GENERALIZATION OF AN IMPULSIVE NONLINEAR SINGULAR GRONWALL-BIHARI INEQUALITY WITH DELAY

SHENGFU DENG AND CARL PRATHER

Department of Mathematics

Virginia Polytechnic Institute and State University

Blacksburg, VA 24061, USA

Received: 25 August, 2007

Accepted: 23 May, 2008

Communicated by: S.S. Dragomir

2000 AMS Sub. Class.: 26D15, 26D20.

Key words: Gronwall-Bihari inequality, Nonlinear, Impulsive.

Abstract: This paper generalizes a Tatar's result of an impulsive nonlinear singular

Gronwall-Bihari inequality with delay [J. Inequal. Appl., 2006(2006), 1-12] to a

new type of inequalities which includes n distinct nonlinear terms.

Gronwall-Bihari Inequality
Shengfu Deng and Carl Prather
vol. 9, iss. 2, art. 34, 2008

Title Page

Contents

Page 1 of 20

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Contents

Introduction	3
	Introduction

2 Main Results 5

Gronwall-Bihari Inequality
Shengfu Deng and Carl Prather
vol. 9, iss. 2, art. 34, 2008

journal of inequalities in pure and applied mathematics

Close

issn: 1443-5756

1. Introduction

In order to investigate problems of the form

$$x' = f(t, x), \quad t \neq t_k,$$

 $\Delta x = I_k(x), \quad t = t_k,$

Samoilenko and Perestyuk [6] first used the following impulsive integral inequality

$$u(t) \le a + \int_c^t b(s)u(s)ds + \sum_{0 < t_k < t} \eta_k u(t_k), \quad t \ge 0.$$

Then Bainov and Hristova [2] studied a similar inequality with constant delay. In 2004, Hristova [3] considered a more general inequality with nonlinear functions in u. All of these papers treated the functions (kernels) involved in the integrals which are regular. Recently, Tatar [7] investigated the following singular inequality

$$u(t) \le a(t) + b(t) \int_0^t k_1(t, s) u^m(s) ds + c(t) \int_0^t k_2(t, s) u^n(s - \tau) ds$$

$$+ d(t) \sum_{0 < t_k < t} \eta_k u(t_k), \quad t \ge 0,$$

$$(1.1) \qquad u(t) \le \varphi(t), \quad t \in [-\tau, 0], \quad \tau > 0$$

where the kernels $k_i(t,s)$ are defined by $k_i(t,s)=(t-s)^{\beta_i-1}s^{\gamma_i}F_i(s)$ for $\beta_i>0$ and $\gamma_i>-1, i=1,2$, the points t_k (called "instants of impulse effect") are in increasing order and $\lim_{k\to\infty}t_k=+\infty$. This inequality was called the impulsive nonlinear singular version of the Gronwall inequality with delay by Tatar [7]. In this paper, we

Gronwall-Bihari Inequality

Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page

Contents

44

>>

Page 3 of 20

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

will consider an inequality

$$u(t) \leq a(t) + \sum_{i=1}^{n} \int_{0}^{b_{i}(t)} (t-s)^{\beta_{i}-1} s^{r_{i}} f_{i}(t,s) w_{i}(u(s)) ds$$

$$+ \sum_{j=n+1}^{m+n} \int_{0}^{b_{j}(t)} (t-s)^{\beta_{j}-1} s^{r_{j}} f_{j}(t,s) w_{j}(u(s-\tau)) ds$$

$$+ d(t) \sum_{0 < t_{L} < t} \eta_{L} u(t_{L}), \quad t \geq 0,$$

$$u(t) \leq \varphi(t), \quad t \in [-\tau, 0], \ \tau > 0,$$

where n, m are positive integers, $\beta_l > 0$, $r_l > -1$ for l = 1, ..., n + m and $\eta_L \ge 0$ and other assumptions are given in Section 2. This inequality is more general than (1.1) since (1.2) has n nonlinear terms.

Gronwall-Bihari Inequality
Shengfu Deng and Carl Prather
vol. 9, iss. 2, art. 34, 2008

journal of inequalities in pure and applied mathematics

Full Screen

Close

issn: 1443-5756

2. Main Results

Notation: Following [1] and [5], we say $w_1 \propto w_2$ for $w_1, w_2 : A \subset \mathbb{R} \to \mathbb{R} \setminus \{0\}$ if $\frac{w_2}{w_1}$ is nondecreasing on A. This concept helps us to compare the monotonicity of different functions. Now we make the following assumptions:

- (H1) all w_i $(i=1,\ldots,n+m)$ are continuous and nondecreasing on $[0,\infty)$ and positive on $(0,\infty)$, and $w_1 \propto w_2 \propto \cdots \propto w_n$
- (H2) a(t) and d(t) are continuous and nonnegative on $[0, \infty)$;
- (H3) all $b_l: [0,\infty) \to [0,\infty)$ are continuously differentiable and nondecreasing such that $0 \le b_l(t) \le t$ on $[0,\infty)$, $t_L \le b_l(t) \le t_L + \tau$ for $t \in [t_L,t_L+\tau]$ and $t_L + \tau \le b_l(t) \le t_{L+1}$ for $t \in [t_L + \tau,t_{L+1}]$, $l = 1,\ldots,n+m$ and $L = 0,1,2,\ldots$ where $t_0 = 0$. The points t_L are called instants of impulse effect which are in increasing order, and $\lim_{L\to\infty} t_L = \infty$;
- (H4) all $f_l(t,s)$ $(l=1,\ldots,n+m)$ are continuous and nonnegative functions on $[0,\infty)\times[0,\infty)$;
- (H5) $\varphi(t)$ is nonnegative and continuous;
- (H6) u(t) is a piecewise continuous function from $\mathbb{R} \to \mathbb{R}^+ = [0, \infty)$ with points of discontinuity of the first kind at the points $t_L \in \mathbb{R}$. It is also left continuous at the points t_L . This space is denoted by $PC(\mathbb{R}, \mathbb{R}^+)$.

