THE GENERALIZED HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION

K. RAVI, R. MURALI AND M. ARUNKUMAR

Department of Mathematics
Sacred Heart College,
Tirupattur - 635 601, TamilNadu, India
EMail: shckravi@yahoo.co.in
shcmurali@yahoo.com
annarun2002@yahoo.co.in

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words:
Abstract:

15 August, 2007
14 November, 2007
K. Nikodem

39B52, 39B72.
Quadratic functional equation, Hyers-Ulam-Rassias stability.
In this paper, we investigate the generalized Hyers - Ulam - Rassias stability of a new quadratic functional equation

$$
f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+4 f(x)-2 f(y)
$$

Generalized Hyers-Ulam-Rassias Stability
K. Ravi, R. Murali and M. Arunkumar
vol. 9, iss. 1, art. 20, 2008

Title Page
Contents

Page 1 of 10
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Contents

1 Introduction 3
2 Hyers-Ulam-Rassias stability of (1.2)

Generalized Hyers-Ulam-Rassias Stability K. Ravi, R. Murali
and M. Arunkumar
vol. 9, iss. 1, art. 20, 2008

Title Page	
Contents	
$\mathbf{4 4}$	
$\mathbf{4}$	
Page 2 of 10	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction

The problem of the stability of functional equations was originally stated by S.M.Ulam [20]. In 1941 D.H. Hyers [10] proved the stability of the linear functional equation for the case when the groups G_{1} and G_{2} are Banach spaces. In 1950, T. Aoki discussed the Hyers-Ulam stability theorem in [2]. His result was further generalized and rediscovered by Th.M. Rassias [17] in 1978 . The stability problem for functional equations have been extensively investigated by a number of mathematicians [5], [8], [9], [12] - [16], [19].

The quadratic function $f(x)=c x^{2}$ satisfies the functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1.1}
\end{equation*}
$$

and therefore the equation (1.1) is called the quadratic functional equation.
The Hyers - Ulam stability theorem for the quadratic functional equation (1.1) was proved by F. Skof [19] for the functions $f: E_{1} \rightarrow E_{2}$ where E_{1} is a normed space and E_{2} a Banach space. The result of Skof is still true if the relevant domain E_{1} is replaced by an Abelian group and this was dealt with by P.W.Cholewa [6]. S.Czerwik [7] proved the Hyers-Ulam-Rassias stability of the quadratic functional equation (1.1). This result was further generalized by Th.M. Rassais [18], C. Borelli and G.L. Forti [4].

In this paper, we discuss a new quadratic functional equation

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+4 f(x)-2 f(y) . \tag{1.2}
\end{equation*}
$$

The generalized Hyers-Ulam-Rassias stability of the equation (1.2) is dealt with here. As a result of the paper, we have a much better possible upper bound for (1.2) than S. Czerwik and Skof-Cholewa.

$$
\text { vol. } 9 \text {, iss. } 1, \text { art. } 20,2008
$$

Title Page
Contents

Page 3 of 10

```
Go Back
```

Full Screen

Close

journal of inequalities in pure and applied mathematics

2. Hyers-Ulam-Rassias stability of (1.2)

In this section, let X be a real vector space and let Y be a Banach space. We will investigate the Hyers-Ulam-Rassias stability problem for the functional equation (1.2). Define

$$
D f(x, y)=f(2 x+y)+f(2 x-y)-2 f(x+y)-2 f(x-y)-4 f(x)+2 f(y)
$$

Now we state some theorems which will be useful in proving our results.
Theorem 2.1 ([7]). If a function $f: G \rightarrow Y$, where G is an abelian group and Y a Banach space, satisfies the inequality

$$
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{q}\right)
$$

for $p \neq 2$ and for all $x, y \in G$, then there exists a unique quadratic function Q such that

$$
\|f(x)-Q(x)\| \leq \frac{\epsilon\|x\|^{p}}{\mid 4-2^{p \mid}}+\frac{\|f(0)\|}{3}
$$

for all $x \in G$.
Theorem 2.2 ([6]). If a function $f: G \rightarrow Y$, where G is an abelian group and Y is a Banach space, satisfies the inequality

$$
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \leq \epsilon
$$

for all $x, y \in G$, then there exists a unique quadratic function Q such that

$$
\|f(x)-Q(x)\| \leq \frac{\epsilon}{2}
$$

for all $x \in G$, and for all $x \in G-0$, and $\|f(0)\|=0$.

