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1. Introduction

In [1], the parallelogram identity in areal inner product space, is rewritten in Cauchy-
Schwarz form (with the deviation from equality given as a function of the angular
distance between vectors) thereby providing another proof of the Cauchy-Schwarz
inequality in the real case. The first section of this note complements this result by
presenting related identities for complex inner product spaces, and thus a proof of
the Cauchy-Schwarz inequality in the complex case.

Of course, using angular distances is equivalent to using angles. An advantage of
the angular distance is that it makes sense in arbitrary normed spaces, in addition to
being simpler than the notion of an angle. And in some cases it may also be easier
to compute. Angular distances are used in Section2 to give a proof of the basic
theorem in the subject of strengthened Cauchy-Schwarz inequalities (Theorem3.1
below). We also point out that the result is valid not just for vector subspaces, but
also for cones. Strengthened Cauchy-Schwarz inequalities are fundamental in the
proofs of convergence of iterative, finite element methods in numerical analysis, cf.
for instance [8]. They have also been considered in the context of wavelets, cf. for
example [4], [5], [6].

Finally, Section4 presents a variant, for cones and in the Hölder case when
1 < p < ∞, of the basic theorem on strengthened Cauchy-Schwarz inequalities,
cf. Theorem4.1.
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2. Identities Related to the Cauchy-Schwarz Inequality in
Complex Inner Product Spaces

It is noted in [1] that in areal inner product space, the parallelogram identity

(2.1) ‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2

provides the following stability version of the Cauchy-Schwarz inequality, valid for
non-zero vectorsx andy:

(2.2) (x, y) = ‖x‖‖y‖

(
1− 1

2

∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥2
)
.

Basically, this identity says that the size of(x, y) is determined by the angular dis-

tance
∥∥∥ x
‖x‖ −

y
‖y‖

∥∥∥ betweenx andy. In particular,(x, y) ≤ ‖x‖‖y‖, with equality

precisely when the angular distance is zero. In this section we present some complex
variants of this identity, involving(x, y) and |(x, y)|; as a byproduct, the Cauchy-
Schwarz inequality in the complex case is obtained. Since different conventions
appear in the literature, we point out that in this paper(x, y) is taken to be linear in
the first argument and conjugate linear in the second.

We systematically replace in the proofs nonzero vectorsx andy by unit vectors
u = x/‖x‖ andv = y/‖y‖.

Theorem 2.1.For all nonzero vectorsx andy in a complex inner product space, we
have

(2.3) Re(x, y) = ‖x‖‖y‖

(
1− 1

2

∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥2
)
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and

(2.4) Im(x, y) = ‖x‖‖y‖

(
1− 1

2

∥∥∥∥ x

‖x‖
− iy

‖y‖

∥∥∥∥2
)
.

Proof. Let ‖u‖ = ‖v‖ = 1. From (2.1) we obtain

4− ‖u− v‖2 = ‖u+ v‖2

= 2 + (u, v) + (v, u)

= 2 + (u, v) + (u, v) = 2 + 2 Re(u, v).

Thus,Re(u, v) = 1− 1
2
‖u− v‖2 . The same argument, applied to‖u+ iv‖2, yields

Im(u, v) = 1− 1
2
‖u− iv‖2 .

Writing (x, y) = Re(x, y) + i Im(x, y) we obtain the following:

Corollary 2.2. For all nonzero vectorsx andy in a complex inner product space,
we have

(2.5) (x, y)=‖x‖‖y‖

((
1− 1

2

∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥2
)

+i

(
1− 1

2

∥∥∥∥ x

‖x‖
− iy

‖y‖

∥∥∥∥2
))

.

Thus,

(2.6) |(x, y)|=‖x‖‖y‖

√√√√(1− 1

2

∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥2
)2

+

(
1− 1

2

∥∥∥∥ x

‖x‖
− iy

‖y‖

∥∥∥∥2
)2

.