Without loss of generality, we will suppose that the t_L satisfy $\tau < t_{L+1} - t_L \le 2\tau$, $L = 0, 1, 2, \ldots$ As in Remark 3.2 of [7], other cases can be reduced to this one.

Gronwall-Bihari Inequality

Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page

Contents

>>

44

Page 5 of 20

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Theorem 2.1. Let the above assumptions hold. Suppose that u satisfies (1.2) and is in $PC([-\tau,\infty),[0,\infty))$. Then if $\beta_{\alpha}>-\frac{1}{p}+1$ and $r_{\alpha}>-\frac{1}{p}$, it holds that

$$u(t) \leq \begin{cases} u_{L,0}(t), & t \in (t_L, t_L + \tau], \\ u_{L,1}(t), & t \in (t_L + \tau, t_{L+1}], \\ u_{k,0}(t), & t \in (t_k, t_k + \tau] & \text{if } t_k + \tau \leq T, \\ u_{k,1}(t), & t \in (t_k + \tau, T] & \text{if } t_k + \tau < T, \\ u_{k,0}(t), & t \in (t_k, T] & \text{if } t_k + \tau > T, \end{cases}$$

where $t_k \leq T < t_{k+1}$ and

$$u_{L,l}(t) = \left[W_n^{-1} \left(W_n(\gamma_{L,l,n}(t)) + \int_{t_L + l\tau}^{b_n(t)} (n+m+L+1)^{q-1} c_n^q(t) \tilde{f}_n^q(t,s) ds \right) \right]^{\frac{1}{q}},$$

$$\gamma_{L,l,j}(t) = W_{j-1}^{-1} \left[W_{j-1}(\gamma_{L,l,j-1}(t)) + \int_{t_L+l\tau}^{b_{j-1}(t)} (n+m+L+1)^{q-1} c_{j-1}^q(t) \tilde{f}_{j-1}^q(t,s) ds \right], \quad j \neq 1,$$

$$\gamma_{L,l,1}(t) = (n+m+L+1)^{q-1} \left[\tilde{a}^q(t) + \sum_{i=1}^n \int_0^{t_L+l\tau} c_i^q(t) \tilde{f}_i^q(t,s) w_i^q(\phi(s)) ds + \sum_{j=n+1}^{n+m} \int_0^{b_j(t)} c_j^q(t) \tilde{f}_j^q(t,s) w_j^q(\psi(s-\tau)) ds + \sum_{e=1}^L \tilde{d}^q(t) \eta_e^q u_{e-1,1}^q(t_e) \right],$$

Gronwall-Bihari Inequality
Shengfu Deng and Carl Prather
vol. 9, iss. 2, art. 34, 2008

Contents

Contents

Page 6 of 20

Full Screen

Go Back

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

$$\phi(t) = \left\{ \begin{array}{ll} u_{L,0}(t), & t \in (t_L, t_L + \tau], t \in (t_k, t_k + \tau] & \text{if } t_k + \tau \leq T, \\ & \text{and } t \in (t_k, T] & \text{if } t_k + \tau > T, \\ \\ u_{L,1}(t), & t \in (t_L + \tau, t_{L+1}] \text{ and } t \in (t_k + \tau, T] & \text{if } t_k + \tau < T, \end{array} \right.$$

$$\psi(t) = \begin{cases} \varphi(t), & t \in [-\tau, 0], \\ u_{L,0}(t), & t \in (t_L, t_L + \tau], t \in (t_k, t_k + \tau] & \text{if } t_k + \tau \le T, \\ & \text{and } t \in (t_k, T] & \text{if } t_k + \tau > T, \\ u_{L,1}(t), & t \in (t_L + \tau, t_{L+1}] \text{ and } t \in (t_k + \tau, T] & \text{if } t_k + \tau < T, \end{cases}$$

$$\tilde{a}(t) = \max_{0 \le x \le t} a(x), \quad \tilde{f}_{\alpha}(t, s) = \max_{0 \le x \le t} f_{\alpha}(x, s), \quad \tilde{d}(t) = \max_{0 \le x \le t} d(x),$$

$$W_{i}(u) = \int_{u_{i}}^{u} \frac{dv}{w_{i}^{q}(v^{\frac{1}{q}})}, \quad u > 0, \quad u_{i} > 0,$$

$$c_{\alpha}(t) = t^{\frac{1}{p} + \beta_{\alpha} + r_{\alpha} - 1} \left(\frac{\Gamma(1 + p(\beta_{\alpha} - 1))\Gamma(1 + pr_{\alpha})}{\Gamma(2 + p(\beta_{\alpha} + r_{\alpha} - 1))} \right)^{\frac{1}{p}},$$

for $L=0,1,\ldots,k-1$, $\alpha=1,2,\ldots,n+m$, l=0,1, and $i,j=1,\ldots,n$ where $\frac{1}{p}+\frac{1}{q}=1$ for p>0 and q>1, and T is the largest number such that

$$(2.1) \ W_j(\gamma_{L,l,j}(t)) + \int_{t_L + l\tau}^{b_j(t)} (n + m + L + 1)^{q-1} c_j(t) \tilde{f}_j^q(t,s) ds \le \int_{u_j}^{\infty} \frac{dz}{w_j^q(z^{1/q})},$$

for all $t \in (t_L, t_L + \tau]$, all $t \in (t_k, t_k + \tau]$ if $t_k + \tau \leq T$ and all $t \in (t_L, T]$ if $t_k + \tau > T$ as l = 0, or all $t \in [t_L + \tau, t_{L+1}]$ and all $t \in [t_k + \tau, T)$ if $t_k + \tau < T$ as l = 1 where $j = 1, \ldots, n$, l = 0, 1 and $L = 0, 1, \ldots, k-1$.

