (s) , x′ (s))− ∂

∂t
g (t, s, y (s) , y′ (s))

∣∣∣∣ ds

+

∫ b

a

|h (t, s, x (s) , x′ (s))− h (t, s, y (s) , y′ (s))| ds

+

∫ b

a

∣∣∣∣ ∂

∂t
h (t, s, x (s) , x′ (s))− ∂

∂t
h (t, s, y (s) , y′ (s))

∣∣∣∣ ds

≤ p1 (t, t) |x (t)− y (t)|1 +

∫ t

a

p (t, s) |x (s)− y (s)|1 ds

+

∫ b

a

q (t, s) |x (s)− y (s)|1 ds

≤ |x− y|S
{

p1 (t, t) exp (λ (t− a)) +

∫ t

a

p (t, s) exp (λ (s− a)) ds

+

∫ b

a

q (t, s) exp (λ (s− a)) ds

}
≤ |x− y|S α exp (λ (t− a)) .

From (2.13) we obtain
|Tx− Ty|S ≤ α |x− y|S .

Sinceα < 1, it follows from the Banach fixed point theorem (see [5, p. 37]) thatT has a unique
fixed point inS. The fixed point ofT is however a solution of equation (1.1). The proof is
complete. �

Remark 1. We note that in 1956 Bielecki [2] first used the norm defined in (2.2) for proving
global existence and uniqueness of solutions of ordinary differential equations. It is now used
very frequently to obtain global existence and uniqueness results for wide classes of differential
and integral equations. For developments related to the topic, see [4] and the references cited
therein.
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VOLTERRA-FREDHOLM TYPE INTEGRAL EQUATION 5

The following theorem holds concerning the uniqueness of solutions of equation (1.1) inRn

without the existence part.

Theorem 2.3.Assume that the functionsg, h in equation (1.1) and their derivatives with respect
to t satisfy the conditions (2.4) – (2.7). Further assume that the functionspi (t, s) , qi (t, s) (i = 1, 2)
in (2.4) – (2.7) are nondecreasing int ∈ I for eachs ∈ I,

(2.14) p1 (t, t) ≤ d,

for t ∈ I, whered ≥ 0 is a constant such thatd < 1,

(2.15) e (t) =

∫ b

a

1

1− d
q (t, s) exp

(∫ s

a

1

1− d
p (s, σ) dσ

)
ds < 1,

where
p (t, s) = p1 (t, s) + p2 (t, s) , q (t, s) = q1 (t, s) + q2 (t, s) .

Then the equation (1.1) has at most one solution onI .

Proof. Let x(t) andy(t) be two solutions of equation (1.1) and

w (t) = |x (t)− y (t)|+ |x′ (t)− y′ (t)| .
Then by hypotheses we have

w (t) ≤
∫ t

a

|g (t, s, x (s) , x′ (s))− g (t, s, y (s) , y′ (s))| ds(2.16)

+

∫ b

a

|h (t, s, x (s) , x′ (s))− h (t, s, y (s) , y′ (s))| ds

+ |g (t, t, x (t) , x′ (t))− g (t, t, y (t) , y′ (t))|

+

∫ t

a

∣∣∣∣ ∂

∂t
g (t, s, x (s) , x′ (s))− ∂

∂t
g (t, s, y (s) , y′ (s))

∣∣∣∣ ds

+

∫ b

a

∣∣∣∣ ∂

∂t
h (t, s, x (s) , x′ (s))− ∂

∂t
h (t, s, y (s) , y′ (s))

∣∣∣∣ ds

≤
∫ t

a

p1 (t, s) [|x (s)− y (s)|+ |x′ (s)− y′ (s)|]ds

+

∫ b

a

q1 (t, s) [|x (s)− y (s)|+ |x′ (s)− y′ (s)|]ds

+ p1 (t, t) [|x (t)− y (t)|+ |x′ (t)− y′ (t)|]

+

∫ t

a

p2 (t, s) [|x (s)− y (s)|+ |x′ (s)− y′ (s)|]ds

+

∫ b

a

q2 (t, s) [|x (s)− y (s)|+ |x′ (s)− y′ (s)|]ds.