Generalized Hyers-Ulam-Rassias Stability K. Ravi, R. Murali and M. Arunkumar
vol. 9, iss. 1, art. 20, 2008

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 4 of 10	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Theorem 2.3. Let $\psi: X^{2} \rightarrow \mathbb{R}^{+}$be a function such that

$$
\begin{equation*}
\sum_{i=0}^{\infty} \frac{\psi\left(2^{i} x, 0\right)}{4^{i}} \quad \text { converges and } \quad \lim _{n \rightarrow \infty} \frac{\psi\left(2^{n} x, 2^{n} y\right)}{4^{n}}=0 \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$. If a function $f: X \rightarrow Y$ satisfies

$$
\begin{equation*}
\|D f(x, y)\| \leq \psi(x, y) \tag{2.2}
\end{equation*}
$$

for all $x, y \in X$, then there exists one and only one quadratic function $Q: X \rightarrow Y$ which satisfies equation (1.2) and the inequality

Generalized Hyers-Ulam-Rassias

 Stability K. Ravi, R. Murali and M. Arunkumarvol. 9, iss. 1, art. 20, 2008

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{1}{8} \sum_{i=0}^{\infty} \frac{\psi\left(2^{i} x, 0\right)}{4^{i}} \tag{2.3}
\end{equation*}
$$

for all $x \in X$. The function Q is defined by

$$
\begin{equation*}
Q(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{4^{n}} \tag{2.4}
\end{equation*}
$$

for all $x \in X$.
Proof. Letting $x=y=0$ in (1.2), we get $f(0)=0$. Putting $y=0$ in (2.2) and dividing by 8 , we have

$$
\begin{equation*}
\left\|f(x)-\frac{f(2 x)}{4}\right\| \leq \frac{1}{8} \psi(x, 0) \tag{2.5}
\end{equation*}
$$

for all $x \in X$. Replacing x by $2 x$ in (2.5) and dividing by 4 and summing the resulting inequality with (2.5), we get

$$
\begin{equation*}
\left\|f(x)-\frac{f(2 x)}{4}\right\| \leq \frac{1}{8}\left[\psi(x, 0)+\frac{\psi(2 x, 0)}{4}\right] \tag{2.6}
\end{equation*}
$$

Title Page
Contents

$\boldsymbol{4}$	
$\mathbf{4}$	
Page 5 of 10	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b
for all $x \in X$. Using induction on a positive integer n we obtain that

$$
\begin{equation*}
\left\|f(x)-\frac{f\left(2^{n} x\right)}{4^{n}}\right\| \leq \frac{1}{8} \sum_{i=0}^{n-1} \frac{\psi\left(2^{i} x, 0\right)}{4^{i}} \leq \frac{1}{8} \sum_{i=0}^{\infty} \frac{\psi\left(2^{i} x, 0\right)}{4^{i}} \tag{2.7}
\end{equation*}
$$

for all $x \in X$.
Now, for $m, n>0$

$$
\begin{aligned}
\left\|\frac{f\left(2^{m} x\right)}{4^{m}}-\frac{f\left(2^{n}\right)}{4^{n}}\right\| & \leq\left\|\frac{f\left(2^{m+n-n} x\right)}{4^{m+n-n}}-\frac{f\left(2^{n} x\right)}{4^{n}}\right\| \\
& \leq \frac{1}{4^{n}}\left\|\frac{f\left(2^{m-n} 2^{n} x\right)}{4^{m-n}}-f\left(2^{n} x\right)\right\| \\
& \leq \frac{1}{8} \sum_{i=0}^{n-1} \frac{\psi\left(2^{i+n} x, 0\right)}{4^{i+n}} \\
& \leq \frac{1}{8} \sum_{i=0}^{\infty} \frac{\psi\left(2^{i+n} x, 0\right)}{4^{i+n}}
\end{aligned}
$$

