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ABSTRACT. In this paper, some new discrete Gronwall-Bellman-Ou-Iang-type inequalities are
established. These on the one hand generalize some existing results and on the other hand pro-
vide a handy tool for the study of qualitative as well as quantitative properties of solutions of
difference equations.
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1. I NTRODUCTION

It is widely recognized that integral inequalities in general provide an effective tool for the
study of qualitative as well as quantitative properties of solutions of integral and differential
equations. While most integral inequalities only give the ‘global behavior’ of the unknown
functions (in the sense that bounds are only obtained for integrals of certain functions of the
unknown functions), the Gronwall-Bellman type (see, e.g. [3] – [8], [10] – [12], [15] – [18])
is particularly useful as they provide explicit pointwise bounds of the unknown functions. A
specific branch of this type of inequalities is originated by Ou-Iang. In his paper [13], in order
to study the boundedness behavior of the solutions of some 2nd order differential equations,
Ou-Iang established the following beautiful inequality.
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Theorem 1.1(Ou-Iang [13]). If u andf are non-negative functions on[0,∞) satisfying

u2(x) ≤ c2 + 2

∫ x

0

f(s)u(s)ds, x ∈ [0,∞),

for some constantc ≥ 0, then

u(x) ≤ c+

∫ x

0

f(s)ds, x ∈ [0,∞).

While Ou-Iang’s inequality is interesting in its own right, it also has numerous important
applications in the study of differential equations (see, e.g., [2, 3, 9, 11, 12]). Over the years,
various extensions of Ou-Iang’s inequality have been established. These include, among others,
works of Agarwal [1], Ma-Yang [10], Pachpatte [14] – [18], Tsamatos-Ntouyas [19], and Yang
[20]. Among such extensions, the discretization is of particular interest because analogous
to the continuous case, discrete versions of integral inequalities should, in our opinion, play
an important role in the study of qualitative as well as quantitative properties of solutions of
difference equations.

It is the purpose of this paper to establish some new discrete Gronwall-Bellman-Ou-Iang-
type inequalities giving explicit bounds to unknown discrete functions. These on the one hand
generalize some existing results in the literature and on the other hand give a handy tool to the
study of difference equations. An application to a discrete delay equation is given at the end of
the paper.

2. DISCRETE I NEQUALITIES WITH DELAY

Throughout this paper,R+ = (0,∞) ⊂ R, Z+ = R+∩Z, and for anya, b ∈ R, Ra = [a,∞),
Za = Ra∩Z, Z[a,b] = Z∩ [a, b]. If X andY are sets, the collection of functions ofX intoY , the
collection of continuous functions ofX intoY , and that of continuously differentiable functions
of X into Y are denoted byF(X,Y ), C(X, Y ), andC1(X, Y ), respectively. As usual, ifu is a
real-valued function onZ[a,b], the difference operator∆ onu is defined as

∆u(n) = u(n+ 1)− u(n) , n ∈ Z[a,b−1].

In the sequel, summations over empty sets are, as usual, defined to be zero.
The basic assumptions and initial conditions used in this paper are the following:

Assumptions
(A1) f, g, h, k, p ∈ F(Z0,R0) with p non-decreasing;
(A2) w ∈ C(R0,R0) is non-decreasing withw(r) > 0 for r > 0;
(A3) σ ∈ F(Z0,Z) with σ(s) ≤ s for all s ∈ Z0 and−∞ < a := inf{σ(s) : s ∈ Z0} ≤ 0;
(A4) ψ ∈ F(Z[a,0],R0); and
(A5) φ ∈ C1(R0,R0) with φ′ non-decreasing andφ′(r) > 0 for r > 0.

Initial Conditions
(I1) x(s) = ψ(s) for all s ∈ Z[a,0];
(I2) ψ (σ(s)) ≤ φ−1 (p(s)) for all s ∈ Z0 with σ(s) ≤ 0.