Next we find some shorter expressions for|(x, y)|. LetArg z denote the principal
argument ofz ∈ C, z 6= 0. That is,0 ≤ Arg z < 2π, and in polar coordinates,
z = ei Arg zr. We choose the principal argument for definiteness; any other argument
will do equally well.
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Theorem 2.3. Let x and y be nonzero vectors in a complex inner product space.
Then, for everyα ∈ R we have

(2.7) ‖x‖‖y‖

(
1− 1

2

∥∥∥∥eiαx

‖x‖
− y

‖y‖

∥∥∥∥2
)

≤ |(x, y)| = ‖x‖‖y‖

(
1− 1

2

∥∥∥∥e−i Arg(x,y)x

‖x‖
− y

‖y‖

∥∥∥∥2
)
.

Proof. By a normalization, it is enough to consider unit vectorsu andv. Letα be an
arbitrary real number, and sett = Arg(u, v), so(u, v) = eitr in polar form. Using
(2.3) we obtain

1− 1

2

∥∥eiαu− v
∥∥2

= Re(eiαu, v) ≤ |(eiαu, v)|

= |(u, v)| = r = (e−itu, v)

= Re(e−itu, v) = 1− 1

2

∥∥e−itu− v
∥∥2
.

The preceding result can be regarded as a variational expression for|(x, y)|, since
it shows that this quantity can be obtained by maximizing the left hand side of (2.7)

overα, or, in other words, by minimizing
∥∥∥ eiαx
‖x‖ −

y
‖y‖

∥∥∥ overα.

Corollary 2.4 (Cauchy-Schwarz inequality). For all vectorsx andy in a complex
inner product space, we have|(x, y)| ≤ ‖x‖ ‖y‖, with equality if and only if the
vectors are linearly dependent.
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Proof. Of course, if one of the vectorsx, y is zero, the result is trivial, so suppose
otherwise and normalize, writingu = x/‖x‖ andv = y/‖y‖. From (2.7) we obtain,
first, |(u, v)| ≤ 1, second,e−i Arg(u,v)u = v if |(u, v)| = 1, so equality implies
linear dependency, and third,|(u, v)| = 1 if eiαu = v for someα ∈ R, so linear
dependency implies equality.
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3. Strengthened Cauchy-Schwarz Inequalities

Such inequalities, of the form|(x, y)| ≤ γ ‖x‖ ‖y‖ for some fixedγ ∈ [0, 1), are
fundamental in the proofs of convergence of iterative, finite element methods in
numerical analysis. The basic result in the subject is the following theorem (see
Theorem 2.1 and Remark 2.3 of [8]).

Theorem 3.1. Let H be a Hilbert space, letF ⊂ H be a closed subspace, and
let V ⊂ H be a finite dimensional subspace. IfF ∩ V = {0}, then there exists a
constantγ = γ(V, F ) ∈ [0, 1) such that for everyx ∈ V and everyy ∈ F ,

|(x, y)| ≤ γ ‖x‖ ‖y‖.

There are, at least, two natural notions of angles between subspaces. To see this,
consider a pair of distinct 2 dimensional subspacesV andW in R3. They intersect
in a lineL, so we may consider that they are parallel in the direction of the subspace
L, and thus the angle between them is zero. This is the notion of angle relevant to
the subject of strengthened Cauchy-Schwarz inequalities.

Alternatively, we may disregard the common subspaceL, and (in this particular
example) determine the angle between subspaces by choosing the minimal angle
between their unit normals. Note however that the two notions of angle suggested
by the preceding example coincide when the intersection of subspaces is{0} (cf. [7]
for more information on angles between subspaces).

From the perspective of angles, or equivalently, angular distances, what Theorem
3.1 states is the intuitively plausible assertion that the angular distance betweenV
andF is strictly positive provided thatF is closed,V is finite dimensional, and
F ∩ V = {0}. Finite dimensionality of one of the subspaces is crucial, though. It is
known that if bothV andF are infinite dimensional, the angular distance between
them can be zero, even if both subspaces are closed.
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Define the angular distance betweenV andF as

(3.1) κ(V, F ) := inf{‖v − w‖ : v ∈ V,w ∈ F, and‖v‖ = ‖w‖ = 1}.