Using (2.14) in (2.16) we observe that

(2.17) w (t) ≤ 1

1− d

∫ t

a

p (t, s) w (s) ds+
1

1− d

∫ b

a

q (t, s) w (s) ds.

Now a suitable application of Lemma 2.1 to (2.17) yields

|x (t)− y (t)|+ |x′ (t)− y′ (t)| ≤ 0,

and hencex(t) = y(t), which proves the uniqueness of solutions of equation (1.1) onI . �
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3. BOUNDS ON SOLUTIONS

In this section we obtain estimates on the solutions of equation (1.1) under some suitable
conditions on the functions involved and their derivatives.

The following theorem concerning an estimate on the solution of equation (1.1) holds.

Theorem 3.1. Assume that the functionsf, g, h in equation (1.1) and their derivatives with
respect tot satisfy the conditions

|f (t)|+ |f ′ (t)| ≤ c̄,(3.1)

|g (t, s, u, v)| ≤ m1 (t, s) [|u|+ |v|] ,(3.2) ∣∣∣∣ ∂

∂t
g (t, s, u, v)

∣∣∣∣ ≤ m2 (t, s) [|u|+ |v|] ,(3.3)

|h (t, s, u, v)| ≤ n1 (t, s) [|u|+ |v|] ,(3.4) ∣∣∣∣ ∂

∂t
h (t, s, u, v)

∣∣∣∣ ≤ n2 (t, s) [|u|+ |v|] ,(3.5)

where c̄ ≥ 0 is a constant and fori = 1, 2, mi (t, s) , ni (t, s) ∈ C (I2, R+) and they are
nondecreasing int ∈ I for eachs ∈ I. Further assume that

(3.6) m1 (t, t) ≤ d̄,

(3.7) ē (t) =

∫ b

a

1

1− d̄
n (t, s) exp

(∫ s

a

1

1− d̄
m (s, σ) dσ

)
ds < 1,

for t ∈ I whered̄ ≥ 0 is a constant such that̄d < 1 and

m (t, s) = m1 (t, s) + m2 (t, s) , n (t, s) = n1 (t, s) + n2 (t, s) .

If x (t) , t ∈ I is any solution of equation (1.1), then

(3.8) |x (t)|+ |x′ (t)| ≤
(

c̄

1− d̄

) (
1

1− ē (t)

)
exp

(∫ t

a

m (t, s) ds

)
,

for t ∈ I.

Proof. Let u (t) = |x (t)| + |x′ (t)| for t ∈ I. Using the fact thatx(t) is a solution of equation
(1.1) and the hypotheses we have

u (t) ≤ |f (t)|+ |f ′ (t)|+
∫ t

a

|g (t, s, x (s) , x′ (s))| ds(3.9)

+

∫ b

a

|h (t, s, x (s) , x′ (s))| ds + |g (t, t, x (t) , x′ (t))|

+

∫ t

a

∣∣∣∣ ∂

∂t
g (t, s, x (s) , x′ (s))

∣∣∣∣ ds +

∫ b

a

∣∣∣∣ ∂

∂t
h (t, s, x (s) , x′ (s))

∣∣∣∣ ds

≤ c̄ +

∫ t

a

m1 (t, s) u (s) ds +

∫ b

a

n1 (t, s) u (s) ds

+ m1 (t, t) u (t) +

∫ t

a

m2 (t, s) u (s) ds +

∫ b

a

n2 (t, s) u (s) ds.
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Using (3.6) in (3.9) we observe that

(3.10) u (t) ≤ c̄

1− d̄
+

1

1− d̄

∫ t

a

m (t, s) u (s) ds +
1

1− d̄

∫ b

a

n (t, s) u (s) ds.