Since the right-hand side of the inequality (2.8) tends to 0 as n tends to infinity, the sequence $\left\{\frac{f\left(2^{n} x\right)}{4^{n}}\right\}$ is a Cauchy sequence. Therefore, we may define $Q(x)=$ $\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{4^{n}}$ for all $x \in X$. Letting $n \rightarrow \infty$ in (2.7), we arrive at (2.3).

Next, we have to show that Q satisfies (1.2). Replacing x, y by $2^{n} x, 2^{n} y$ in (2.2) and dividing by 4^{n}, it then follows that

$$
\begin{aligned}
& \frac{1}{4^{n}} \| f\left(2^{n}(2 x+y)\right)+f\left(2^{n}(2 x-y)\right) \\
& \quad-2 f\left(2^{n}(x+y)\right)-2 f\left(2^{n}(x-y)\right)-4 f\left(2^{n} x\right)+2 f\left(2^{n} y\right) \| \leq \frac{1}{4^{n}} \psi\left(2^{n} x, 2^{n} y\right)
\end{aligned}
$$

Generalized Hyers-Ulam-Rassias

 Stability K. Ravi, R. Murali and M. Arunkumarvol. 9, iss. 1, art. 20, 2008

Title Page
Contents

Page 6 of 10
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics

Taking the limit as $n \rightarrow \infty$, using (2.1) and (2.4), we see that

$$
\|Q(2 x+y)+Q(2 x-y)-2 Q(x+y)-2 Q(x-y)-4 Q(x)+2 Q(y)\| \leq 0
$$

which gives

$$
Q(2 x+y)+Q(2 x-y)=2 Q(x+y)+2 Q(x-y)+4 Q(x)-2 Q(y)
$$

Therefore, we have that Q satisfies (1.2) for all $x, y \in X$. To prove the uniqueness of the quadratic function Q, let us assume that there exists a quadratic function Q^{\prime} : $X \rightarrow Y$ which satisfies (1.2) and the inequality (2.3). But we have $Q\left(2^{n} x\right)=$ $4^{n} Q(x)$ and $Q^{\prime}\left(2^{n} x\right)=4^{n} Q^{\prime}(x)$ for all $x \in X$ and $n \in \mathbb{N}$. Hence it follows from (2.3) that

$$
\begin{aligned}
\left\|Q(x)-Q^{\prime}(x)\right\| & =\frac{1}{4^{n}}\left\|Q\left(2^{n} x\right)-Q^{\prime}\left(2^{n} x\right)\right\| \\
& \leq \frac{1}{4^{n}}\left(\left\|Q\left(2^{n} x\right)-f\left(2^{n} x\right)\right\|+\left\|f\left(2^{n} x\right)-Q^{\prime}\left(2^{n} x\right)\right\|\right) \\
& \leq \frac{1}{4} \sum_{i=0}^{\infty} \frac{\psi\left(2^{i+n}, 0\right)}{4^{i+n}} \quad \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Generalized Hyers-Ulam-Rassias Stability K. Ravi, R. Murali and M. Arunkumar
vol. 9, iss. 1, art. 20, 2008

Title Page
Contents

$\mathbf{4 4}$	
$\mathbf{4}$	
Page 7 of 10	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\begin{equation*}
\|D f(x, y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{q}\right) \tag{2.9}
\end{equation*}
$$

for all $x, y \in X$. Then there exists one and only one quadratic function $Q: X \rightarrow Y$ which satisfies (1.2) and the inequality

$$
\begin{equation*}
\left\|f(x)-Q(x) \left\lvert\, \leq \frac{\epsilon}{2\left\|4-2^{p}\right\|}\right.\right\| x \|^{p} \tag{2.10}
\end{equation*}
$$

for all $x \in X$. The function Q is defined in (2.4). Furthermore, if $f(t x)$ is continuous for all $t \in \mathbb{R}$ and $x \in X$ then, $f(t x)=t^{2} f(x)$.
Proof. Taking $\psi(x, y)=\epsilon\left(\|x\|^{p}+\|y\|^{q}\right)$ and applying Theorem 2.1, the equation (2.3) give rise to equation (2.10) which proves Corollary 2.4.

