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ABSTRACT. In terms of Wright generalized hypergeometric function we define a class of ana-
lytic functions. The class generalize well known classes ofk-starlike functions andk-uniformly
convex functions. Necessary and sufficient coefficient bounds are given for functions in this
class. Further distortion bounds, extreme points and results on partial sums are investigated.
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1. I NTRODUCTION

Let A denote the class of functions of the form

(1.1) f(z) = z +
∞∑

n=2

anz
n

which are analytic in the open unit discU = {z : |z| < 1}. We denote byS the subclass ofA
consisting of functionsf which are univalent inU.

Also we denote byV, the class of analytic functions with varying arguments (introduced by
Silverman [16]) consisting of functionsf of the form (1.1) for which there exists a real number
η such that

(1.2) θn + (n− 1)η = π(mod 2π), where arg(an) = θn for all n ≥ 2.

Let k, γ be real parameters withk ≥ 0, −1 ≤ γ < 1.
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2 J. DZIOK , G. MURUGUSUNDARAMOORTHY, AND K. V IJAYA

Definition 1.1. A function f ∈ A is said to be in the classUCV (k, γ) of k-uniformly convex
functions of orderγ if it satisfies the condition

Re

{
1 +

zf ′′(z)

f ′(z)
− γ

}
> k

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ , z ∈ U.

In particular, the classesUCV := UCV (1, 0) , k − UCV := UCV (k, 0) were introduced
by Goodman [6] (see also [10, 13]), and Kanas and Wisniowska [8] (see also [7]), respectively,
where their geometric definition and connections with the conic domains were considered.

Related to the classUCV (k, γ) by means of the well-known Alexander equivalence between
the usual classes of convex and starlike functions, we define the classSP (k, γ) of k-starlike
functions of orderγ.

Definition 1.2. A function f ∈ A is said to be in the classSP (k, γ) of k-starlike functions of
orderγ if it satisfies the condition

Re

{
zf

′
(z)

f(z)
− γ

}
> k

∣∣∣∣zf ′
(z)

f(z)
− 1

∣∣∣∣ , z ∈ U.

The classesSp := SP (1, 0), k − ST := SP (k, 0) were investigated by Rønning [13, 14],
Kanas and Wisniowska [9], Kanas and Srivastava [7].

Note that the classes

ST := SP (0, 0), CV := UCV (0, 0)

are the well known classes of starlike and convex functions, respectively.
For functionsf ∈ A given by (1.1) andg ∈ A given by

g(z) = z +
∞∑

n=2

bnz
n, z ∈ U,

we define the Hadamard product (or convolution) off andg by

(f ∗ g)(z) = z +
∞∑

n=2

anbnz
n, z ∈ U.

For positive real parametersα1, A1, . . . , αp, Ap andβ1, B1, . . . , βq, Bq (p, q ∈ N = 1, 2, 3,. . . )
such that

(1.3) 1 +

q∑
n=1

Bn −
p∑

n=1

An ≥ 0,

the Wright generalized hypergeometric function [24]

pΨq[(α1, A1), . . . , (αp, Ap); (β1, B1), . . . , (βq, Bq); z] = pΨq[(αn, An)1,p; (βn, Bn)1,q; z]

is defined by

pΨq[(αt, At)1,p;(βt, Bt)1,q; z] =
∞∑

n=0

{
p∏

t=0

Γ(αt + nAt

}{
q∏

t=0

Γ(βt + nBt

}−1
zn

n!
, z ∈ U.

If p ≤ q + 1, An = 1 (n = 1, . . . , p) andBn = 1 (n = 1, . . . , q), we have the relationship:

(1.4) Ω pΨq[(αn, 1)1,p; (βn, 1)1,q; z] = pFq(α1, . . . , αp; β1, . . . , βq; z), z ∈ U,

wherepFq(α1, . . . , αp; β1, . . . , βq; z) is the generalized hypergeometric function and

(1.5) Ω =

(
p∏

t=0

Γ(αt)

)−1( q∏
t=0

Γ(βt)

)
.
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A CLASS OF STARLIKE FUNCTIONS 3

In [3] Dziok and Raina defined the linear operator by using Wright generalized hypergeo-
metric function. Let

pφq[(αt, At)1,p; (βt, Bt)1,q; z] = Ωz pΨq[(αt, At)1,p(βt, Bt)1,q; z], z ∈ U,

and

W = W [(αn, An)1,p; (βn, Bn)1,q] : A → A

be a linear operator defined by

Wf(z) := z pφq[(αt, At)1,p; (βt, Bt)1,q; z] ∗ f(z), z ∈ U.