Now an application of Lemma 2.1 to (3.10) yields (3.8). �

Remark 2. We note that the estimate obtained in (3.8) yields not only the bound on the solution
of equation (1.1) but also the bound on its derivative. If the estimate on the right hand side in
(3.8) is bounded, then the solution of equation (1.1) and its derivative is bounded onI .

Now we shall obtain an estimate on the solution of equation (1.1) assuming that the functions
g, h and their derivatives with respect tot satisfy Lipschitz type conditions.

Theorem 3.2.Assume that the hypotheses of Theorem 2.3 hold. Suppose that∫ t

a

|g (t, s, f (s)) , f ′ (s)| ds +

∫ b

a

|h (t, s, f (s) , f ′ (s))| ds

+ |g (t, t, f (t), f ′ (t))|+
∫ t

a

∣∣∣∣ ∂

∂t
g (t, s, f (s), f ′ (s))

∣∣∣∣ ds

+

∫ b

a

∣∣∣∣ ∂

∂t
h (t, s, f (s), f ′ (s))

∣∣∣∣ ds ≤ D,

for t ∈ I, whereD ≥ 0 is a constant. Ifx (t) , t ∈ I is any solution of equation (1.1), then

(3.11) |x (t)− f (t)|+ |x′ (t)− f ′ (t)| ≤
(

D

1− d

) (
1

1− e (t)

)
exp

(∫ t

a

p (t, s) ds

)
,

for t ∈ I.

Proof. Letu (t) = |x (t)− f (t)|+|x′ (t)− f ′ (t)| for t ∈ I. Using the fact thatx(t) is a solution
of equation (1.1) and the hypotheses we have

u (t) ≤
∫ t

a

|g (t, s, x (s) , x′ (s))− g (t, s, f (s) , f ′ (s))|ds(3.12)

+

∫ t

a

|g (t, s, f (s) , f ′ (s))|ds

+

∫ b

a

|h (t, s, x (s) , x′ (s))− h (t, s, f (s) , f ′ (s))|ds

+

∫ b

a

|h (t, s, f (s) , f ′ (s))|ds

+ |g (t, t, x (t) , x′ (t))− g (t, t, f (t) , f ′ (t))|+ |g (t, t, f (t) , f ′ (t))|

+

∫ t

a

∣∣∣∣ ∂

∂t
g (t, s, x (s) , x′ (s))− ∂

∂t
g (t, s, f (s) , f ′ (s))

∣∣∣∣ds

+

∫ t

a

∣∣∣∣ ∂

∂t
g (t, s, f (s) , f ′ (s))

∣∣∣∣ds

+

∫ b

a

∣∣∣∣ ∂

∂t
h (t, s, x (s) , x′ (s))− ∂

∂t
h (t, s, f (s) , f ′ (s))

∣∣∣∣ds

+

∫ b

a

∣∣∣∣ ∂

∂t
h (t, s, f (s) , f ′ (s))

∣∣∣∣ds
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≤ D +

∫ t

a

p1 (t, s) u (s) ds +

∫ b

a

q1 (t, s) u (s) ds

+ p1 (t, t) u(t) +

∫ t

a

p2 (t, s) u (s) ds +

∫ b

a

q2 (t, s) u (s) ds.

Using (2.14) in (3.12) we observe that

(3.13) u (t) ≤ D

1− d
+

1

1− d

∫ t

a

p (t, s) u (s) ds +
1

1− d

∫ b

a

q (t, s) u (s) ds.

Now an application of Lemma 2.1 to (3.13) yields (3.11). �

4. CONTINUOUS DEPENDENCE

In this section we shall deal with continuous dependence of solutions of equation (1.1) on the
functions involved therein and also the continuous dependence of solutions of equations of the
form (1.1) on parameters.

