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ABSTRACT. This note presents absolute bounds on the size of the coefficients of the character-
istic and minimal polynomials depending on the size of the coefficients of the associated matrix.
Moreover, we present algorithms to compute more precise input-dependant bounds on these co-
efficients. Such bounds are e.g. useful to perform deterministic Chinese remaindering of the
characteristic or minimal polynomial of an integer matrix.
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1. I NTRODUCTION

The Frobenius normal form of a matrix is used to test two matrices for similarity. Although
the Frobenius normal form contains more information on the matrix than the characteristic poly-
nomial, the most efficient algorithms to compute it are based on computations of characteristic
polynomials (see for example [8, §9.7]). Now the Smith normal form of an integer matrix is
useful e.g. in the computation of homology groups and its computation can be done via the
integer minimal polynomial [2].

In both cases, the polynomials are computed first modulo several prime numbers and then
only reconstructed via Chinese remaindering [4, Theorem 10.25]. Thus, precise bounds on the
integer coefficients of the integer characteristic or minimal polynomials of an integer matrix are
used to find how many primes are sufficient to perform a Chinese remaindering of the modularly
computed polynomials. Some bounds on the minimal polynomial coefficients, respectively the
characteristic polynomial, have been presented in [2], respectively in [1]. The aim of this note
is to present sharper estimates in both cases.

For both polynomials we present two kinds of results:absolute estimates, useful for com-
paring complexity constants, andalgorithmswhich compute more precise estimates based on
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the properties of the input matrix discovered at runtime. Of course, the goal is to provide such
estimates at a cost negligible when compared to that of actually computing the polynomials.

2. BOUND ON THE M INORS FOR THE CHARACTERISTIC POLYNOMIAL

2.1. Hadamard’s Bound on the Minors. The first bound of the characteristic polynomial
coefficient uses Hadamard’s bound,| det(A)| ≤

√
nB2

n
, see e.g. [4, Theorem 16.6], to show

that the coefficients of the characteristic polynomial could be larger, but only slightly:

Lemma 2.1. Let A ∈ Cn×n, with n ≥ 4, whose coefficients are bounded in absolute value by
B > 1. The coefficients of the characteristic polynomialCA ofA are denoted bycj, j = 0, . . . , n
and||CA||∞ = max{|cj|}. Then

log2(||CA||∞) ≤ n

2

(
log2(n) + log2(B

2) + 0. 21163175
)
.

Proof. Observe thatcj, thej-th coefficient of the characteristic polynomial, is an alternate sum
of all the(n− j)× (n− j) diagonal minors ofA, see e.g. [3, §III.7]. It is therefore bounded by

F (n, j) =

(
n

j

)√
(n− j)B2

(n−j)
.

First note, that from the symmetry of the binomial coefficients we only need to explore the
bn/2c first ones, since√

(n− j)B2
(n−j)

>
√

jB2
j

for j < bn/2c.
The lemma is true forj = 0 by Hadamard’s bound.
For j = 1 andn ≥ 2, we set

f(n) =
2

n

(
log2 (F (n, 1))− n

2
log2(n)− (n− 1) log2(B)

)
.

Now
df

dn
=

2n− 2 + n ln(n− 1)− 2n ln(n) + 2 ln(n)− ln(n− 1)

n2(n− 1) ln(2)
.

Thus, the numerator of the derivative off(n) has two roots, one below2 and one between6 and
7. Also, f(n) is increasing from2 to the second root and decreasing afterwards. Withn ≥ 4
the maximal value off(n) is therefore atn = 6, for which it is

5

6
log2(5)− 2

3
log2(6) < 0. 21163175 .

For otherj’s, Stirling’s formula has been extended for the binomial coefficient by Stănic̆a in
[9], and gives∀i ≥ 2,(

n

j

)
<

e
1

12n
− 1

12j+1
− 1

12(n−j)+1

√
2π

√
n

j(n− j)

(
n

j

)j (
n

n− j

)n−j

.

Now first
1

12n
− 1

12j + 1
− 1

12(n− j) + 1
<

1

12n
− 2

6n + 1
,

since the maximal value of the latter is atj = n
2
. Therefore,

log2

(
e

1
12n
− 1

12j+1
− 1

12(n−j)+1

√
2π

)
≤ log2

(
1√
2π

)
< −1.325.

Then n
j(n−j)

is decreasing inj for 2 ≤ j < bn/2c so that its maximum is n
2(n−2)

.
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Consider now the rest of the approximation

K(n, j) =

(
n

j

)j (
n

n− j

)n−j√
(n− j)B2

(n−j)
.