Gronwall-Bihari Inequality
Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page

Contents

Page **7** of 20

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Before the proof, we introduce a lemma which will play a very important role.

Lemma 2.2 ([1]). Suppose that

- 1. all w_i (i = 1, ..., n) are continuous and nondecreasing on $[0, \infty)$ and positive on $(0, \infty)$, and $w_1 \propto w_2 \propto \cdots \propto w_n$.
- 2. a(t) is continuously differentiable in t and nonnegative on $[t_0, t_1)$,
- 3. all b_l are continuously differentiable and nondecreasing such that $b_l(t) \leq t$ for $t \in [t_0, t_1)$

where t_0, t_1 are constants and $t_0 < t_1$. If u(t) is a continuous and nonnegative function on $[t_0, t_1)$ satisfying

$$u(t) \le a(t) + \sum_{i=1}^{n} \int_{b_i(t_0)}^{b_i(t)} f_i(t, s) w_i(u(s)) ds, \quad t_0 \le t < t_1,$$

then

$$u(t) \le \tilde{W}_n^{-1} \left[\tilde{W}_n(\gamma_n(t)) + \int_{b_n(t_0)}^{b_n(t)} \tilde{f}_n(t,s) ds \right], \quad t_0 \le t \le T_1,$$

where

$$\gamma_{i}(t) = \tilde{W}_{i-1}^{-1} \left[\tilde{W}_{i-1}(\gamma_{i-1}(t)) + \int_{b_{i-1}(t_0)}^{b_{i-1}(t)} \tilde{f}_{i-1}(t,s) ds \right], \quad i = 2, 3, \dots, n,$$

$$\gamma_{1}(t) = a(t_0) + \int_{t_0}^{t} |a'(s)| ds, \quad \tilde{W}_{i}(u) = \int_{u_i}^{u} \frac{dz}{w_{i}(z)}, \quad u_i > 0,$$

 $T_1 < t_1$ and T_1 is the largest number such that

$$\tilde{W}_i(\gamma_i(T_1)) + \int_{b_i(t_0)}^{b_i(T_1)} \tilde{f}_i(T_1, s) ds \le \int_{u_i}^{\infty} \frac{dz}{w_i(z)}, \quad i = 1, \dots, n.$$

Gronwall-Bihari Inequality

Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page

Contents

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Proof of Theorem 2.1. Since $\beta_{\alpha} > -\frac{1}{p} + 1$ and $r_{\alpha} > -\frac{1}{p}$ for $\alpha = 1, \ldots, n + m$, by Hölder's inequality we obtain

$$u(t) \leq a(t) + \sum_{i=1}^{n} \left(\int_{0}^{t} (t-s)^{p(\beta_{i}-1)} s^{pr_{i}} ds \right)^{\frac{1}{p}} \left(\int_{0}^{b_{i}(t)} f_{i}^{q}(t,s) w_{i}^{q}(u(s)) ds \right)^{\frac{1}{q}}$$

$$+ \sum_{j=n+1}^{m+n} \left(\int_{0}^{t} (t-s)^{p(\beta_{j}-1)} s^{pr_{j}} ds \right)^{\frac{1}{p}} \left(\int_{0}^{b_{j}(t)} f_{j}^{q}(t,s) w_{j}^{q}(u(s-\tau)) ds \right)^{\frac{1}{q}}$$

$$+ \sum_{0 < t_{L} < t} d(t) \eta_{L} u(t_{L})$$

$$\leq a(t) + \sum_{i=1}^{n} c_{i}(t) \left(\int_{0}^{b_{i}(t)} f_{i}^{q}(t,s) w_{i}^{q}(u(s)) ds \right)^{\frac{1}{q}}$$

$$+ \sum_{j=n+1}^{m+n} c_{j}(t) \left(\int_{0}^{b_{j}(t)} f_{j}^{q}(t,s) w_{j}^{q}(u(s-\tau)) ds \right)^{\frac{1}{q}} + \sum_{0 < t_{L} < t} d(t) \eta_{L} u(t_{L})$$

where we use $b_{\alpha}(t) \le t$ and the definition of $c_{\alpha}(t)$. Now we use the following result [4]: If A_1, \ldots, A_n are nonnegative for $n \in \mathbb{N}$, then for q > 1,

$$(A_1 + \dots + A_n)^q \le n^{q-1}(A_1^q + \dots + A_n^q).$$

Since $t_k \le t \le T < t_{k+1}$, we have

$$u^{q}(t) \leq (1+n+m+k)^{q-1} \left[a^{q}(t) + \sum_{i=1}^{n} c_{i}^{q}(t) \int_{0}^{b_{i}(t)} f_{i}^{q}(t,s) w_{i}^{q}(u(s)) ds + \sum_{j=n+1}^{m+n} c_{j}^{q}(t) \int_{0}^{b_{j}(t)} f_{j}^{q}(t,s) w_{j}^{q}(u(s-\tau)) ds + \sum_{L=1}^{k} d^{q}(t) \eta_{L}^{q} u^{q}(t_{L}) \right].$$

Gronwall-Bihari Inequality
Shengfu Deng and Carl Prather
vol. 9, iss. 2, art. 34, 2008