Theorem 2.1. Under Assumptions (A1) – (A5), ifx ∈ F(Za,R0) is a function satisfying the
nonlinear delay inequality

(2.1) φ (x(n)) ≤ p(n) +
n−1∑
s=0

φ′ (x (σ(s))) {f(s) + g(s)x (σ(s)) + h(s)w (x (σ(s)))}
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for all n ∈ Z0 with initial conditions (I1) – (I2), then

(2.2) x(n) ≤ Φ−1

{
Φ

[(
exp

n−1∑
s=0

g(s)

)(
φ−1 (p(n)) +

n−1∑
s=0

f(s)

)]

+

(
exp

n−1∑
s=0

g(s)

)
n−1∑
t=0

h(t)

}
for all n ∈ Z[0,α], whereΦ ∈ C(R0,R) is defined by

Φ(r) :=

∫ r

1

ds

w(s)
, r > 0,

andα ≥ 0 is chosen such that the RHS of (2.2) is well-defined, that is,

Φ

[(
exp

n−1∑
s=0

g(s)

)(
φ−1 (p(n)) +

n−1∑
s=0

f(s)

)]
+ exp

(
n−1∑
s=0

g(s)

)
n−1∑
t=0

h(t) ∈ ImΦ

for all n ∈ Z[0,α].

Proof. Fix ε > 0 andN ∈ Z[0,α]. Defineu : Z[0,N ] → R0 by

(2.3) u(n) := φ−1

{
ε+ p(N)

+
n−1∑
t=0

φ′ (x (σ(t))) [f(t) + g(t)x (σ(t)) + h(t)w (x (σ(t)))]

}
.

By (A5), u is non-decreasing onZ[0,N ]. For anyn ∈ Z[0,N ], by (A5) again,

(2.4) u(n) ≥ φ−1 (ε+ p(N)) > 0 .

As φ (u(n)) > φ (x(n)), we have

(2.5) u(n) > x(n) .

Next, observe that ifσ(n) ≥ 0, then by (A3),σ(n) ∈ Z[0,N ] and so

x (σ(n)) < u (σ(n)) ≤ u(n) .

On the other hand, ifσ(n) ≤ 0, then by (A3) again,σ(n) ∈ Z[a,0] and so by (I1), (I2), (A1),
(A5) and (2.4),

x (σ(n)) = ψ (σ(n)) ≤ φ−1 (p(n)) ≤ φ−1 (p(N)) ≤ φ−1 (p(N) + ε) ≤ u(n) .

Hence we always have

(2.6) x (σ(n)) ≤ u(n) for all n ∈ Z[0,N ] .

Therefore, for anys ∈ Z[0,N−1], by (2.3) and (2.6),

∆(φ ◦ u)(s) = φ (u(s+ 1))− φ (u(s))

= φ′ (x (σ(s))) {f(s) + g(s)x (σ(s)) + h(s)w (x (σ(s)))}
≤ φ′ (u(s)) {f(s) + g(s)u(s) + h(s)w (u(s))} .

On the other hand, by the Mean Value Theorem, we obtain

∆(φ ◦ u)(s) = φ (u(s+ 1))− φ (u(s))

= φ′(ξ)∆u(s)
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for someξ ∈ [u(s), u(s+ 1)]. Observe that by (2.4) and (A5),φ′(ξ) > 0. Thus by the mono-
tonicity of φ′, for anys ∈ Z[0,N−1],

∆u(s) ≤ φ′ (u(s))

φ′(ξ)
{f(s) + g(s)u(s) + h(s)w (u(s))}

≤ f(s) + g(s)u(s) + h(s)w (u(s)) .

