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ABSTRACT. We order the space of complexn× n matrices by the star partial ordering≤∗. So
A ≤∗ B means thatA∗A = A∗B andAA∗ = BA∗. We find several characterizations for
A ≤∗ B in the case of normal matrices. As an application, we study howA ≤∗ B relates to
A2 ≤∗ B2. The results can be extended to study howA ≤∗ B relates toAk ≤∗ Bk, where
k ≥ 2 is an integer.
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1. I NTRODUCTION

Throughout this paper, we consider the space of complexn× n matrices (n ≥ 2). We order
it by the star partial ordering≤∗. SoA ≤∗ B means thatA∗A = A∗B andAA∗ = BA∗. Our
motivation rises from the following

Theorem 1.1 (Baksalary and Pukelsheim [1, Theorem 3]). Let A and B be Hermitian and
nonnegative definite. ThenA2 ≤∗ B2 if and only ifA ≤∗ B.

We cannot drop out the assumption on nonnegative definiteness.

Example 1.1.Let

A =

(
1 0
0 1

)
, B =

(
1 0
0 −1

)
.

ThenA2 ≤∗ B2, but notA ≤∗ B.
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We will study howA ≤∗ B relates toA2 ≤∗ B2 in the case of normal matrices. We will see
(Theorem 3.1) that the “if” part of Theorem 1.1 remains valid. However, it is not valid for all
matrices.

Example 1.2.Let

A =

(
1 1
0 0

)
, B =

(
1 1
2 −2

)
.

ThenA ≤∗ B, but notA2 ≤∗ B2.

In Section 2, we will give several characterizations ofA ≤∗ B. Thereafter, in Section 3, we
will apply some of them in discussing our problem. Finally, in Section 4, we will complete our
paper with some remarks.

2. CHARACTERIZATIONS OF A ≤∗ B

Hartwig and Styan ([2, Theorem 2]) presented eleven characterizations ofA ≤∗ B for gen-
eral matrices. One of them uses singular value decompositions. In the case of normal matrices,
spectral decompositions are more accessible.

Theorem 2.1.LetA andB be normal matrices with1 ≤ rankA < rankB. Then the following
conditions are equivalent:

(a) A ≤∗ B.
(b) There is a unitary matrixU such that

U∗AU =

(
D O
O O

)
, U∗BU =

(
D O
O E

)
,

whereD is a nonsingular diagonal matrix andE 6= O is a diagonal matrix.
(c) There is a unitary matrixU such that

U∗AU =

(
F O
O O

)
, U∗BU =

(
F O
O G

)
,

whereF is a nonsingular square matrix andG 6= O.
(d) If a unitary matrixU satisfies

U∗AU =

(
F O
O O

)
, U∗BU =

(
F′ O
O G

)
,

whereF is a nonsingular square matrix,F′ is a square matrix of the same dimension,
andG 6= O, thenF = F′.

(e) If a unitary matrixU satisfies

U∗AU =

(
D O
O O

)
, U∗BU =

(
D′ O
O E

)
,

whereD is a nonsingular diagonal matrix,D′ is a diagonal matrix of the same dimen-
sion, andE 6= O is a diagonal matrix, thenD = D′.

(f) If a unitary matrixU satisfies

U∗AU =

(
D O
O O

)
,

whereD is a nonsingular diagonal matrix, then

U∗BU =

(
D O
O G

)
,

whereG 6= O.
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(g) All eigenvectors corresponding to nonzero eigenvalues ofA are eigenvectors ofB cor-
responding to the same eigenvalues.

The reason to assume1 ≤ rankA < rankB is to omit the trivial casesA = O andA = B.

Proof. We prove this theorem in four parts.

Part 1. (a)⇒ (b)⇒ (c)⇒ (a).
(a)⇒ (b). Assume (a). Then, by normality,A∗ andB commute and are therefore simultane-

ously diagonalizable (see, e.g., [3, Theorem 1.3.19]). SinceA andA∗ have the same eigenvec-
tors (see, e.g., [3, Problem 2.5.20]), alsoA andB are simultaneously diagonalizable. Hence
(recall the assumption on the ranks) there exists a unitary matrixU such that

U∗AU =

(
D O
O O

)
, U∗BU =

(
D′ O
O E

)
,

whereD is a nonsingular diagonal matrix,D′ is a diagonal matrix of the same dimension, and
E 6= O is a diagonal matrix. NowA∗A = A∗B impliesD∗D = D∗D′ and furtherD = D′.
Hence (b) is valid.

(b)⇒ (c). Trivial.
(c)⇒ (a). Direct calculation.

Part 2. (a)⇒ (d)⇒ (e)⇒ (a).
This is a trivial modification of Part 1.

Part 3. (b)⇔ (f).
(b)⇒ (f). Assume (b). LetU be a unitary matrix satisfying

U∗AU =

(
D O
O O

)
.