Title Page

Contents

Page 9 of 20

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

We note that $\tilde{a}(t) \geq a(t)$, $\tilde{d}(t) \geq d(t)$ and $\tilde{f}_{\alpha}(t,s) \geq f_{\alpha}(t,s)$ and they are continuous and nondecreasing in t. The above inequality becomes

$$u^{q}(t) \leq (1+n+m+k)^{q-1} \left[\tilde{a}^{q}(t) + \sum_{i=1}^{n} \left(\sum_{L=0}^{k-1} c_{i}^{q}(t) \int_{t_{L}}^{t_{L+1}} \tilde{f}_{i}^{q}(t,s) w_{i}^{q}(u(s)) ds \right. \\ + c_{i}^{q}(t) \int_{t_{k}}^{b_{i}(t)} \tilde{f}_{i}^{q}(t,s) w_{i}^{q}(u(s)) ds \right) \\ + \sum_{j=n+1}^{m+n} \left(\sum_{L=0}^{k-1} c_{j}^{q}(t) \int_{t_{L}}^{t_{L+1}} \tilde{f}_{j}^{q}(t,s) w_{j}^{q}(u(s-\tau)) ds \right. \\ \left. + c_{j}^{q}(t) \int_{t_{k}}^{b_{j}(t)} \tilde{f}_{j}^{q}(t,s) w_{j}^{q}(u(s-\tau)) ds \right) + \sum_{L=1}^{k} \tilde{d}^{q}(t) \eta_{L}^{q} u^{q}(t_{L}) \right].$$

In the following, we apply mathematical induction with respect to k.

(1) k = 0. We note that $t_0 = 0$ and we have for any fixed $\tilde{t} \in [0, t_1]$

$$(2.3) \quad u^{q}(t) \leq (n+m+1)^{q-1} \left[\tilde{a}^{q}(\tilde{t}) + \sum_{i=1}^{n} c_{i}^{q}(\tilde{t}) \int_{0}^{b_{i}(t)} \tilde{f}_{i}^{q}(\tilde{t}, s) w_{i}^{q}(u(s)) ds + \sum_{j=n+1}^{m+n} c_{j}^{q}(\tilde{t}) \int_{0}^{b_{j}(t)} \tilde{f}_{j}^{q}(\tilde{t}, s) w_{j}^{q}(u(s-\tau)) ds \right]$$

for $t \in [0, \tilde{t}]$ since $c_{\alpha}(t)$ are nondecreasing.

Now we consider $\tilde{t} \in [0, \tau] \subset [0, t_1]$ and $t \in [0, \tilde{t}]$. Note that $0 \le b_j(t) \le t$ so $-\tau \le b_j(t) - \tau \le 0$ for $t \in [0, \tilde{t}]$. Since $u(t) \le \varphi(t)$ for $t \in [-\tau, 0]$, we have $u^q(t) \le z_{0,0}(t), \quad t \in [0, \tilde{t}],$

Gronwall-Bihari InequalityShengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page

Contents

Page 10 of 20

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

where

$$(2.4) z_{0,0}(t) = (n+m+1)^{q-1} \left[\tilde{a}^q(\tilde{t}) + \sum_{i=1}^n c_i^q(\tilde{t}) \int_0^{b_i(t)} \tilde{f}_i^q(\tilde{t}, s) w_i^q(u(s)) ds + \sum_{j=n+1}^{m+n} c_j^q(\tilde{t}) \int_0^{b_j(\tilde{t})} \tilde{f}_j^q(\tilde{t}, s) w_j^q(\varphi(s-\tau)) ds \right].$$

It implies that

(2.5)
$$u(t) \le z_{0,0}(t)^{1/q}, \quad t \in [0, \tilde{t}].$$

Thus, (2.4) becomes

$$(2.6) \quad z_{0,0}(t) \leq (n+m+1)^{q-1} \left[\tilde{a}^{q}(\tilde{t}) + \sum_{i=1}^{n} c_{i}^{q}(\tilde{t}) \int_{0}^{b_{i}(\tilde{t})} \tilde{f}_{i}^{q}(\tilde{t}, s) w_{i}^{q}(z_{0,0}^{1/q}(s)) ds + \sum_{j=n+1}^{m+n} c_{j}^{q}(\tilde{t}) \int_{0}^{b_{j}(\tilde{t})} \tilde{f}_{j}^{q}(\tilde{t}, s) w_{j}^{q}(\varphi(s-\tau)) ds \right].$$

By Lemma 2.2, (2.6) and (2.1), we have

$$z_{0,0}(t) \le W_n^{-1} \left[W_n(\tilde{\gamma}_{0,0,n}(t)) + \int_0^{b_n(t)} (n+m+1)^{q-1} c_n(\tilde{t}) \tilde{f}_n^q(\tilde{t},s) ds \right],$$

$$\tilde{\gamma}_{0,0,j}(t) = W_{j-1}^{-1} \left[W_{j-1}(\tilde{\gamma}_{0,0,j-1}(t)) + \int_0^{b_{j-1}(t)} (n+m+1)^{q-1} c_{j-1}(\tilde{t}) \tilde{f}_{j-1}^q(\tilde{t},s) ds \right], \quad j \neq 1,$$

Gronwall-Bihari Inequality
Shengfu Deng and Carl Prather
vol. 9, iss. 2, art. 34, 2008

Title Page

Contents

Page 11 of 20

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

$$\tilde{\gamma}_{0,0,1}(t) = (n+m+1)^{q-1} \left[\tilde{a}^q(\tilde{t}) + \sum_{j=n+1}^{n+m} \int_0^{b_j(\tilde{t})} c_j^q(\tilde{t}) \tilde{f}_j^q(\tilde{t}, s) w_j^q(\psi(s-\tau)) ds \right]$$

since $\psi(t) = \varphi(t)$ for $t \in [-\tau, 0]$.