Summing up, we have

u(n)− u(0) =
n−1∑
s=0

∆u(s)

≤
n−1∑
s=0

f(s) +
n−1∑
s=0

h(s)w (u(s)) +
n−1∑
s=0

g(s)u(s) ,

or

u(n) ≤

[
φ−1 (ε+ p(N)) +

n−1∑
s=0

f(s) +
n−1∑
s=0

h(s)w (u(s))

]
+

n−1∑
s=0

g(s)u(s)

for all n ∈ Z[0,N ]. Hence by the discrete version of the Gronwall-Bellman inequality (see, e.g.,
[16, Corollary 1.2.5]),

u(n) ≤

[
φ−1 (ε+ p(N)) +

n−1∑
s=0

f(s) +
n−1∑
s=0

h(s)w (u(s))

]
exp

n−1∑
s=0

g(s)

≤

[
φ−1 (ε+ p(N)) +

N−1∑
s=0

f(s) +
n−1∑
s=0

h(s)w (u(s))

]
exp

N−1∑
s=0

g(s)(2.7)

for all n ∈ Z[0,N ]. Denote byv(n) the RHS of (2.7). Thenv is non-decreasing and for all
n ∈ Z[0,N ],

(2.8) u(n) ≤ v(n) .

Therefore, for anyt ∈ Z[0,N−1],

∆v(t) = v(t+ 1)− v(t)

= h(t)w (u(t)) exp
N−1∑
s=0

g(s)

≤ h(t)w (v(t)) exp
N−1∑
s=0

g(s) .

On the other hand, by the Mean Value Theorem, we have

∆(Φ ◦ v)(t) = Φ (v(t+ 1))− Φ (v(t))

= Φ′(η)∆v(t)

=
1

w(η)
∆v(t)
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for someη ∈ [v(t), v(t+ 1)]. Observe that by (2.4), (2.8), and (A2),w(η) > 0. Therefore, as
w is non-decreasing,

∆(Φ ◦ v)(t) ≤ 1

w(η)
h(t)w (v(t)) exp

N−1∑
s=0

g(s)

≤ h(t) exp
N−1∑
s=0

g(s)

for all t ∈ Z[0,N−1]. Summing up, we have

n−1∑
t=0

∆(Φ ◦ v)(t) ≤
n−1∑
t=0

h(t) exp
N−1∑
s=0

g(s) .

On the other hand,

n−1∑
t=0

∆(Φ ◦ v)(t) = Φ (v(n))− Φ (v(0))

= Φ (v(n))− Φ

[(
exp

N−1∑
s=0

g(s)

)(
φ−1 (ε+ p(N)) +

N−1∑
s=0

f(s)

)]
,

therefore,

Φ (v(n)) ≤ Φ

[(
exp

N−1∑
s=0

g(s)

)(
φ−1 (ε+ p(N)) +

N−1∑
s=0

f(s)

)]

+
n−1∑
t=0

h(t) exp
N−1∑
s=0

g(s)

for all n ∈ Z[0,N ]. In particular, takingn = N we have

Φ (v(N)) ≤ Φ

[(
exp

N−1∑
s=0

g(s)

)(
φ−1 (ε+ p(N)) +

N−1∑
s=0

f(s)

)]

+

(
exp

N−1∑
s=0

g(s)

)
N−1∑
t=0

h(t).

SinceN ∈ Z[0,α] is arbitrary,

Φ (v(n)) ≤ Φ

[(
exp

n−1∑
s=0

g(s)

)(
φ−1 (ε+ p(n)) +

n−1∑
s=0

f(s)

)]

+

(
exp

n−1∑
s=0

g(s)

)
n−1∑
t=0

h(t)
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for all n ∈ Z[0,α]. Hence

v(n) ≤ Φ−1

{
Φ

[(
exp

n−1∑
s=0

g(s)

)(
φ−1 (ε+ p(n)) +

n−1∑
s=0

f(s)

)]

+

(
exp

n−1∑
s=0

g(s)

)
n−1∑
t=0

h(t)

}
and so by (2.5) and (2.8),

x(n) < u(n) ≤ v(n) ≤ Φ−1

{
Φ

[(
exp

n−1∑
s=0

g(s)

)(
φ−1 (ε+ p(n)) +

n−1∑
s=0

f(s)

)]

+

(
exp

n−1∑
s=0

g(s)

)
n−1∑
t=0

h(t)