The proof (by contradiction) of Theorem3.1 presented in [8] is not difficult,
but deals only with the case where bothV andF are finite dimensional. And it is
certainly not as simple as the following

Proof. If eitherV = {0} orF = {0} there is nothing to show, so assume otherwise.
Let S(V ) be the unit sphere of the finite dimensional subspaceV , and letv ∈ S.
Denote byf(v) the distance fromv to the unit sphereS(F ) of F . Thenf(v) > 0
sinceF is closed andv /∈ F . Thus,f achieves a minimum valueκ > 0 over the
compact setS(V ). By the right hand side of formula (2.7), for everyx ∈ V \ {0}
and everyy ∈ F \ {0} we have|(x, y)| ≤ (1− κ2/2) ‖x‖ ‖y‖.

In concrete applications of the strengthened Cauchy-Schwarz inequality, a good
deal of effort goes into estimating the size ofγ = cos θ, whereθ is the angle between
subspaces appearing in the discretization schemes. Since we also haveγ = 1−κ2/2,
this equality can provide an alternative way of estimatingγ, via the angular distance
κ rather than the angle.

Next we state a natural extension of Theorem3.1, to which the same proof applies
(so we will not repeat it). Consider two nonzero vectorsu, v in a real inner product
spaceE, and letS be the unit circumference in the plane spanned by these vectors.
The angle between them is just the length of the smallest arc ofS determined by
u/‖u‖ andv/‖v‖. So to speak about angles, or angular distances, we only need to
be able to multiply nonzero vectorsx by positive scalarsλ = 1/‖x‖. This suggests
that the natural setting for Theorem3.1is that of cones, rather than vector subspaces.
Recall thatC is aconein a vector space over a field containing the real numbers if
for everyx ∈ C and everyλ > 0 we haveλx ∈ C. In particular, every vector
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subspace is a cone. IfC1 andC2 are cones in a Hilbert space, the angular distance
between them can be defined exactly as before:

(3.2) κ(C1, C2) := inf{‖v − w‖ : v ∈ C1, w ∈ C2, and‖v‖ = ‖w‖ = 1}.

Theorem 3.2.LetH be a Hilbert space with unit sphereS(H), and letC1, C2 ⊂ H
be (topologically) closed cones, such thatC1 ∩ S(H) is a norm compact set. If
C1 ∩ C2 = {0}, then there exists a constantγ = γ(C1, C2) ∈ [0, 1) such that for
everyx ∈ C1 and everyy ∈ C2,

|(x, y)| ≤ γ ‖x‖ ‖y‖.

Example3.1. Let H = R2, C1 = {(x, y) ∈ R2 : x = −y} andC2 = {(x, y) ∈
R2 : xy ≥ 0}, that is,C1 is the one dimensional subspace with slope−1 and
C2 is the union of the first and third quadrants. Here we can explicitly see that
γ(C1, C2) = cos(π/4) = 1/

√
2. However, ifC2 is extended to a vector spaceV ,

then the conditionC1 ∩ V = {0} no longer holds andγ(C1, V ) = 1. So stating
the result in terms of cones rather than vector subspaces does cover new, nontrivial
cases.
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4. A Strengthened Hölder Inequality
For1 < p <∞, it is possible to give anLp−Lq version of the strengthened Cauchy-
Schwarz inequality. Hereq := p/(p − 1) denotes the conjugate exponent ofp. We
want to find suitable conditions onC1 ⊂ Lp andC2 ⊂ Lq so that there exists a
constantγ = γ(C1, C2) ∈ [0, 1) with ‖fg‖1 ≤ γ ‖f‖p ‖g‖q for everyf ∈ C1 and
everyg ∈ C2. An obvious difference between the Hölder and the Cauchy-Schwarz
cases is that in the pairing(f, g) :=

∫
fg, the functionsf andg belong to different

spaces (unlessp = q = 2). This means that the hypothesisC1 ∩ C2 = {0} needs to
be modified. A second obvious difference is that Hölder’s inequality actually deals
with |f | and|g| rather than withf andg. So when finding angular distances we will
also deal with|f | and|g|. Note thatf ∈ Ci does not necessarily imply that|f | ∈ Ci

(consider, for instance, the second quadrant inR2).
We make standard nontriviality assumptions on measure spaces(X,A, µ): X

contains at least one point and the (positive) measureµ is not identically zero. We
writeLp rather thanLp(X,A, µ).