Since (2.5) is true for any $t \in [0, \tilde{t}]$ and $\tilde{\gamma}_{0,0,j}(\tilde{t}) = \gamma_{0,0,j}(\tilde{t})$, we have

$$u(\tilde{t}) \le z_{0,0}(\tilde{t})^{1/q} \le u_{0,0}(\tilde{t}).$$

We know that $\tilde{t} \in [0, \tau]$ is arbitrary so we replace \tilde{t} by t and get

(2.7)
$$u(t) \le u_{0,0}(t), \text{ for } t \in [0, \tau].$$

This implies that the theorem is true for $t \in [0, \tau]$ and k = 0.

For $t \in [\tau, \tilde{t}]$ and $\tilde{t} \in [\tau, t_1]$, use the assumption (H3) and then we know that $b_{\alpha}(\tau) = \tau$ and $\tau \leq b_{\alpha}(t) \leq t_1$ for $t \in [\tau, t_1]$ and $\alpha = 1, \ldots, n+m$. Thus,

$$0 < b_{\alpha}(t) - \tau < t_1 - \tau < \tau$$

since $\tau < t_1 - t_0 = t_1 \le 2\tau$. Using this fact, (2.3) and (2.7), we get

$$u^{q}(t) \leq (n+m+1)^{q-1} \left[\tilde{a}^{q}(\tilde{t}) + \sum_{i=1}^{n} c_{i}^{q}(\tilde{t}) \int_{0}^{\tau} \tilde{f}_{i}^{q}(\tilde{t}, s) w_{i}^{q}(u(s)) ds + \sum_{i=1}^{n} c_{i}^{q}(\tilde{t}) \int_{\tau}^{b_{i}(t)} \tilde{f}_{i}^{q}(\tilde{t}, s) w_{i}^{q}(u(s)) ds + \sum_{j=n+1}^{m+n} c_{j}^{q}(\tilde{t}) \int_{0}^{\tau} \tilde{f}_{j}^{q}(\tilde{t}, s) w_{j}^{q}(\psi(s-\tau)) ds + \sum_{j=n+1}^{m+n} c_{j}^{q}(\tilde{t}) \int_{\tau}^{b_{j}(\tilde{t})} \tilde{f}_{j}^{q}(\tilde{t}, s) w_{j}^{q}(u(s-\tau)) ds \right]$$

Gronwall-Bihari Inequality

Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page

Contents

>>

44

4

Page 12 of 20

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

$$\leq (n+m+1)^{q-1} \left[\tilde{a}^{q}(\tilde{t}) + \sum_{i=1}^{n} c_{i}^{q}(\tilde{t}) \int_{0}^{\tau} \tilde{f}_{i}^{q}(\tilde{t}, s) w_{i}^{q}(u_{0,0}(s)) ds \right.$$

$$+ \sum_{i=1}^{n} c_{i}^{q}(\tilde{t}) \int_{\tau}^{b_{i}(t)} \tilde{f}_{i}^{q}(\tilde{t}, s) w_{i}^{q}(u(s)) ds$$

$$+ \sum_{j=n+1}^{m+n} c_{j}^{q}(\tilde{t}) \int_{0}^{\tau} \tilde{f}_{j}^{q}(\tilde{t}, s) w_{j}^{q}(\psi(s-\tau)) ds$$

$$+ \sum_{j=n+1}^{m+n} c_{j}^{q}(\tilde{t}) \int_{\tau}^{b_{j}(\tilde{t})} \tilde{f}_{j}^{q}(\tilde{t}, s) w_{j}^{q}(u_{0,0}(s-\tau)) ds$$

$$\leq (n+m+1)^{q-1} \left[\tilde{a}^{q}(\tilde{t}) + \sum_{i=1}^{n} c_{i}^{q}(\tilde{t}) \int_{0}^{\tau} \tilde{f}_{i}^{q}(\tilde{t}, s) w_{i}^{q}(\phi(s)) ds$$

$$+ \sum_{i=1}^{n} c_{i}^{q}(\tilde{t}) \int_{\tau}^{b_{i}(t)} \tilde{f}_{i}^{q}(\tilde{t}, s) w_{i}^{q}(u(s)) ds$$

$$+ \sum_{j=n+1}^{m+n} c_{j}^{q}(\tilde{t}) \int_{0}^{b_{j}(\tilde{t})} \tilde{f}_{j}^{q}(\tilde{t}, s) w_{j}^{q}(\psi(s-\tau)) ds$$

$$:= z_{0,1}(t),$$

where we use the definitions of ϕ and ψ . Thus,

(2.8)
$$u(t) \le z_{0,1}^{1/q}(t), \quad t \in [\tau, \tilde{t}].$$

Gronwall-Bihari Inequality
Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page

Contents

Page 13 of 20

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Therefore,

$$\begin{split} z_{0,1} & \leq (n+m+1)^{q-1} \left[\tilde{a}^q(\tilde{t}) + \sum_{i=1}^n c_i^q(\tilde{t}) \int_0^\tau \tilde{f}_i^q(\tilde{t},s) w_i^q(\phi(s)) ds \\ & + \sum_{i=1}^n c_i^q(\tilde{t}) \int_\tau^{b_i(t)} \tilde{f}_i^q(\tilde{t},s) w_i^q(z_{0,1}^{1/q}(s)) ds \\ & + \sum_{j=n+1}^{m+n} c_j^q(\tilde{t}) \int_0^{b_j(\tilde{t})} \tilde{f}_j^q(\tilde{t},s) w_j^q(\psi(s-\tau)) ds \right]. \end{split}$$