}
for all n ∈ Z[0,α]. Finally, lettingε→ 0+, we conclude that

x(n) ≤ Φ−1

{
Φ

[(
exp

n−1∑
s=0

g(s)

)(
φ−1 (p(n)) +

n−1∑
s=0

f(s)

)]

+

(
exp

n−1∑
s=0

g(s)

)
n−1∑
t=0

h(t)

}
for all n ∈ Z[0,α]. �

Remark 2.2. In many cases the non-decreasing functionw satisfies
∫∞

1
ds

w(s)
= ∞. For exam-

ple,w = constant> 0, w(s) =
√
s, etc., are such functions. In such casesΦ(∞) = ∞ and so

we may takeα→∞, that is, (2.2) is valid for alln ∈ Z0.

Theorem 2.3. Under Assumptions (A1) – (A5), ifx ∈ F(Za,R0) is a function satisfying the
nonlinear delay inequality

φ (x(n)) ≤ p(n) +
n−1∑
s=0

φ′ (x (σ(s)))

{
f(s) + g(s)x (σ(s)) + h(s)

s−1∑
t=0

k(t)w (x (σ(t)))

}
for all n ∈ Z0 with initial conditions (I1) – (I2), then

(2.9) x(n) ≤ Φ−1

{
Φ

[(
exp

n−1∑
s=0

g(s)

)(
φ−1 (p(n)) +

n−1∑
s=0

f(s)

)]

+

(
exp

n−1∑
s=0

g(s)

)
n−1∑
s=0

s−1∑
t=0

h(s)k(t)

}
for all n ∈ Z[0,β], whereΦ ∈ C(R0,R) is as defined in Theorem 2.1, andβ ≥ 0 is chosen such
that the RHS of (2.9) is well-defined, that is,

Φ

[(
exp

n−1∑
s=0

g(s)

)(
φ−1 (p(n)) +

n−1∑
s=0

f(s)

)]

+

(
exp

n−1∑
s=0

g(s)

)
n−1∑
s=0

s−1∑
t=0

h(s)k(t) ∈ ImΦ
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for all n ∈ Z[0,β].

Proof. Fix ε > 0 andM ∈ Z[0,β]. Defineu : Z[0,M ] → R0 by

(2.10) u(n) := φ−1

{
ε+ p(M) +

n−1∑
δ=0

φ′ (x (σ(δ))) ·

[
f(δ) + g(δ)x (σ(δ))

+h(δ)
δ−1∑
t=0

k(t)w (x (σ(t)))

]}
.

By (A5), u is non-decreasing onZ[0,M ]. For anyn ∈ Z[0,M ], by (A5) again,

(2.11) u(n) ≥ φ−1 (ε+ p(M)) > 0 .

As φ (u(n)) > φ (x(n)), we have

(2.12) u(n) > x(n) .

Using the same arguments as in the derivation of (2.6) in the proof of Theorem 2.1, we have

(2.13) x (σ(n)) ≤ u(n) for all n ∈ Z[0,M ] .

Hence for anys ∈ Z[0,M−1], by (2.10) and (2.13),

∆(φ ◦ u)(s) = φ (u(s+ 1))− φ (u(s))

= φ′ (x (σ(s)))

{
f(s) + g(s)x (σ(s)) + h(s)

s−1∑
t=0

k(t)w (x (σ(t)))

}

≤ φ′ (u(s))

{
f(s) + g(s)u(s) + h(s)

s−1∑
t=0

k(t)w (u(t))

}
.

On the other hand, by the Mean Value Theorem,

∆(φ ◦ u)(s) = φ (u(s+ 1))− φ (u(s))

= φ′(ξ)∆u(s)

for someξ ∈ [u(s), u(s+ 1)]. Observe that by (2.12) and (A5),φ′(ξ) > 0. Thus by the
monotonicity ofφ′, for anys ∈ Z[0,M−1],

∆u(s) ≤ φ′ (u(s))

φ′(ξ)

{
f(s) + g(s)u(s) + h(s)

s−1∑
t=0

k(t)w (u(t))

}

≤ f(s) + g(s)u(s) + h(s)
s−1∑
t=0

k(t)w (u(t)) .