To compare cones in differentLp spaces, we map them intoL2 via the Mazur
map. Let us writesign z = eiθ whenz = reiθ 6= 0, andsign 0 = 1 (so | sign z| = 1
always). The Mazur mapψr,s : Lr → Ls is defined first on the unit sphereS(Lr) by
ψr,s(f) := |f |r/s sign f , and then extended to the rest ofLr by homogeneity (cf. [3,
pp. 197–199] for additional information on the Mazur map). More precisely,

ψr,s(f) := ‖f‖rψr,s(f/‖f‖r) = ‖f‖1−r/s
r |f |r/s sign f.

By definition, if λ > 0 thenψr,s(λf) = λψr,s(f). This entails that ifC ⊂ Lr is a
cone, thenψr,s(C) ⊂ Ls is a cone. Given a subsetA ⊂ Lr, we denote by|A| the set
|A| := {|f | : f ∈ A}. Observe that ifA is a cone then so is|A|.
Theorem 4.1.Let1 < p <∞ and denote byq := p/(p− 1) its conjugate exponent.
LetC1 ⊂ Lp andC2 ⊂ Lq be cones, letS(Lp) stand for the unit sphere ofLp and
let |C1| and |C2| denote the topological closures of|C1| and |C2|. If |C1| ∩ S(Lp)
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is norm compact, andψp,2(|C1|) ∩ ψq,2(|C2|) = {0}, then there exists a constant
γ = γ(C1, C2) ∈ [0, 1) such that for everyf ∈ C1 and everyg ∈ C2,
(4.1) ‖fg‖1 ≤ γ ‖f‖p ‖g‖q.

In the proof we use the following result, which is part of [1, Theorem 2.2].

Theorem 4.2. Let1 < p <∞, let q = p/(p− 1) be its conjugate exponent, and let
M = max{p, q}. If f ∈ Lp, g ∈ Lq, and‖f‖p, ‖g‖q > 0, then

(4.2) ‖fg‖1 ≤ ‖f‖p‖g‖q

1− 1

M

∥∥∥∥∥ |f |p/2

‖f‖p/2
p

− |g|q/2

‖g‖q/2
q

∥∥∥∥∥
2

2

 .

A different proof of inequality (4.2) (with the slightly weaker constantM = p+q,
but sufficient for the purposes of this note) can be found in [2]. Next we prove
Theorem4.1.

Proof. If eitherC1 = {0} orC2 = {0} there is nothing to show, so assume otherwise.
Note that since|C1| and|C2| are cones, the same happens with their topological clo-
sures. The conesψp,2(|C1|) andψq,2(|C2|) are also closed, as the following argument
shows: The Mazur mapsψr,s are uniform homeomorphisms between closed balls,
and also between spheres, of any fixed (bounded) radius (cf. [3, Proposition 9.2,
p. 198], and the paragraph before the said proposition). In particular, if{fn} is a
Cauchy sequence inψq,2(|C2|) (for instance) then it is a bounded sequence inL2,
so ψ−1

q,2 = ψ2,q maps it to a Cauchy sequence in|C2|, with limit, say, h. Then

limn fn = ψq,2(h) ∈ ψq,2(|C2|). Likewise,ψp,2(|C1|) is closed.
The rest of the proof proceeds as before. Letv ∈ ψp,2(|C1|) ∩ S(L2) and denote

by F (v) the distance fromv to ψq,2(|C2|) ∩ S(L2). ThenF (v) > 0, soF achieves
a minimum valueκ > 0 over the compact setψp,2(|C1|) ∩ S(L2), and now (4.1)
follows from (4.2).
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