Consider the equation (1.1) and the following Volterra-Fredholm type integral equation

(4.1) y (t) = F (t) +

∫ t

a

G (t, s, y (s) , y′ (s)) ds +

∫ b

a

H (t, s, y (s) , y′ (s)) ds,

for t ∈ I, wherey, F, G, H are inRn. We assume thatF ∈ C (I, Rn) , G, H ∈ C(I2 × Rn×
Rn, Rn) and are continuously differentiable with respect tot on the respective domains of their
definitions.

The following theorem deals with the continuous dependence of solutions of equation (1.1)
on the functions involved therein.

Theorem 4.1.Assume that the hypotheses of Theorem 2.3 hold. Suppose that

|f (t)− F (t)|+ |f ′ (t)− F ′ (t)|+ |g (t, t, y (t) , y′ (t))−G (t, t, y (t) , y′ (t))|(4.2)

+

∫ t

a

|g (t, s, y (s) , y′ (s))−G (t, s, y (s) , y′ (s))| ds

+

∫ t

a

∣∣∣∣ ∂

∂t
g (t, s, y (s) , y′ (s))− ∂

∂t
G (t, s, y (s) , y′ (s))

∣∣∣∣ ds

+

∫ b

a

|h (t, s, y (s) , y′ (s))−H (t, s, y (s) , y′ (s))| ds

+

∫ b

a

∣∣∣∣ ∂

∂t
h (t, s, y (s) , y′ (s))− ∂

∂t
H (t, s, y (s) , y′ (s))

∣∣∣∣ ds

≤ ε,

wheref, g, h and F, G, H are the functions involved in equations (1.1) and (4.1),y(t) is a
solution of equation (4.1) andε > 0 is an arbitrary small constant. Then the solutionx (t) , t ∈
I of equation (1.1) depends continuously on the functions involved on the right hand side of
equation (1.1).
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Proof. Let z (t) = |x (t)− y (t)| + |x′ (t)− y′ (t)| for t ∈ I. Using the facts thatx(t) andy(t)
are the solutions of equations (1.1) and (4.1) and the hypotheses we have

z (t) ≤ |f (t)− F (t)|+ |f ′ (t)− F ′ (t)|(4.3)

+ |g (t, t, x (t) , x′ (t))− g (t, t, y (t) , y′ (t))|
+ |g (t, t, y (t) , y′ (t))−G (t, t, y (t) , y′ (t))|

+

∫ t

a

|g (t, s, x (s) , x′ (s))− g (t, s, y (s) , y′ (s))| ds

+

∫ t

a

|g (t, s, y (s) , y′ (s))−G (t, s, y (s) , y′ (s))| ds

+

∫ b

a

|h (t, s, x (s) , x′ (s))− h (t, s, y (s) , y′ (s))| ds

+

∫ b

a

|h (t, s, y (s) , y′ (s))−H (t, s, y (s) , y′ (s))| ds

+

∫ t

a

∣∣∣∣ ∂

∂t
g (t, s, x (s) , x′ (s))− ∂

∂t
g (t, s, y (s) , y′ (s))

∣∣∣∣ ds

+

∫ t

a

∣∣∣∣ ∂

∂t
g (t, s, y (s) , y′ (s))− ∂

∂t
G (t, s, y (s) , y′ (s))

∣∣∣∣ ds

+

∫ b

a

∣∣∣∣ ∂

∂t
h (t, s, x (s) , x′ (s))− ∂

∂t
h (t, s, y (s) , y′ (s))

∣∣∣∣ ds

+

∫ b

a

∣∣∣∣ ∂

∂t
h (t, s, y (s) , y′ (s))− ∂

∂t
H (t, s, y (s) , y′ (s))

∣∣∣∣ ds

≤ ε + p1 (t, t) z (t) +

∫ t

a

p (t, s) z (s) ds +

∫ b

a

q (t, s) z (s) ds.

Using (2.14) in (4.3) we observe that

(4.4) z (t) ≤ ε

1− d
+

1

1− d

∫ t

a

p (t, s) z (s) ds +
1

1− d

∫ b

a

q (t, s) z (s) ds.