Summing up, we have

u(n)− u(0) =
n−1∑
s=0

∆u(s)

≤
n−1∑
s=0

f(s) +
n−1∑
s=0

h(s)
s−1∑
t=0

k(t)w (u(t)) +
n−1∑
s=0

g(s)u(s) ,

or

u(n) ≤

[
φ−1 (ε+ p(M)) +

n−1∑
s=0

f(s) +
n−1∑
s=0

h(s)
s−1∑
t=0

k(t)w (u(t))

]
+

n−1∑
s=0

g(s)u(s)
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for all n ∈ Z[0,M ]. Hence by the discrete version of the Gronwall-Bellman inequality (see, e.g.,
[16, Corollary 1.2.5]),

u(n) ≤

[
φ−1 (ε+ p(M)) +

n−1∑
s=0

f(s) +
n−1∑
s=0

h(s)
s−1∑
t=0

k(t)w (u(t))

]
exp

n−1∑
s=0

g(s)

≤

[
φ−1 (ε+ p(M)) +

M−1∑
s=0

f(s) +
n−1∑
s=0

h(s)
s−1∑
t=0

k(t)w (u(t))

]
exp

M−1∑
s=0

g(s)(2.14)

for all n ∈ Z[0,M ]. Denote byv(n) the RHS of (2.14). Thenv is non-decreasing and for all
n ∈ Z[0,M ],

(2.15) u(n) ≤ v(n) .

Therefore, for anyδ ∈ Z[0,M−1],

∆v(δ) = v(δ + 1)− v(δ)

= h(δ)

(
δ−1∑
t=0

k(t)w (u(t))

)
exp

M−1∑
s=0

g(s)

≤ h(δ)

(
δ−1∑
t=0

k(t)w (v(t))

)
exp

M−1∑
s=0

g(s)

≤ h(δ)w (v(δ))

(
δ−1∑
t=0

k(t)

)
exp

M−1∑
s=0

g(s) .

On the other hand, by the Mean Value Theorem,

∆(Φ ◦ v)(δ) = Φ (v(δ + 1))− Φ (v(δ))

= Φ′(η)∆v(δ) =
1

w(η)
∆v(δ)

for someη ∈ [v(δ), v(δ + 1)]. Observe that by (2.11), (2.14), and (A2),w(η) > 0. Therefore,
asw is non-decreasing,

∆(Φ ◦ v)(δ) ≤ 1

w(η)
h(δ)w (v(δ))

(
δ−1∑
t=0

k(t)

)
exp

M−1∑
s=0

g(s)

≤ h(δ)

(
δ−1∑
t=0

k(t)

)
exp

M−1∑
s=0

g(s)

for all δ ∈ Z[0,M−1]. Summing up, we have

n−1∑
δ=0

∆(Φ ◦ v)(δ) ≤
n−1∑
δ=0

h(δ)

(
δ−1∑
t=0

k(t)

)
exp

M−1∑
s=0

g(s) ,
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or

Φ (v(n)) ≤ Φ (v(0)) +
n−1∑
δ=0

h(δ)

(
δ−1∑
t=0

k(t)

)
exp

M−1∑
s=0

g(s)

= Φ

[(
φ−1 (ε+ p(M)) +

M−1∑
s=0

f(s)

)
exp

M−1∑
s=0

g(s)

]

+
n−1∑
δ=0

h(δ)

(
δ−1∑
t=0

k(t)

)
exp

M−1∑
s=0

g(s)

for all n ∈ Z[0,M ]. In particular, takingn = M this yields

Φ (v(M)) ≤ Φ

[(
φ−1 (ε+ p(M)) +

M−1∑
s=0

f(s)

)
exp

M−1∑
s=0

g(s)

]

+
M−1∑
δ=0

h(δ)

(
δ−1∑
t=0

k(t)

)
exp

M−1∑
s=0

g(s) .