By (b), there exists a unitary matrixV such that

V∗AV =

(
D′ O
O O

)
, V∗BV =

(
D′ O
O E

)
,

whereD′ is a nonsingular diagonal matrix andE 6= O is a diagonal matrix. Interchanging the
columns ofV if necessary, we can assumeD′ = D.

Let U =
(
U1 U2

)
be such a partition that

U∗AU =

(
U∗

1

U∗
2

)
A

(
U1 U2

)
=

(
U∗

1AU1 U∗
1AU2

U∗
2AU1 U∗

2AU2

)
=

(
D O
O O

)
.

Then, for the corresponding partitionV =
(
V1 V2

)
, we have

V∗AV =

(
V∗

1

V∗
2

)
A

(
V1 V2

)
=

(
V∗

1AV1 V∗
1AV2

V∗
2AV1 V∗

2AV2

)
=

(
D O
O O

)
and

V∗BV =

(
V∗

1

V∗
2

)
B

(
V1 V2

)
=

(
V∗

1BV1 V∗
1BV2

V∗
2BV1 V∗

2BV2

)
=

(
D O
O E

)
.

Noting that

A =
(
V1 V2

) (
D O
O O

) (
V∗

1

V∗
2

)
=

(
V1 V2

) (
DV∗

1

O

)
= V1DV∗

1,
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we therefore have

U∗BU =

(
U∗

1

U∗
2

) (
V1 V2

) (
D O
O E

) (
V∗

1

V∗
2

) (
U1 U2

)
=

(
U∗

1

U∗
2

) (
V1 V2

) (
DV∗

1

EV∗
2

) (
U1 U2

)
=

(
U∗

1V1 U∗
1V2

U∗
2V1 U∗

2V2

) (
DV∗

1U1 DV∗
1U2

EV∗
2U1 EV∗

2U2

)
=

(
U∗

1V1 O
O U∗

2V2

) (
DV∗

1U1 O
O EV∗

2U2

)
=

(
U∗

1V1DV∗
1U1 O

O U∗
2V2EV∗

2U2

)
=

(
U∗

1AU1 O
O U∗

2V2EV∗
2U2

)
=

(
D O
O U∗

2V2EV∗
2U2

)
,

and so (f) follows.
(f) ⇒ (b). Assume (f). LetU be a unitary matrix such that

U∗AU =

(
D O
O O

)
,

whereD is a nonsingular diagonal matrix. Then, by (f),

U∗BU =

(
D O
O G

)
,

whereG 6= O. SinceG is normal, there exists a unitary matrixW such thatE = W∗GW is
a diagonal matrix. Let

V = U

(
I O
O W

)
.

Then

V∗AV =

(
I O
O W∗

)
U∗AU

(
I O
O W

)
=

(
I O
O W∗

) (
D O
O O

) (
I O
O W

)
=

(
D O
O O

)
and

V∗BV =

(
I O
O W∗

)
U∗BU

(
I O
O W

)
=

(
I O
O W∗

) (
D O
O G

) (
I O
O W

)
=

(
D O
O E

)
.

Thus (b) follows.

Part 4. (b)⇔ (g).
This is an elementary fact. �

Corollary 2.2. LetA andB be normal matrices. IfA ≤∗ B, thenAB = BA.

Proof. Apply (b). �

The converse does not hold (even assumingrankA < rankB), see Example 2.1. The nor-
mality assumption cannot be dropped out, see Example 2.2.
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Example 2.1.Let

A =

(
2 0
0 0

)
, B =

(
1 0
0 1

)
.

ThenAB = BA andrankA < rankB, but A ≤∗ B does not hold. However,1
2
A ≤∗ B,

which makes us look for a counterexample such thatcA ≤∗ B does not hold for anyc 6= 0. It
is easy to see that we must haven ≥ 3. The matrices

A =

2 0 0
0 3 0
0 0 0

 , B =

3 0 0
0 4 0
0 0 1


obviously have the required properties.

Example 2.2.Let

A =

(
0 1
0 0

)
, B =

(
0 1
1 0

)
.

ThenA ≤∗ B, butAB 6= BA.

3. RELATIONSHIP BETWEEN A ≤∗ B AND A2 ≤∗ B2

We will see thatA ≤∗ B ⇒ A2 ≤∗ B2 for normal matrices, but the converse needs an extra
condition, which we first present using eigenvalues.

Theorem 3.1.LetA andB be normal matrices with1 ≤ rankA < rankB. Then

(a) A ≤∗ B

is equivalent to the following:

(b) A2 ≤∗ B2

and ifA andB have nonzero eigenvaluesα and respectivelyβ such thatα2 andβ2 are eigen-
values ofA2 and respectivelyB2 with a common eigenvectorx, thenα = β andx is a common
eigenvector ofA andB.

Proof. Assuming (a), we have

U∗AU =

(
D O
O O

)
, U∗BU =

(
D O
O E

)
as in (b) of Theorem 2.1, and so

U∗A2U =

(
D2 O
O O

)
, U∗B2U =

(
D2 O
O E2

)
.