We have

log2(K(n, j)) =
n− j

2
log2(B

2) +
n

2
log2(n) +

n

2
T (n, j),

where

T (n, j) = log2

(
n

n− j

)
+

j

n
log2

(
n− j

j2

)
.

T (n, j) is maximal forj = −1+
√

1+4en
2e

. We end with the fact that forn ≥ 4,

T

(
n,
−1 +

√
1 + 4en

2e

)
− 2

n
log2

(√
2π
)

+
1

n
log2

(
n

2(n− 2)

)
is maximal overZ for n = 16 where it is lower than0.2052. The latter is lower than0. 21163175.

�

We show the effectiveness of our bound on an example matrix:

(2.1)



1 1 1 1 1

1 1 −1 −1 −1

1 −1 1 −1 −1

1 −1 −1 1 −1

1 −1 −1 −1 1

 .

This matrix hasX5−5X4+40X2−80X+48 for its characteristic polynomial and80 =
(
5
1

)√
4

4

is greater than Hadamard’s bound55.9, and less than our bound80.66661.
Note that this numerical bound improves on the one used in [5, lemma 2.1] since0. 21163175 <

2 + log2(e) ≈ 3.4427. While yielding the same asymptotic result, their bound would state e.g.
that the coefficients of the characteristic polynomial of the example are lower than21793.

2.2. Locating the Largest Coefficient. The proof of Lemma 2.1 suggests that the largest co-
efficient is to be found between theO(

√
n) last ones. In next lemma we takeB into account

in order to sharpen this localization. This gives a simple search procedure, computing a more
accurate bound as soon asB is known.

Lemma 2.2. Let A ∈ Cn×n, with n ≥ 4, whose coefficients are bounded in absolute value by
B > 1. The characteristic polynomial ofA is CA. Then

||CA||∞ ≤ max
i=0,...,D

(
n

i

)√
(n− i)B2

(n−i)

whereD = −1+
√

1+2δB2n
δB2 , δ ≈ 5.418236. Moreover, the cost of computing the associated bound

on the size is

O
(√

n

B

)
.

This localization improves by a factor close to1
B

, the localization of the largest coefficient
proposed in [1, Lemma 4.1].
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Proof. Consider

F (n, j) =

(
n

j

)√
(n− j)B2

(n−j)
for j = 2, . . . ,

⌊n

2

⌋
.

The numerator of the derivative ofF with respect toj is

n!
√

(n− j)B2
n−j (

2H(n− j)− 2H(j)− ln(n− j)− ln(B2)− 1
)
,

whereH(k) =
∑k

l=1
1
l

is thek-th Harmonic number. We have the bounds

ln(k) + γ +
1

2k + 1
1−γ

− 2
< H(k) < ln(k) + γ +

1

2k + 1
3

from [7, Theorem 2]. This bound proves thatF (n, j) has at most one extremal value for2 ≤
j ≤ bn

2
c. Moreover,

∂F

∂j

(
n,

n

2

)
<

2

dn
2
e
− 1 + ln

(
2

nB2

)
is thus strictly negative, as soon asn ≥ 4. Now let us define

G(j) = 2H(n− j)− 2H(j)− ln(n− j)− ln(B2)− 1.

Using the bounds on the Harmonic numbers, we have that

2

2n− 2j + 1
1−γ

− 2
− 2

2j + 1
3

< G(j)− ln

(
n− j

j2

)
+ 1 + ln(B2)

<
2

2n− 2j + 1
3

− 2

2j + 1
1−γ

− 2

Then, on one hand, we have that 2
2n−2j+ 1

1−γ
−2

− 2
2j+ 1

3

is increasing for2 ≤ j ≤ n
2

so that its

minimal value is

Mi(n) =
2

2n− 6 + 1
1−γ

− 6

13
at j = 2.

Finally, Mi(n) > − 6
13

if we let n go to infinity.
On the other hand, 2

2n−2j+ 1
3

− 2
2j+ 1

1−γ
−2

is also increasing and therefore its maximal value is

Ms(n) =
2(−4 + 7γ)

(n− nγ − 1 + 2γ)(3n + 1)
at j = n/2.