SinceM ∈ Z[0,β] is arbitrary,

Φ (v(n)) ≤ Φ

[(
φ−1 (ε+ p(n)) +

n−1∑
s=0

f(s)

)
exp

n−1∑
s=0

g(s)

]

+
n−1∑
δ=0

h(δ)

(
δ−1∑
t=0

k(t)

)
exp

n−1∑
s=0

g(s)

for all n ∈ Z[0,β]. Hence

v(n) ≤ Φ−1

{
Φ

[(
φ−1 (ε+ p(n)) +

n−1∑
s=0

f(s)

)
exp

n−1∑
s=0

g(s)

]

+
n−1∑
δ=0

h(δ)

(
δ−1∑
t=0

k(t)

)
exp

n−1∑
s=0

g(s)

}
and so by (2.12) and (2.15),

x(n) < u(n) ≤ v(n) ≤ Φ−1

{
Φ

[(
φ−1 (ε+ p(n)) +

n−1∑
s=0

f(s)

)
exp

n−1∑
s=0

g(s)

]

+
n−1∑
δ=0

h(δ)

(
δ−1∑
t=0

k(t)

)
exp

n−1∑
s=0

g(s)

}
for all n ∈ Z[0,β]. Finally, lettingε→ 0+, we conclude that

x(n) ≤ Φ−1

{
Φ

[(
exp

n−1∑
s=0

g(s)

)(
φ−1 (p(n)) +

n−1∑
s=0

f(s)

)]

+

(
exp

n−1∑
s=0

g(s)

)
n−1∑
δ=0

δ−1∑
t=0

h(δ)k(t)

}
for all n ∈ Z[0,β]. �
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Remark 2.4. Similar to the previous remark, in caseΦ(∞) = ∞, (2.9) holds for alln ∈ Z0.

Theorem 2.5.Under Assumptions (A1), (A3) and (A4), ifx ∈ F(Za,R0) is a function satisfying
the nonlinear delay inequality

xr(n) ≤ cr +
n−1∑
s=0

xr (σ(s)) {f(s) + g(s)xr (σ(s))} , n ∈ Z0,

with initial conditions (I1) and

(I3) ψ (σ(s)) ≤ c for all s ∈ Z0 with σ(s) ≤ 0 ,

wherer, c > 0 are constants, then

(2.16) x(n) ≤

[
c−r

n−1∏
s=0

(1− f(s))−
n∑

s=1

g(s)
n−1∏
t=s

(1− f(t))

]− 1
r

for all n ∈ Z[0,γ], whereγ ≥ 0 is chosen such that the RHS of (2.16) is well-defined.

Proof. Defineu ∈ F(Z0,R0) by

(2.17) ur(n) := cr +
n−1∑
s=0

xr (σ(s)) {f(s) + g(s)xr (σ(s))} , n ∈ Z0 .

Clearly,u ≥ 0 is non-decreasing and

(2.18) x(n) ≤ u(n) for all n ∈ Z0 .

Similar to the derivation of (2.6) in the proof of Theorem 2.1, we easily establish

x (σ(n)) ≤ u(n) for all n ∈ Z0 .

By (2.17), for anyn ∈ Z0,

∆ur(n) = ur(n+ 1)− ur(n)

= xr (σ(n)) {f(n) + g(n)xr (σ(n))}
≤ ur(n) {f(n) + g(n)ur(n)}
≤ ur(n+ 1) {f(n) + g(n)ur(n)} .

As u(0) = c, by elementary analysis, we infer from (2.17) that

(2.19) u(n) ≤ y(n) for all n ∈ Z[0,ρ]

whereZ[0,ρ] is the maximal lattice on which the unique solutiony(n) to the discrete Bernoulli
equation

(2.20)

 ∆yr(n) = yr(n+ 1) {f(n) + g(n)yr(n)} , n ∈ Z0

y(0) = c

is defined. Now the unique solution for (2.20) is (see, e.g., [1])

(2.21) y(n) =

[
c−r

n−1∏
s=0

(1− f(s))−
n∑

s=1

g(s)
n−1∏
t=s

(1− f(t))

]− 1
r

for all n ∈ Z[0,γ]. The assertion now follows from (2.18), (2.19) and (2.21). �
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3. I MMEDIATE CONSEQUENCES

Direct application of the results in Section 2 yields the following consequences immediately.