Corollary 2.5. Let X be a real normed space and Y be a Banach space. Let ϵ be real number. If a function $f: X \rightarrow Y$ satisfies

$$
\begin{equation*}
\|D f(x, y)\| \leq \epsilon \tag{2.11}
\end{equation*}
$$

for all $x, y \in X$, then there exists one and only one quadratic function $Q: X \rightarrow Y$ which satisfies (1.2) and the inequality

$$
\begin{equation*}
\left||f(x)-Q(x)| \leq \frac{\epsilon}{4}\right. \tag{2.12}
\end{equation*}
$$

for all $x \in X$. The function Q is defined in (2.4). Furthermore, if $f(t x)$ is continuous for all $t \in \mathbb{R}$ and $x \in X$ then, $f(t x)=t^{2} f(x)$.
,
vol. 9, iss. 1, art. 20, 2008

Title Page
Contents

Page 8 of 10
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics

References

[1] J. ACZEL And J. DHOMBRES, Functional Equations in Several Variables, Cambridge Univ, Press, 1989.
[2] T. AOKI, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
[3] J.H. BAE AND K.W. JUN, On the Hyers-Ulam-Rassias stability of a quadratic functional equation, Bull. Korean Math. Soc., 38(2) (2001), 325-336.
[4] C. BORELLI And G.L. FORTI, On a general Hyers-Ulam stability, Internat J. Math. Math. Sci., 18 (1995), 229-236.
[5] I.S. CHANG AND H.M. KIM, On the Hyers-Ulam stability of a quadratic functional equation, J. Inequal. Pure. Appl. Math., 3(3) (2002), Art. 33. [ONLINE: http://jipam.vu.edu.au/article.php?sid=185].
[6] P.W. CHOLEWA, Remarks on the stability of functional equations, Aequationes Math., 27 (1984), 76-86.
[7] S. CZERWIK, On the stability of the quadratic mappings in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59-64.
[8] G.L. FORTI, Hyers-Ulam stability of functional equations several variables, Aequationes Math., 50 (1995), 143-190.
[9] P. GAVRUTA, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
[10] D.H. HYERS, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., U.S.A., 27 (1941), 222-224.

Generalized Hyers-Ulam-Rassias Stability
K. Ravi, R. Murali and M. Arunkumar
vol. 9, iss. 1, art. 20, 2008

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 9 of 10	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b
[11] H. HYERS, G. ISAC AND Th.M. RASSIAS, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998.
[12] K.W. JUN and Y.H. LEE, On the Hyers-Ulam -Rassias stability of a pexiderized quadratic inequality, Math. Inequal. Appl., 4 (2001), 93-118.
[13] K.W. JUN and H.M. KIM, Remarks on the stability of functional equation, Bull. Korean Math. Soc., 38 (2001), 679-687.
[14] S.M. JUNG, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl., 222 (1998), 126-137.
[15] S.M. JUNG, On the Hyers-Ulam-Rassias stability of a quadratic functional equation, J. Math. Anal. Appl., 232 (1999), 384-393.
[16] Pl. KANNAPPAN, Quadratic functional equation and inner product spaces, Results in Mathematics, 27 (1995), 365-372.
[17] Th.M. RASSIAS, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
[18] Th.M. RASSIAS, On the stability of the functional equations in Banach spaces, J. Math. Anal. Appl., 251 (2000), 264-284.
[19] F. SKOF, Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53 (1983), 113-129.
[20] S.M. ULAM, Problems in Modern Mathematics, Rend. Chap.VI,Wiley, New York, 1960.

journal of inequalities in pure and applied mathematics
issn: 1443-575b