Now an application of Lemma 2.1 to (4.4) yields

(4.5) |x (t)− y (t)|+ |x′ (t)− y′ (t)| ≤
(

ε

1− d

) (
1

1− e (t)

)
exp

(∫ t

a

p (t, s) ds

)
,

for t ∈ I. From (4.5) it follows that the solutions of equation (1.1) depend continuously on the
functions involved on the right hand side of equation (1.1). �

Next, we consider the following Volterra-Fredholm type integral equations

(4.6) z (t) = f (t) +

∫ t

a

g (t, s, z (s) , z′ (s) , µ) ds +

∫ b

a

h (t, s, z (s) , z′ (s) , µ) ds,

and

(4.7) z (t) = f (t) +

∫ t

a

g (t, s, z (s) , z′ (s) , µ0) ds +

∫ b

a

h (t, s, z (s) , z′ (s) , µ0) ds,

for t ∈ I, wherez, f, g, h are in Rn and µ, µ0 are real parameters. We assume thatf ∈
C (I, Rn); g, h ∈ C (I2 × Rn × Rn × R, Rn) and are continuously differentiable with respect
to t on the respective domains of their definitions.
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Finally, we present the following theorem which deals with the continuous dependency of
solutions of equations (4.6) and (4.7) on parameters.

Theorem 4.2. Assume that the functionsg, h in equations (4.6) and (4.7) and their derivatives
with respect tot satisfy the conditions

(4.8) |g (t, s, u, v, µ)− g (t, s, ū, v̄, µ)| ≤ k1 (t, s) [|u− ū|+ |v − v̄|] ,

(4.9) |g (t, s, u, v, µ)− g (t, s, u, v, µ0)| ≤ δ1 (t, s) |µ− µ0| ,

(4.10) |h (t, s, u, v, µ)− h (t, s, ū, v̄, µ)| ≤ r1 (t, s) [|u− ū|+ |v − v̄|] ,

(4.11) |h (t, s, u, v, µ)− h (t, s, u, v, µ0)| ≤ γ1 (t, s) |µ− µ0| ,

(4.12)

∣∣∣∣ ∂

∂t
g (t, s, u, v, µ)− ∂

∂t
g (t, s, ū, v̄, µ)

∣∣∣∣ ≤ k2 (t, s) [|u− ū|+ |v − v̄|] ,

(4.13)

∣∣∣∣ ∂

∂t
g (t, s, u, v, µ)− ∂

∂t
g (t, s, u, v, µ0)

∣∣∣∣ ≤ δ2 (t, s) |µ− µ0| ,

(4.14)

∣∣∣∣ ∂

∂t
h (t, s, u, v, µ)− ∂

∂t
h (t, s, ū, v̄, µ)

∣∣∣∣ ≤ r2 (t, s) [|u− ū|+ |v − v̄|] ,

(4.15)

∣∣∣∣ ∂

∂t
h (t, s, u, v, µ)− ∂

∂t
h (t, s, u, v, µ0)

∣∣∣∣ ≤ γ2 (t, s) |µ− µ0| ,

whereki (t, s) , ri (t, s) ∈ C (I2, R+) (i = 1, 2) are nondecreasing int ∈ I, for eachs ∈ I and
δi (t, s) , γi (t, s) ∈ C (I2, R+) (i = 1, 2) . Further, assume that

(4.16) k1 (t, t) ≤ λ,

(4.17) e0 (t) =

∫ b

a

1

1− λ
r̄ (t, s) exp

(∫ s

a

1

1− λ
k̄ (s, σ)dσ

)
ds < 1,

(4.18) δ1 (t, t) +

∫ t

a

[δ1 (t, s) + δ2 (t, s)]ds +

∫ b

a

[γ1 (t, s) + γ2 (t, s)]ds ≤ M,

for t ∈ I whereλ, M are nonnegative constants such thatλ < 1 and

k̄ (t, s) = k1 (t, s) + k2 (t, s) , r̄ (t, s) = r1 (t, s) + r2 (t, s) .