Corollary 3.1. Under Assumptions (A1) – (A4), ifx ∈ F(Za,R0) is a function satisfying the
nonlinear delay inequality

(3.1) xα(n) ≤ p(n) +
n−1∑
s=0

xα−1 (σ(s)) {f(s) + g(s)x (σ(s)) + h(s)w (x (σ(s)))}

for all n ∈ Z0 with initial conditions (I1) and

(I4) ψ (σ(s)) ≤ p
1
α (s) for all s ∈ Z0 with σ(s) ≤ 0 ,

whereα ≥ 1 is a constant, then

(3.2) x(n) ≤ Φ−1

{
Φ

[(
exp

1

α

n−1∑
s=0

g(α)

)(
p

1
α (n) +

1

α

n−1∑
s=0

f(s)

)]

+

(
exp

1

α

n−1∑
s=0

g(α)

)
1

α

n−1∑
t=0

h(t)

}
for all n ∈ Z[0,µ], whereµ ≥ 0 is chosen such that the RHS of (3.2) is well-defined for all
n ∈ Z[0,µ], andΦ is defined as in Theorem 2.1.

Proof. Let φ : R0 → R0 be defined byφ(r) = rα, r ∈ R0. Thenφ satisfies Assumption (A5).
By (3.1) we have

φ (x(n)) ≤ p(n) +
n−1∑
s=0

φ′ (x (σ(s)))

{
f(s)

α
+
g(s)

α
x (σ(s)) +

h(s)

α
w (x (σ(s)))

}
.

Furthermore, it is easy to see that

φ (x(s)) ≤ p
1
α (s) = φ−1 (p(s)) for all s ∈ Z0 with σ(s) ≤ 0 .

Thus Theorem 2.1 applies and the assertion follows. �

Remark 3.2.

(i) In Corollary 3.1, if we setα = 2, p(n) ≡ c2, g(n) ≡ 0, we have

x2(n) ≤ c2 +
n−1∑
s=0

x (σ(s)) {f(s) + h(s)w (x (σ(s)))} , n ∈ Z0

implies

x(n) ≤ Φ−1

{
Φ

[
c+

1

2

n−1∑
s=0

f(s)

]
+

1

2

n−1∑
s=0

h(s)

}
, n ∈ Z[0,µ] .

This is the discrete analogue of a result of Pachpatte in [14]. Furthermore, ifσ = id,
this reduces to a result of Pachpatte in [18].

(ii) In caseΦ(∞) = ∞, (3.2) holds for alln ∈ Z0.

Corollary 3.3. Under Assumptions (A1) – (A4) withp ∈ F(Z0,R+), if x ∈ F(Za,R1) satisfies
the nonlinear delay inequality

(3.3) xα(n) ≤ p(n) +
n−1∑
s=0

xα (σ(s)) {f(s) + g(s) ln x (σ(s)) + h(s)w (lnx (σ(s)))}
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for all n ∈ Z0 with initial conditions (I1) and

(I5) ψ (σ(s)) ≤ 1

α
ln (p(s)) for all s ∈ Z0 with σ(s) ≤ 0 ,

whereα > 0 is a constant, then

(3.4) x(n) ≤ exp

{
Φ−1

[
Φ

((
exp

1

α

n−1∑
s=0

g(s)

)(
1

α
ln p(n) +

1

α

n−1∑
s=0

f(s)

))

+

(
exp

1

α

n−1∑
s=0

g(s)

)
1

α

n−1∑
t=0

h(t)

]}
for all n ∈ Z[0,ν], whereν ≥ 0 is chosen such that the RHS of (3.4) is well-defined for all
n ∈ Z[0,ν], andΦ is defined as in Theorem 2.1.