Using Lemma 2.2, (2.1) and $b_{\alpha}(\tau) = \tau$, we obtain for $t \in [\tau, \tilde{t}]$

$$z_{0,1}(t) \le W_n^{-1} \left[W_n(\tilde{\gamma}_{0,1,n}(t)) + \int_{\tau}^{b_n(t)} (n+m+1)^{q-1} c_n^q(\tilde{t}) \tilde{f}_n^q(\tilde{t},s) ds \right],$$

$$\tilde{\gamma}_{0,1,j}(t) = W_{j-1}^{-1} \left[W_{j-1}(\tilde{\gamma}_{0,1,j-1}(t)) + \int_{\tau}^{b_{j-1}(t)} (n+m+1)^{q-1} c_{j-1}^{q}(\tilde{t}) \tilde{f}_{j-1}^{q}(\tilde{t}, s) ds \right], \ j \neq 1,$$

$$\begin{split} \tilde{\gamma}_{0,1,1}(t) &= (n+m+1)^{q-1} \left[\tilde{a}^q(\tilde{t}) + \sum_{i=1}^n \int_0^\tau c_i^q(\tilde{t}) \tilde{f}_i^q(\tilde{t},s) w_i^q(\phi(s)) ds \\ &+ \sum_{i=n+1}^{n+m} \int_0^{b_j(\tilde{t})} c_j^q(\tilde{t}) \tilde{f}_j^q(\tilde{t},s) w_j^q(\psi(s-\tau)) ds \right]. \end{split}$$

Gronwall-Bihari Inequality

Shengfu Deng and Carl Prather vol. 9, iss. 2, art. 34, 2008

Title Page

Contents

44 >>

Page 14 of 20

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Since (2.8) is true for any $t \in [\tau, t_1]$ and $\tilde{\gamma}_{0,1,1}(\tilde{t}) = \gamma_{0,1,1}(\tilde{t})$, we have

$$u(\tilde{t}) \le z_{0,1}^{1/q}(\tilde{t}) \le u_{0,1}(\tilde{t}).$$

We know that $\tilde{t} \in [\tau, t_1]$ is arbitrary so we replace \tilde{t} by t and get

$$(2.9) u(t) \le u_{0,1}(t), t \in [\tau, t_1].$$

This implies that the theorem is valid for $t \in [\tau, t_1]$ and L = 0.

(2) L=1. First we consider $t\in (t_1,\tilde{t}]$, where $\tilde{t}\in (t_1,t_1+\tau]$ is arbitrary. Note that $\tau< t_2-t_1\leq 2\tau$. (H3) gives $b_\alpha(t_1)=t_1$ and $t_1\leq b_\alpha(t)\leq t_1+\tau$ for $t\in (t_1,t_1+\tau]$ so $t_1-\tau\leq b_\alpha(t)-\tau\leq t_1$ for $t\in (t_1,t_1+\tau]$. By (2.7) and (2.9), (2.2) can be written as

$$\begin{split} u^q(t) & \leq (n+m+2)^{q-1} \left[\tilde{a}^q(\tilde{t}) + \sum_{i=1}^n c_i^q(\tilde{t}) \left(\int_0^\tau + \int_\tau^{t_1} \right) \tilde{f}_i^q(\tilde{t},s) w_i^q(u(s)) ds \right. \\ & + \sum_{i=1}^n c_i^q(\tilde{t}) \int_{t_1}^{b_i(t)} \tilde{f}_i^q(\tilde{t},s) w_i^q(u(s)) ds \\ & + \sum_{j=n+1}^{m+n} c_j^q(\tilde{t}) \left(\int_0^\tau + \int_\tau^{t_1} \right) \tilde{f}_j^q(\tilde{t},s) w_j^q(u(s-\tau)) ds \\ & + \sum_{j=1}^n c_j^q(\tilde{t}) \int_{t_1}^{b_j(\tilde{t})} \tilde{f}_j^q(\tilde{t},s) w_j^q(u(s-\tau)) ds + \tilde{d}^q(\tilde{t}) \eta_1^q u^q(t_1) \right] \\ & \leq (n+m+2)^{q-1} \left[\tilde{a}^q(\tilde{t}) + \sum_{i=1}^n c_i^q(\tilde{t}) \int_0^{t_1} \tilde{f}_i^q(\tilde{t},s) w_i^q(\phi(s)) ds \right. \\ & + \sum_{i=1}^n c_i^q(\tilde{t}) \int_{t_1}^{b_i(t)} \tilde{f}_i^q(\tilde{t},s) w_i^q(u(s)) ds \end{split}$$

Gronwall-Bihari Inequality

Shengfu Deng and Carl Prather vol. 9, iss. 2, art. 34, 2008

Title Page

Contents

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

$$+ \sum_{j=n+1}^{m+n} c_j^q(\tilde{t}) \int_0^{b_j(\tilde{t})} \tilde{f}_j^q(\tilde{t}, s) w_j^q(\psi(s-\tau)) ds + \tilde{d}^q(\tilde{t}) \eta_1^q u_{0,1}^q(t_1) \right]$$
:= $z_{1,0}(t)$,

where we use the definitions of ϕ and ψ so

(2.10)
$$u(t) \le z_{1,0}^{1/q}(t), \quad t \in (t_1, \tilde{t}].$$

Thus,

$$\begin{split} z_{1,0}(t) &\leq (n+m+2)^{q-1} \left[\tilde{a}^q(\tilde{t}) + \sum_{i=1}^n c_i^q(\tilde{t}) \int_0^{t_1} \tilde{f}_i^q(\tilde{t},s) w_i^q(\phi(s)) ds \right. \\ &+ \sum_{i=1}^n c_i^q(\tilde{t}) \int_{t_1}^{b_i(t)} \tilde{f}_i^q(\tilde{t},s) w_i^q(z_{1,0}^{1/q}(s)) ds \\ &+ \sum_{j=n+1}^{m+n} c_j^q(\tilde{t}) \int_0^{b_j(\tilde{t})} \tilde{f}_j^q(\tilde{t},s) w_j^q(\psi(s-\tau)) ds + \tilde{d}^q(\tilde{t}) \eta_1^q u_{0,1}^q(t_1) \right]. \end{split}$$