Let z1 (t) andz2 (t) be the solutions of equations (4.6) and (4.7) respectively. Then

(4.19) |z1 (t)− z2 (t)|+ |z′
1 (t)− z′

2 (t)|

≤
(
|µ− µ0|M

1− λ

) (
1

1− e0 (t)

)
exp

(∫ t

a

k̄ (t, s) ds

)
,

for t ∈ I.
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Proof. Let u (t) = |z1 (t)− z2 (t)| + |z′
1 (t)− z′

2 (t)| for t ∈ I. Using the facts thatz1 (t) and
z2 (t) are the solutions of the equations (4.6) and (4.7) and the hypotheses we have

u (t) ≤
∫ t

a

|g (t, s, z1 (s) , z′
1 (s) , µ)− g (t, s, z2 (s) , z′

2 (s) , µ)| ds(4.20)

+

∫ t

a

|g (t, s, z2 (s) , z′
2 (s) , µ)− g (t, s, z2 (s) , z′

2 (s) , µ0)| ds

+

∫ b

a

|h (t, s, z1 (s) , z′
1 (s) , µ)− h (t, s, z2 (s) , z′

2 (s) , µ)| ds

+

∫ b

a

|h (t, s, z2 (s) , z′
2 (s) , µ)− h (t, s, z2 (s) , z′

2 (s) , µ0)| ds

+ |g (t, t, z1 (t) , z′
1 (t) , µ)− g (t, t, z2 (t) , z′

2 (t) , µ)|
+ |g (t, t, z2 (t) , z′

2 (t) , µ)− g (t, t, z2 (t) , z′
2 (t) , µ0)|

+

∫ t

a

∣∣∣∣ ∂

∂t
g (t, s, z1 (s) , z′

1 (s) , µ)− ∂

∂t
g (t, s, z2 (s) , z′

2 (s) , µ)

∣∣∣∣ ds

+

∫ t

a

∣∣∣∣ ∂

∂t
g (t, s, z2 (s) , z′

2 (s) , µ)− ∂

∂t
g (t, s, z2 (s) , z′

2 (s) , µ0)

∣∣∣∣ ds

+

∫ b

a

∣∣∣∣ ∂

∂t
h (t, s, z1 (s) , z′

1 (s) , µ)− ∂

∂t
h (t, s, z2 (s) , z′

2 (s) , µ)

∣∣∣∣ ds

+

∫ b

a

∣∣∣∣ ∂

∂t
h (t, s, z2 (s) , z′

2 (s) , µ)− ∂

∂t
h (t, s, z2 (s) , z′

2 (s) , µ0)

∣∣∣∣ ds

≤
∫ t

a

k1 (t, s) u (s) ds +

∫ t

a

δ1 (t, s) |µ− µ0| ds

+

∫ b

a

r1 (t, s) u (s) ds +

∫ b

a

γ1 (t, s) |µ− µ0| ds

+ k1 (t, t) u (t) + δ1 (t, t) |µ− µ0|

+

∫ t

a

k2 (t, s) u (s) ds +

∫ t

a

δ2 (t, s) |µ− µ0| ds

+

∫ b

a

r2 (t, s) u (s) ds +

∫ b

a

γ2 (t, s) |µ− µ0| ds.

Using (4.16), (4.18) in (4.20) we observe that

(4.21) u (t) ≤ |µ− µ0|M
1− λ

+
1

1− λ

∫ t

a

k̄ (t, s) u (s) ds +
1

1− λ

∫ b

a

r̄ (t, s) u (s) ds.

Now an application of Lemma 2.1 to (4.21) yields (4.19), which shows the dependency of
solutions to equations (4.6) and (4.7) on parameters. �

Remark 3. We note that our approach to the study of the more general equation (1.1) is different
from those used in [1] and we believe that the results obtained here are of independent interest.
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