Finally, Ms(n) ≤ 2(7γ−4)
13(3−2γ)

, its value atn = 4.
Then, the monotonicity ofG and its bound prove that the maximal value ofF (n, j) is found

for j∗ between the solutionsji andjs of the two equations below:

ln

(
n− ji

j2
i

)
= 1 + ln(B2) +

6

13
.(2.2)

ln

(
n− js

j2
s

)
= 1 + ln(B2)− 2(7γ − 4)

13(3− 2γ)
.(2.3)

This proves in turn that

j∗ ≤ max

{
0;
−1 +

√
1 + 2δB2n

δB2

}
where

δ = 2e1− 2(7γ−4)
13(3−2γ) ≈ 5.418236.
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Now for the complexity, we use the following recursive scheme to compute the bound:
log(F (n, 0)) = n

2
log(nB2)

log(F (n, j + 1)) = log
(

F (n,j)
B

)
+ log

(
n−j
j+1

)
+ n−j−1

2
log(n− j − 1)− n−j

2
log(n− j)

�

For instance, if we apply this lemma to matrix 2.1 we see that we just have to look atF (n, j)
for

j <
−1 +

√
1 + 2δB2n

δB2
≈ 1.183.

3. EIGENVALUE BOUND ON THE M INIMAL POLYNOMIAL

For the minimal polynomial the Hadamard bound may also be used, but is too pessimistic
an estimate, in particular when the degree is small. Indeed, one can use Mignotte’s bound on
the minimal polynomial, as a factor of the characteristic polynomial. There,||minpolyA ||∞ ≤
2d||CA||∞, see [6, Theorem 4]. This yields that the bit size of the largest coefficient of the
minimal polynomial is onlyd bits less than that of the characteristic polynomial.

Therefore, one can instead use a bound on the eigenvalues determined by consideration e.g.
of the Gershgörin disks and ovals of Cassini (see [10] for more details on the regions containing
eigenvalues, and [2, Algorithm OCB] for a blackbox algorithm efficiently computing such a
bound). This gives a bound on the coefficients of the minimal polynomial of the formβd,
whereβ is a bound on the eigenvalues andd is the degree of the minimal polynomial.

We can then use the following lemma to bound the coefficients of the minimal polynomial:

Lemma 3.1. Let A ∈ Cn×n with its spectral radius bounded byβ ≥ 1. Let minpolyA(X) =∑d
k=0 miX

i. Then

∀i, |mi| ≤


βd if d ≤ β

min
{√

βd
d

;
√

2
dπ

2dβd
}

otherwise

This improves the bound given in [2, Proposition 3.1] by a factor oflog(d) whend � β.

Proof. Expanding the minimal polynomial yields|mi| ≤
(

d
i

)
βd−i by e.g. [6, Theorem IV.§4.1].

Then, ifd ≤ β, we bound the latter bydiβd−i.
Now, whend > β, we get the first bound in two steps: first, fori ≤ d

2
, we bound the binomial

factor bydi and thus get (
d

i

)
βd−i ≤ diβ

d
2
−iβ

d
2 < d

d
2 β

d
2

sinced > β; second, fori > d
2
, we bound the binomial factor bydd−i and thus get(

d

i

)
βd−i ≤ dd−iβd−i < d

d
2 β

d
2 .

The second bound, whend ≥ β is obtained by bounding the binomial coefficients by the
middle one,

(
d
d
2

)
, and using St̆anic̆a’s bound [9] on the latter. This gives that(

d

i

)
βd−i ≤ 1√

2π

√
4

d
2

d
2 2

d
2 βd.

�
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For matrices of constant size entries, bothβ andd areO(n). However, whend and/orβ is
small relative ton (especiallyd) this may be a striking improvement over the Hadamard bound
since the length of latter would be of ordern log(n) rather thand log(β).

This is the case e.g. for the Homology matrices in the experiments of [2]. Indeed, for those,
AAt, the Wishart matrix ofA, has very small minimal polynomial degree and has some other
useful properties which limitβ (e.g. the matrixAAt is diagonally dominant). For example, the
most difficult computation of [2], is that of the25605 × 69235 matrix n4c6.b12 which has
a degree827 minimal polynomial with eigenvalues bounded by117. The refinement of lemma
3.1 yields there a gainin sizeon the one of [2] of roughly5%. In this case, this represents saving
23 modular projections and an hour of computation.

4. CONCLUSION

We have presented in this note bounds on the coefficient of the characteristic and minimal
polynomials of a matrix. Moreover, we give algorithms with low complexity computing even
sharper estimates on the fly.

The refinements given here are only constant with regards to previous results but yield sig-
nificant practical speed-ups.
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