We observe that, forf of the form (1.1), we have

(1.6) Wf(z) = z +
∞∑

n=2

σn anz
n, z ∈ U,

where

σn =
Ω Γ(α1 + A1(n− 1)) · · ·Γ(αp + Ap(n− 1))

(n− 1)!Γ(β1 + B1(n− 1)) · · ·Γ(βq + Bq(n− 1))
,

andΩ is given by (1.5).
In view of the relationship (1.4), the linear operator (1.6) includes the Dziok-Srivastava op-

erator (see [5]) and other operators. For more details on these operators, see [1], [2], [4], [11],
[12], [15] and [19].

Motivated by the earlier works of Kanas and Srivastava [7], Srivastava and Mishra [20] and
Vijaya and Murugusundaramoorthy [23], we define a new class of functions based on general-
ized hypergeometric functions.

Corresponding to the familySP (γ, k), we define the classW p
q (k, γ) for a functionf of the

form (1.1) such that

(1.7) Re

{
z(Wf(z))′

Wf(z)
− γ

}
≥ k

∣∣∣∣z(Wf(z))′

Wf(z)
− 1

∣∣∣∣ , z ∈ U.

We also let

V W p
q (k, γ) = V ∩W p

q (k, γ).

The classW p
q (k, γ) generalizes the classes ofk-uniformly convex functions andk-starlike

functions. Ifp = 2, q = 1, A1 = A2 = B1 = α1 = β1 = 1, then forα2 = 2 we have

W 2
1 (k, 0) = k − UCV,

and forα2 = 1 we have

W 2
1 (k, 0) = k − ST.

In this paper we obtain a sufficient coefficient condition for functionsf given by (1.1) to be
in the classW p

q (k, γ) and we show that it is also a necessary condition for functions to belong
to this class. Distortion results and extreme points for functions inV W p

q (k, γ) are obtained.
Finally, we investigate partial sums for the classV W p

q (k, γ).
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4 J. DZIOK , G. MURUGUSUNDARAMOORTHY, AND K. V IJAYA

2. M AIN RESULTS

First we obtain a sufficient condition for functions from the classA to belong to the class
W p

q (k, γ).

Theorem 2.1.Letf be given by (1.1). If

(2.1)
∞∑

n=2

(kn + n− k − γ)σn|an| ≤ 1− γ,

thenf ∈ W p
q (k, γ).

Proof. By definition of the classW p
q ([α1], γ), it suffices to show that

k

∣∣∣∣z(Wf(z))′

Wf(z)
− 1

∣∣∣∣− Re

{
z(Wf(z))′

Wf(z)
− 1

}
≤ 1− γ, z ∈ U.

Simple calculations give

k

∣∣∣∣z(Wf(z))′

Wf(z)
− 1

∣∣∣∣− Re

{
z(Wf(z))′

Wf(z)
− γ

}
≤ (k + 1)

∣∣∣∣z(Wf(z))′

Wf(z)
− 1

∣∣∣∣
≤ (k + 1)

∑∞
n=2(n− 1)σn|an||z|n−1

1−
∑∞

n=2 σn|an||z|n−1
.

Now the last expression is bounded above by(1− γ) if (2.1) holds. �

In the next theorem, we show that the condition (2.1) is also necessary for functions from the
classV W p

q (k, γ).

Theorem 2.2.Letf be given by (1.1) and satisfy (1.2).Then the functionf belongs to the class
V W p

q (k, γ) if and only if (2.1) holds.

Proof. In view of Theorem 2.1 we need only to show thatf ∈ V W p
q (k, γ) satisfies the coeffi-

cient inequality (2.1). Iff ∈ V W p
q (k, γ) then by definition, we have

k

∣∣∣∣z +
∑∞

n=2 nσnanz
n

z +
∑∞

n=2 σnanzn
− 1

∣∣∣∣ ≤ Re

{
z +

∑∞
n=2 nσnanz

n

z +
∑∞

n=2 σnanzn
− γ

}
,

or

k

∣∣∣∣∑∞
n=2(n− 1)σnanz

n−1

1 +
∑∞

n=2 σnanzn−1

∣∣∣∣ ≤ Re

{
(1− γ) +

∑∞
n=2(n− γ)σnanz

n−1

1 +
∑∞

n=2 σnanzn−1

}
.

