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ABSTRACT. In the short note, four sequences originating from Nanson’s inequality are intro-
duced, their monotonicities and convexities are obtained, and Nanson’s inequality is refined.
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1. I NTRODUCTION

A real sequence{ai}k
i=1 for k > 2 is called convex if

(1.1) ai + ai+2 ≥ 2ai+1

for i ∈ N with i + 2 ≤ k.
The Nanson’s inequality (see [3, p. 465] and [1, 2, 4]) reads that if{ai}2n+1

i=1 is a convex
sequence, then

(1.2)
1

n

n∑
k=1

a2k ≤
1

n + 1

n∑
k=0

a2k+1.

The equality in (1.2) holds only if{ai}2n+1
i=1 is an arithmetic sequence.

It is clear that inequality (1.2) can be rewritten as

(1.3) H(n) , n
n∑

k=0

a2k+1 − (n + 1)
n∑

k=1

a2k ≥ 0.
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Similar toH(n), it can be introduced for givenn ∈ N that

h(m) = (n−m + 1)
n∑

k=m−1

a2k+1 − (n−m + 2)
n∑

k=m

a2k for 1 ≤ m ≤ n + 1,(1.4)

C(m) =
1

n(n + 1)

[
m

m∑
i=0

a2i+1 + (n−m)
m∑

i=1

a2i + (n + 1)
n∑

i=m+1

a2i

]
(1.5)

for 0 ≤ m ≤ n, and

(1.6) c(m) =
1

n(n + 1)

[
(n−m + 1)

n∑
i=m−1

a2i+1 + (n + 1)
m−1∑
i=1

a2i + (m− 1)
n∑

i=m

a2i

]

for 1 ≤ m ≤ n + 1, where
∑q

i=q+1 bi = 0 is assumed for anybi ∈ R andq ∈ N.
The aim of this paper is to study monotonicity and convexity ofH, h, C andc. From this,

some new inequalities and refinements of (1.2) are deduced.
Our main results are the following two theorems.

Theorem 1.1.Let{ai}2n+1
i=1 for n ≥ 1 be a convex sequence. Then

(1) the sequence{H(j)}n
j=1 is increasing and convex,

(2) the sequence{C(j)}n
j=0 satisfies

(1.7)
1

n

n∑
i=1

a2i = C(0) ≤ C(1) ≤ · · · ≤ C(n− 1) ≤ C(n) =
1

n + 1

n∑
i=0

a2i+1.

Theorem 1.2.Let{ai}2n+1
i=1 for n ≥ 1 be a convex sequence. Then

(1) the sequence{h(j)}n+1
j=1 is decreasing and convex,

(2) the sequence{c(j)}n+1
j=1 satisfies

(1.8)
1

n

n∑
i=1

a2i = c(n + 1) ≤ c(n) ≤ · · · ≤ c(2) ≤ c(1) =
1

n + 1

n∑
i=0

a2i+1,

(3) and

1

n

n∑
i=1

a2i =
C(0) + c(n + 1)

2
(1.9)

≤ C(1) + c(n)

2
≤ · · ·

≤ C(n− 1) + c(2)

2

≤ C(n) + c(1)

2
=

1

n + 1

n∑
i=0

a2i+1.

Remark 1.3. Inequalities (1.7), (1.8) and (1.9) are refinements of (1.2).
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2. PROOFS OF THE THEOREMS

Proof of Theorem 1.1.If {ai}n
i=1 is convex, then it is easy to see that

(2.1) ai − ai+1 − an−1 + an

= (ai − 2ai+1 + ai+2) + (ai+1 − 2ai+2 + ai+3) + · · ·
+ (an−4 − 2an−3 + an−2) + (an−3 − 2an−2 + an−1)

+ (an−2 − 2an−1 + an) ≥ 0.

From (1.1) and (2.1), it follows that

H(j)−H(j − 1) = j

j∑
i=0

a2i+1 − (j + 1)

j∑
i=1

a2i − (j − 1)

j−1∑
i=0

a2i+1 + j

j−1∑
i=1

a2i

=

(
j

j∑
i=0

a2i+1 − (j − 1)

j−1∑
i=0

a2i+1

)
+

(
j

j−1∑
i=1

a2i − (j + 1)

j∑
i=1

a2i

)

=

(
ja2j+1 +

j−1∑
i=0

a2i+1

)
−

(
ja2j +

j∑
i=1

a2i

)

=

j∑
i=1

(a2i−1 − a2i − a2j + a2j+1)

≥ 0,

which implies the increasing monotonicity ofH(j) for 1 ≤ j ≤ n.
It is obvious that

(2.2) C(k) =
1

n(n + 1)

[
H(k) + (n + 1)

n∑
i=1

a2i

]
=

H(k)

n(n + 1)
+

1

n

n∑
i=1

a2i.

From the increasingly monotonic property ofH(j) for 1 ≤ j ≤ n, inequalities in (1.7) are
concluded.

For j = 1, 2, . . . , n− 2, direct calculation gives

H(j)−2H(j + 1) + H(j + 2)

=

(
j

j∑
i=0

a2i+1 − (j + 1)

j∑
i=1

a2i

)
− 2

(
(j + 1)

j+1∑
i=0

a2i+1 − (j + 2)

j+1∑
i=1

a2i

)

+

(
(j + 2)

j+2∑
i=0

a2i+1 − (j + 3)

j+2∑
i=1

a2i

)

=

(
j

j∑
i=0

a2i+1 − (j + 1)

j+1∑
i=0

a2i+1

)
+

(
(j + 2)

j+2∑
i=0

a2i+1 − (j + 1)

j+1∑
i=0

a2i+1

)

+

(
(j + 2)

j+1∑
i=1

a2i − (j + 1)

j∑
i=1

a2i

)
+

(
(j + 2)

j+1∑
i=1

a2i − (j + 3)

j+2∑
i=1

a2i

)
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=

(
−ja2j+3 −

j+1∑
i=0

a2i+1

)
+

(
(j + 1)a2j+5 +

j+2∑
i=0

a2i+1

)

+

(
(j + 1)a2j+2 +

j+1∑
i=1

a2i

)
+

(
−(j + 2)a2j+4 −

j+2∑
i=1

a2i

)
= (j + 1)a2j+2 − ja2j+3 − (j + 2)a2j+4 + (j + 1)a2j+5

+

(
j+1∑
i=1

a2i −
j+2∑
i=1

a2i

)
+

(
j+2∑
i=0

a2i+1 −
j+1∑
i=0

a2i+1

)
= (j + 1)a2j+2 − ja2j+3 − (j + 3)a2j+4 + (j + 2)a2j+5

= (j + 1)(a2j+2 − 2a2j+3 + a2j+4) + (j + 2)(a2j+3 − 2a2j+4 + a2j+5) ≥ 0

which implies that the sequence{H(j)}n
j=1 is convex. The proof of Theorem 1.1 is complete.

�

Proof of Theorem 1.2.By the same arguments as in Theorem 1.1, the decreasing and convex
properties of the sequences{h(j)}n+1

j=1 and{c(j)}n+1
j=1 are immediately obtained.

Adding (1.7) and (1.8) yields (1.9). The proof of Theorem 1.2 is complete. �
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[1] D.D. ADAMOVI Ć AND J.E. PĚCARIĆ, On Nanson’s inequality and on some inequalities related to
it, Math. Balkanica (N. S.),3(1) (1989), 3–11.
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