By Lemma 2.2, (2.1) and $b_{\alpha}(t_1) = t_1$, we obtain for $t \in (t_1, \tilde{t}]$

$$z_{1,0}(t) \le W_n^{-1} \left[W_n(\tilde{\gamma}_{1,0,n}(t)) + \int_{t_1}^{b_n(t)} (n+m+2)^{q-1} c_n^q(\tilde{t}) \tilde{f}_n^q(\tilde{t},s) ds \right],$$

$$\tilde{\gamma}_{1,0,j}(t) = W_{j-1}^{-1} \left[W_{j-1}(\tilde{\gamma}_{1,0,j-1}(t)) + \int_{t_1}^{b_{j-1}(t)} (n+m+2)^{q-1} c_{j-1}^q(\tilde{t}) \tilde{f}_{j-1}^q(\tilde{t},s) ds \right], \ j \neq 1,$$

Gronwall-Bihari Inequality
Shengfu Deng and Carl Prather
vol. 9, iss. 2, art. 34, 2008

Title Page

Contents

Page 16 of 20

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

$$\tilde{\gamma}_{1,0,1}(t) = (n+m+2)^{q-1} \left[\tilde{a}^q(\tilde{t}) + \sum_{i=1}^n \int_0^{t_1} c_i^q(\tilde{t}) \tilde{f}_i^q(\tilde{t}, s) w_i^q(\phi(s)) ds + \sum_{j=n+1}^{n+m} \int_0^{b_j(\tilde{t})} c_j^q(\tilde{t}) \tilde{f}_j^q(\tilde{t}, s) w_j^q(\psi(s-\tau)) ds + \tilde{d}^q(\tilde{t}) \eta_1^q u_{0,1}^q(t_1) \right].$$

Since (2.10) is true for any $t \in (t_1, \tilde{t}]$ and $\tilde{\gamma}_{1,0,1}(\tilde{t}) = \gamma_{1,0,1}(\tilde{t})$, we have

$$u(\tilde{t}) \le z_{1,0}^{1/q}(\tilde{t}) \le u_{1,0}(\tilde{t}).$$

We know that $\tilde{t} \in (t_1, t_1 + \tau]$ is arbitrary so we replace \tilde{t} by t and get

$$(2.11) u(t) \le u_{1,0}(t), t \in (t_1, t_1 + \tau].$$

This implies that the theorem is valid for $t \in (t_1, t_1 + \tau]$ and L = 1.

We now consider $t \in [t_1 + \tau, \tilde{t}]$, where $\tilde{t} \in [t_1 + \tau, t_2]$ is arbitrary. Again, by (H3) we have $t_1 + \tau \le b_{\alpha}(t) \le t_2$ for $t \in [t_1 + \tau, t_2]$ and $b_{\alpha}(t_1 + \tau) = t_1 + \tau$ so $t_1 \le b_{\alpha}(t) - \tau \le t_2 - \tau \le t_1 + \tau$ since $\tau < t_2 - t_1 \le 2\tau$. Obviously, by (2.7), (2.9) and (2.11), (2.2) becomes

$$u^{q}(t) \leq (n+m+2)^{q-1} \left[\tilde{a}^{q}(\tilde{t}) + \sum_{i=1}^{n} c_{i}^{q}(\tilde{t}) \int_{0}^{t_{1}+\tau} \tilde{f}_{i}^{q}(\tilde{t},s) w_{i}^{q}(u(s)) ds + \sum_{i=1}^{n} c_{i}^{q}(\tilde{t}) \int_{t_{1}+\tau}^{b_{i}(t)} \tilde{f}_{i}^{q}(\tilde{t},s) w_{i}^{q}(u(s)) ds + \sum_{j=n+1}^{m+n} c_{j}^{q}(\tilde{t}) \int_{0}^{t_{1}+\tau} \tilde{f}_{j}^{q}(\tilde{t},s) w_{j}^{q}(u(s-\tau)) ds \right]$$

Gronwall-Bihari Inequality
Shengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page

Contents

44 >>

→

Page 17 of 20

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

$$\begin{split} &+\sum_{j=n+1}^{m+n}c_{j}^{q}(\tilde{t})\int_{t_{1}+\tau}^{b_{j}(\tilde{t})}\tilde{f}_{j}^{q}(\tilde{t},s)w_{j}^{q}(u(s-\tau))ds+\tilde{d}^{q}(\tilde{t})\eta_{1}^{q}u_{1,0}^{q}(t_{1}) \\ &\leq (n+m+2)^{q-1}\left[\tilde{a}^{q}(\tilde{t})+\sum_{i=1}^{n}c_{i}^{q}(\tilde{t})\int_{0}^{t_{1}+\tau}\tilde{f}_{i}^{q}(\tilde{t},s)w_{i}^{q}(\phi(s))ds \\ &+\sum_{i=1}^{n}c_{i}^{q}(\tilde{t})\int_{t_{1}+\tau}^{b_{i}(\tilde{t})}\tilde{f}_{i}^{q}(\tilde{t},s)w_{i}^{q}(u(s))ds \\ &+\sum_{j=n+1}^{m+n}c_{j}^{q}(\tilde{t})\int_{0}^{b_{j}(\tilde{t})}\tilde{f}_{j}^{q}(\tilde{t},s)w_{j}^{q}(\psi(s-\tau))ds+\tilde{d}^{q}(\tilde{t})\eta_{1}^{q}u_{0,1}^{q}(t_{1}) \right] \\ &:=z_{1,1}(t), \end{split}$$