In view of (1.2), we setz = riη in the above inequality to obtain∑∞
n=2 k(n− 1)σn|an|rn−1

1−
∑∞

n=2 σn|an|rn−1
≤ (1− γ)−

∑∞
n=2(n− γ)σn|an|rn−1

1−
∑∞

n=2 σn|an|rn−1
.

Thus

(2.2)
∞∑

n=2

(kn + n− k − γ)σn|an|rn−1 ≤ 1− γ,

and lettingr → 1− in (2.2), we obtain the desired inequality (2.1). �
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A CLASS OF STARLIKE FUNCTIONS 5

Corollary 2.3. If a functionf of the form (1.1) belongs to the classV W p
q (k, γ), then

|an| ≤
1− γ

(kn + n− k − γ)σn

, n = 2, 3, . . . .

The equality holds for the functions

(2.3) hn,η(z) = z − (1− γ) ei(1−n)η

(kn + n− k − γ)σn

zn, z ∈ U ; 0 ≤ η < 2π, n = 2, 3, . . . .

Next we obtain the distortion bounds for functions belonging to the classV W p
q (k, γ).

Theorem 2.4.Letf be in the classV W p
q (k, γ), |z| = r < 1. If the sequence

{(kn + n− k − γ)σn}∞n=2

is nondecreasing, then

(2.4) r − 1− γ

(k − γ + 2)σ2

r2 ≤ |f(z)| ≤ r +
1− γ

(k − γ + 2)σ2

r2.

If the sequence
{

kn+n−k−γ
n

σn

}∞
n=2

is nondecreasing, then

(2.5) 1− 2(1− γ)

(k − γ + 2)σ2

r ≤ |f ′(z)| ≤ 1 +
2(1− γ)

(k − γ + 2)σ2

r.

The result is sharp. The extremal functions are the functionsh2,η of the form (2.3).

Proof. Sincef ∈ V W p
q (k, γ), we apply Theorem 2.2 to obtain

(k − γ + 2)σ2

∞∑
n=2

|an| ≤
∞∑

n=2

(kn + n− k − γ)σn|an| ≤ 1− γ.

Thus

|f(z)| ≤ |z|+ |z|2
∞∑

n=2

|an| ≤ r +
1− γ

(k − γ + 2)σ2

r2.

Also we have

|f(z)| ≥ |z| − |z|2
∞∑

n=2

|an| ≥ r − 1− γ

(k − γ + 2)σ2

r2

and (2.4) follows. In similar manner forf ′, the inequalities

|f ′(z)| ≤ 1 +
∞∑

n=2

n|an||z|n−1 ≤ 1 + |z|
∞∑

n=2

nan

and
∞∑

n=2

n|an| ≤
2(1− γ)

(k − γ + 2)σ2

lead to (2.5). This completes the proof. �

Corollary 2.5. Letf be in the classV W p
q (k, γ), |z| = r < 1. If

(2.6) p > q, αq+1 ≥ 1, αj ≥ βj and Aj ≥ Bj ( j = 2, . . . , q),

then the assertions (2.4), (2.5) hold true.

Proof. From (2.6) we have that the sequences{(kn + n− k − γ)σn}∞n=2 and
{

kn+n−k−γ
n

σn

}∞
n=2

are nondecreasing. Thus, by Theorem 2.4, we have Corollary 2.5. �
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6 J. DZIOK , G. MURUGUSUNDARAMOORTHY, AND K. V IJAYA

Theorem 2.6. Let f be given by (1.1) and satisfy (1.2). Then the functionf belongs to the
classV W p

q (k, γ) if and only iff can be expressed in the form

(2.7) f(z) =
∞∑

n=1

µnhn,η(z), µn ≥ 0 and
∞∑

n=1

µn = 1,

whereh1(z) = z andhn,η are defined by (2.3).

Proof. If a functionf is of the form (2.7), then by (1.2) we have

f(z) = z +
∞∑

n=2

(1− γ) eiθn

(kn + n− k − γ)σn

µnz
n, z ∈ U.

Since
∞∑

n=2

(kn + n− k − γ)σn
1− γ

(kn + n− k − γ)σn

µn

=
∞∑

n=2

µn(1− γ) = (1− µ1)(1− γ) ≤ 1− γ,

by Theorem 2.2 we havef ∈ V W p
q (k, γ).