Hence, by Theorem 2.1, the first part of (b) follows. The second part is trivial.
Conversely, assume (b). Then

U∗A2U =

(
∆ O
O O

)
, U∗B2U =

(
∆ O
O Γ

)
,

whereU, ∆, andΓ are matrices obtained by applying (b) of Theorem 2.1 toA2 andB2. Let
u1, . . . ,un be the column vectors ofU and denoter = rankA.

For i = 1, . . . , r, we haveA2ui = B2ui = δiui, where(δi) = diag ∆. So, by the second part
of (b), there exist complex numbersd1, . . . , dr such that, for alli = 1, . . . , r, we haved2

i = δi

andAui = Bui = δiui. Let D be the diagonal matrix with(di) = diag D.
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For i = r + 1, . . . , n, we haveB2ui = γi−rui, where(γj) = diag Γ. Take complex numbers
e1, . . . , en−r satisfyinge2

i = γi for i = 1, . . . , n − r. Let E be the diagonal matrix with(ei) =
diag E. Then

U∗AU =

(
D O
O O

)
, U∗BU =

(
D O
O E

)
,

and (a) follows from Theorem 2.1. �

As an immediate corollary, we obtain a generalization of Theorem 1.1.

Corollary 3.2. Let A andB be normal matrices whose all eigenvalues have nonnegative real
parts. ThenA2 ≤∗ B2 if and only ifA ≤∗ B.

Next, we present the extra condition using diagonalization.

Theorem 3.3.LetA andB be normal matrices with1 ≤ rankA < rankB. Then

(a) A ≤∗ B

is equivalent to the following:

(b) A2 ≤∗ B2

and if

U∗AU =

(
D O
O O

)
, U∗BU =

(
DH O
O E

)
,

whereU is a unitary matrix,D is a nonsingular diagonal matrix,H is a unitary diagonal
matrix, andE 6= O is a diagonal matrix, thenH = I.

(Note that the second part of (b) is weaker than (e) of Theorem 2.1. Otherwise Theorem 3.3
would be nonsense.)

Proof. For (a)⇒ the first part of (b), see the proof of Theorem 3.1. For (a)⇒ the second part
of (b), see (e) of Theorem 2.1.

Conversely, assume (b). As in the proof of Theorem 3.1, we have

U∗A2U =

(
∆ O
O O

)
, U∗B2U =

(
∆ O
O Γ

)
.

Hence

U∗AU =

(
D O
O O

)
, U∗BU =

(
D′ O
O E

)
,

whereD andD′ are diagonal matrices satisfyingD2 = (D′)2 = ∆ andE is a diagonal matrix
satisfyingE2 = Γ.

Denoting(di) = diag D, (d′i) = diag D′, r = rankA, we therefore haved2
i = (d′i)

2 for all
i = 1, . . . , r. Hence there are complex numbersh1, . . . , hr such that|h1| = · · · = |hr| = 1
andd′i = dihi for all i = 1, . . . , r. Let H be the diagonal matrix with(hi) = diag H. Then
D′ = DH, and soD′ = D by the second part of (b). Thus (b) of Theorem 2.1 is satisfied, and
so (a) follows. �
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4. REMARKS

We complete our paper with four remarks.

Remark 4.1. Let k ≥ 2 be an integer. A natural further question is whether our discussion
can be extended to describe howA ≤∗ B relates toAk ≤∗ Bk. As noted by Baksalary and
Pukelsheim [1], Theorem 1.1 can be generalized in a similar way. In other words, for Hermitian
nonnegative definite matrices,Ak ≤∗ Bk if and only if A ≤∗ B. It can be seen also that
Theorems 3.1 and 3.3 can be, with minor modifications, extended correspondingly.

Remark 4.2. Let A andB be arbitraryn × n matrices withrankA < rankB. Hartwig and
Styan ([2, Theorem 2]) proved thatA ≤∗ B if and only if there are unitary matricesU andV
such that

U∗AV =

(
Σ O
O O

)
, U∗BV =

(
Σ O
O Θ

)
,

whereΣ is a positive definite diagonal matrix andΘ 6= O is a nonnegative definite diagonal
matrix. This is analogous to (a)⇔ (b) of Theorem 2.1. Actually it can be seen that all the
characterizations ofA ≤∗ B listed in Theorem 2.1 have singular value analogies in the general
case.

Remark 4.3. The singular values of a normal matrix are absolute values of its eigenvalues (see
e.g., [3, p. 417]). Hence it is relatively easy to see that if (and only if)A andB are normal, then
U andV above can be chosen so thatU∗V is a diagonal matrix.

Remark 4.4. For normal matrices, it can be shown that Theorems 3.1 and 3.3 have singular
value analogies. In the proof, it is crucial thatU∗V is a diagonal matrix. So these results do not
remain valid without the normality assumption.
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