that is,

(2.12)
$$u(t) \le z_{1,1}^{1/q}(t), \quad t \in [t_1 + \tau, \tilde{t}].$$

Thus,

$$\begin{split} z_{1,1}(t) &\leq (n+m+2)^{q-1} \left[\tilde{a}^q(\tilde{t}) + \sum_{i=1}^n c_i^q(\tilde{t}) \int_0^{t_1+\tau} \tilde{f}_i^q(\tilde{t},s) w_i^q(\phi(s)) ds \right. \\ &+ c_i^q(\tilde{t}) \int_{t_1+\tau}^{b_i(t)} \tilde{f}_i^q(\tilde{t},s) w_i^q(z_{1,1}^{1/q}(s)) ds \\ &+ \sum_{i=n+1}^{m+n} c_j^q(\tilde{t}) \int_0^{b_j(\tilde{t})} \tilde{f}_j^q(\tilde{t},s) w_j^q(\psi(s-\tau)) ds + \tilde{d}^q(\tilde{t}) \eta_1^q u_{0,1}^q(t_1) \right]. \end{split}$$

Gronwall-Bihari Inequality

Shengfu Deng and Carl Prather vol. 9, iss. 2, art. 34, 2008

Title Page

Contents

Page 18 of 20

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Using Lemma 2.2, (2.1) and $b_{\alpha}(t_1 + \tau) = t_1 + \tau$, we obtain for $t \in (t_1, \tilde{t}]$

$$z_{1,1}(t) \le W_n^{-1} \left[W_n(\tilde{\gamma}_{1,1,n}(t)) + \int_{t_1+\tau}^{b_n(t)} (n+m+2)^{q-1} c_n^q(\tilde{t}) \tilde{f}_n^q(\tilde{t},s) ds \right],$$

$$\tilde{\gamma}_{1,1,j}(t) = W_{j-1}^{-1} \left[W_{j-1}(\tilde{\gamma}_{1,1,j-1}(t)) + \int_{t_1+\tau}^{b_{j-1}(t)} (n+m+2)^{q-1} c_{j-1}^q(\tilde{t}) \tilde{f}_{j-1}^q(\tilde{t},s) ds \right], \ j \neq 0,$$

$$\tilde{\gamma}_{1,1,1}(t) = (n+m+2)^{q-1} \left[\tilde{a}^q(\tilde{t}) + \sum_{i=1}^n \int_0^{t_1+\tau} c_i^q(\tilde{t}) \tilde{f}_i^q(\tilde{t}, s) w_i^q(\phi(s)) ds + \sum_{j=n+1}^{n+m} \int_0^{b_j(\tilde{t})} c_j^q(\tilde{t}) \tilde{f}_j^q(\tilde{t}, s) w_j^q(\psi(s-\tau)) ds + \tilde{d}^q(\tilde{t}) \eta_1^q u_{0,1}^q(t_1) \right].$$

Since (2.12) is true for any $t \in (t_1, \tilde{t}]$ and $\tilde{\gamma}_{1,1,1}(\tilde{t}) = \gamma_{1,1,1}(\tilde{t})$, we have

$$u(\tilde{t}) \le z_{1,1}^{1/q}(\tilde{t}) \le u_{1,1}(\tilde{t}).$$

We know that $\tilde{t} \in [t_1 + \tau, t_2]$ is arbitrary so we replace \tilde{t} by t and get

$$u(t) \le u_{1,1}(t), \qquad t \in [t_1 + \tau, t_2].$$

This implies that the theorem is valid for $t \in [t_1 + \tau, t_2]$ and L = 1.

(3) Finally, suppose that the theorem is valid for k, then for k+1 we redefine ϕ and ψ by replacing k with k+1. In a similar manner as in steps (1) and (2), we can see that the theorem holds for $t \in (t_{k+1}, T] \subset (t_{k+1}, t_{k+2}]$.

The proof is now completed.

Gronwall-Bihari Inequality

Shengfu Deng and Carl Prather vol. 9, iss. 2, art. 34, 2008

Title Page

Contents

44 >>

Page 19 of 20

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

П

References

- [1] R.P. AGARWAL, S. DENG AND W. ZHANG, Generalization of a retarded Gronwall-like inequality and its applications, *Appl. Math. Comput.*, **165** (2005), 599–612.
- [2] D.D. BAINOV AND S.G. HRISTOVA, Impulsive integral inequalities with a deviation of the argument, *Math. Nachr.*, **171** (1995), 19–27.
- [3] S.G. HRISTOVA, Nonlinear delay integral inequalities for piecewise continuous functions and applications, *J. Inequal. Pure Appl. Math.*, **5**(4) (2004), Art. 88. [ONLINE: http://jipam.vu.edu.au/article.php?sid=441].
- [4] M. MEDVED, A new approach to an analysis of Henry type integral inequalities and their Bihari type versions, *J. Math. Anal. Appl.*, **214** (1997), 349–366.
- [5] M. PINTO, Integral inequalities of Bihari-type and applications, *Funkcial. Ekvac.*, **33** (1990), 387–403.
- [6] A.M. SAMOILENKO AND N.A. PERESTJUK, Stability of the solutions of differential equations with impulsive action, *Differential Equations*, **13** (1977), 1981–1992 (Russian).
- [7] N.E. TATAR, An impulsive nonlinear singular version of the Gronwall-Bihari inequality, *J. Inequal. Appl.*, **2006** (2006), 1–12.

Gronwall-Bihari InequalityShengfu Deng and Carl Prather

vol. 9, iss. 2, art. 34, 2008

Title Page

Contents

>>

Page 20 of 20

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756