Conversely, iff is in the classV W p
q (k, γ), then we may setµn = (kn+n−k−γ)σn

1−γ
, n ≥ 2 and

µ1 = 1−
∑∞

n=2 µn. Then the functionf is of the form (2.7) and this completes the proof.�

3. PARTIAL SUMS

For a functionf ∈ A given by (1.1), Silverman [17] and Silvia [18] investigated the partial
sumsf1 andfm defined by

(3.1) f1(z) = z; and fm(z) = z +
m∑

n=2

anz
n, (m = 2, 3 . . .).

We consider in this section partial sums of functions in the classV W p
q (k, γ) and obtain sharp

lower bounds for the ratios of the real part off to fm(z) andf ′ to f ′m.

Theorem 3.1. Let a functionf of the form (1.1) belong to the classV W p
q (k, γ) and assume

(2.6). Then

(3.2) Re

{
f(z)

fm(z)

}
≥ 1− 1

dm+1

, z ∈ U, m ∈ N

and

(3.3) Re

{
fm(z)

f(z)

}
≥ dm+1

1 + dm+1

, z ∈ U, m ∈ N,

where

(3.4) dn :=
kn + n− k − γ

1− γ
σn.

Proof. By (2.6) it is not difficult to verify that

(3.5) dn+1 > dn > 1, n = 2, 3, . . . .

Thus by Theorem 2.1 we have

(3.6)
m∑

n=2

|an|+ dm+1

∞∑
n=m+1

|an| ≤
∞∑

n=2

dn|an| ≤ 1.
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Setting

(3.7) g(z) = dm+1

{
f(z)

fm(z)
−
(

1− 1

dm+1

)}
= 1 +

dm+1

∑∞
n=m+1 anz

n−1

1 +
∑m

n=2 anzn−1
,

it suffices to show that
Re g(z) ≥ 0, z ∈ U.

Applying (3.6), we find that∣∣∣∣g(z)− 1

g(z) + 1

∣∣∣∣ ≤ dm+1

∑∞
n=m+1 |an|

2− 2
∑n

n=2 |an| − dm+1

∑∞
n=m+1 |an|

≤ 1, z ∈ U,

which readily yields the assertion (3.2) of Theorem 3.1. In order to see that

(3.8) f(z) = z +
zm+1

dm+1

, z ∈ U,

gives sharp the result, we observe that forz = reiπ/m we have

f(z)

fm(z)
= 1 +

zm

dm+1

z→1−−→ 1− 1

dm+1

.

Similarly, if we take

h(z) = (1 + dm+1)

{
fm(z)

f(z)
− dm+1

1 + dm+1

}
= 1−

(1 + dn+1)
∑∞

n=m+1 anz
n−1

1 +
∑∞

n=2anzn−1
, z ∈ U,

and making use of (3.6), we can deduce that∣∣∣∣h(z)− 1

h(z) + 1

∣∣∣∣ ≤ (1 + dm+1)
∑∞

n=m+1 |an|
2− 2

∑m
n=2 |an| − (1− dm+1)

∑∞
n=m+1 |an|

≤ 1, z ∈ U,

which leads us immediately to the assertion (3.3) of Theorem 3.1. The bound in (3.3) is sharp
for eachm ∈ N with the extremal functionf given by (3.8), and the proof is complete. �

Theorem 3.2. Let a functionf of the form (1.1) belong to the classV W p
q (k, γ) and assume

(2.6). Then

(3.9) Re

{
f ′(z)

f ′m(z)

}
≥ 1− m + 1

dm+1

and

(3.10) Re

{
f ′m(z)

f ′(z)

}
≥ dm+1

m + 1 + dm+1

,

wheredm is defined by (3.4)

Proof. By setting

g(z) = dm+1

{
f ′(z)

f ′m(z)
−
(

1− m + 1

dm+1

)}
, z ∈ U,

and

h(z) = [(m + 1) + dm+1]

{
f ′m(z)

f ′(z)
− dm+1

m + 1 + dm+1

}
, z ∈ U,

the proof is analogous to that of Theorem 3.1, and we omit the details. �
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8 J. DZIOK , G. MURUGUSUNDARAMOORTHY, AND K. V IJAYA

Concluding Remarks: Observe that, if we specialize the parameters of the classV W p
q (k, γ),

we obtain various classes introduced and studied by Goodman [6], Kanas and Srivastava [7],
Ma and Minda [10], Rønning [13, 14], Murugusundaramoorthyet al. [22, 23], and others.
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