Journal of Inequalities in Pure and Applied Mathematics

NECESSARY AND SUFFICIENT CONDITION FOR COMPACTNESS OF THE EMBEDDING OPERATOR

Mathematics Department Kansas State University Manhattan, KS 66506-2602, USA.

EMail: ramm@math.ksu.edu

volume 6, issue 5, article 130, 2005.

Received 20 September, 2005; accepted 30 September, 2005.

Communicated by: S.S. Dragomir

© 2000 Victoria University ISSN (electronic): 1443-5756 279-05

Abstract

An improvement of the author's result, proved in 1961, concerning necessary and sufficient conditions for the compactness of an imbedding operator is given.

2000 Mathematics Subject Classification: 46B50, 46E30, 47B07. Key words: Banach spaces, Compactness, Embedding operator.

This paper is based on the talk given by the author within the "International Conference of Mathematical Inequalities and their Applications, I", December 06-08, 2004, Victoria University, Melbourne, Australia [http://rgmia.vu.edu.au/conference]

Contents

1	Introduction	3
2	Proof	4
Refe	erences	

Necessary and Sufficient Condition for Compactness of the Embedding Operator

A.G. Ramm

1. Introduction

The basic result of this note is:

Theorem 1.1. Let $X_1 \subset X_2 \subset X_3$ be Banach spaces, $||u||_1 \ge ||u||_2 \ge ||u||_3$ (i.e., the norms are comparable) and if $||u_n||_3 \to 0$ as $n \to \infty$ and u_n is fundamental in X_2 , then $||u_n||_2 \to 0$, (i.e., the norms in X_2 and X_3 are compatible). Under the above assumptions the embedding operator $i: X_1 \to X_2$ is compact if and only if the following two conditions are valid:

- a) The embedding operator $j: X_1 \to X_3$ is compact, and the following inequality holds:
- b) $||u||_2 \le s||u||_1 + c(s)||u||_3$, $\forall u \in X_1, \forall s \in (0,1)$, where c(s) > 0 is a constant.

This result is an improvement of the author's old result, proved in 1961 (see [1]), where X_2 was assumed to be a Hilbert space. The proof of Theorem 1.1 is simpler than the one in [1].

Necessary and Sufficient Condition for Compactness of the Embedding Operator

A.G. Ramm

Title Page

Contents

Go Back

Close

Quit

Page 3 of 5

2. Proof

1. Assume that a) and b) hold and let us prove the compactness of i. Let $S = \{u : u \in X_1, ||u||_1 = 1\}$ be the unit sphere in X_1 . Using assumption a), select a sequence u_n which converges in X_3 . We claim that this sequence converges also in X_2 . Indeed, since $||u_n||_1 = 1$, one uses assumption b) to get

$$||u_n - u_m||_2 \le s||u_n - u_m||_1 + c(s)||u_n - u_m||_3 \le 2s + c(s)||u_n - u_m||_3.$$

Let $\eta>0$ be an arbitrary small given number. Choose s>0 such that $2s<\frac{1}{2}\eta$, and for a fixed s choose n and m so large that $c(s)||u_n-u_m||_3<\frac{1}{2}\eta$. This is possible because the sequence u_n converges in X_3 . Consequently, $||u_n-u_m||_2\leq \eta$ if n and m are sufficiently large. This means that the sequence u_n converges in X_2 . Thus, the embedding $i:X_1\to X_2$ is compact. In the above argument the compatibility of the norms was not used.

2. Assume now that i is compact. Let us prove that assumptions a) and b) hold. Assumption a) holds because $||u||_2 \ge ||u||_3$. Suppose that assumption b) fails. Then there is a sequence u_n and a number $s_0 > 0$ such that $||u_n||_1 = 1$ and

$$(2.1) ||u_n||_2 \ge s_0 + n||u_n||_3.$$

If the embedding operator i is compact and $||u_n||_1=1$, then one may assume that the sequence u_n converges in X_2 . Its limit cannot be equal to zero, because, by (2.1), $||u_n||_2 \geq s_0 > 0$. The sequence u_n converges in X_3 because $||u_n - u_m||_2 \geq ||u_n - u_m||_3$, and its limit in X_3 is not zero, because the norms in X_3 and in X_2 are compatible. Thus, (2.1) implies $||u_n||_3 = O\left(\frac{1}{n}\right) \to 0$ as $n \to \infty$, while $\lim_{n\to\infty} ||u_n||_3 > 0$. This is a contradiction, which proves that b) holds.

Theorem 1.1 is proved.

Necessary and Sufficient Condition for Compactness of the Embedding Operator

A.G. Ramm

Title Page

Contents

Go Back

Close

Quit

Page 4 of 5

References

[1] A.G. RAMM, A necessary and sufficient condition for compactness of embedding, *Vestnik of Leningrad. Univ., Ser. Math., Mech., Astron.*, **1** (1963), 150–151.

Necessary and Sufficient Condition for Compactness of the Embedding Operator

A.G. Ramm