Proof. Lettingy(n) = lnx(n), (3.3) becomes

(3.5) exp (αy(n)) ≤ p(n) +
n−1∑
s=0

exp (αy (σ(s))) {f(s) + g(s)y (σ(s)) + h(s)w (y (σ(s)))} .

Let φ : R0 → R0 be defined byφ(r) = exp(αr), r ∈ R0. Thenφ satisfies Assumption (A5).
Hence from (3.5), we have

φ (y(n)) ≤ p(n) +
n−1∑
s=0

φ′ (y (σ(s)))

{
f(s)

α
+
g(s)

α
y (σ(s)) +

h(s)

α
w (y (σ(s)))

}
.

Furthermore, it is easy to see that

ψ (σ(s)) ≤ 1

α
ln (p(s)) = φ−1 (p(s)) for all s ∈ Z0 with σ(s) ≤ 0 .

Thus Theorem 2.1 applies and we have

y(n) ≤ Φ−1

{
Φ

[(
exp

1

α

n−1∑
s=0

g(s)

)(
1

α
ln p(n) +

1

α

n−1∑
s=0

f(s)

)]

+

(
exp

1

α

n−1∑
s=0

g(s)

)
1

α

n−1∑
t=0

h(t)

}
for all n ∈ Z[0,ν], and from this the assertion follows. �

Remark 3.4. In caseΦ(∞) = ∞, (3.4) holds for alln ∈ Z0.

Corollary 3.5. Under Assumptions (A1) – (A4), ifx ∈ F(Za,R0) satisfies the nonlinear delay
inequality

(3.6) xα(n) ≤ p(n) +
n−1∑
s=0

xα−1 (σ(s))

{
f(s) + g(s)x (σ(s)) + h(s)

s−1∑
t=0

k(t)w (x (σ(t)))

}
for all n ∈ Z0 with initial conditions (I1) and (I4), whereα ≥ 1 is a constant, then

(3.7) x(n) ≤ Φ−1

{
Φ

[(
exp

1

α

n−1∑
s=0

g(s)

)(
p

1
α (n) +

1

α

n−1∑
s=0

f(s)

)]

+

(
exp

1

α

n−1∑
s=0

g(s)

)(
1

α

n−1∑
s=0

h(s)
s−1∑
t=0

k(t)

)}
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for all n ∈ Z[0,η], whereη ≥ 0 is chosen such that the RHS of (3.7) is well-defined for all
n ∈ Z[0,η], andΦ is defined as in Theorem 2.1.

Proof. Let φ : R0 → R0 be defined byφ(r) = rα, r ∈ R0. Thenφ satisfies Assumption (A5).
By (3.6),

φ (x(n)) ≤ p(n) +
n−1∑
s=0

φ′ (x (σ(s)))

{
f(s)

α
+
g(s)

α
x (σ(s)) +

h(s)

α

s−1∑
t=0

k(t)w (x (σ(t)))

}
for all n ∈ Z0. Furthermore, it is easy to see that

ψ (σ(s)) ≤ p
1
α (s) = φ−1 (p(s)) for all s ∈ Z0 with σ(s) ≤ 0 .

Thus Theorem 2.3 applies and we have

x(n) ≤ Φ−1

{
Φ

[(
exp

1

α

n−1∑
s=0

g(s)

)(
p

1
α (n) +

1

α

n−1∑
s=0

f(s)

)]

+

(
exp

1

α

n−1∑
s=0

g(s)

)
· 1

α

n−1∑
s=0

s−1∑
t=0

h(s)k(t)

}
for all n ∈ Z[0,η]. �

Remark 3.6.

(i) In Corollary 3.5, if we putα = 2, p(n) ≡ c2, g(n) ≡ 0, we have

x2(n) ≤ c2 +
n−1∑
s=0

x (σ(s))

{
f(s) + h(s)

s−1∑
t=0

k(t)w (x (σ(t)))

}
, n ∈ Z0

implies

x(n) ≤ Φ−1

{
Φ

[
c+

1

2

n−1∑
s=0

f(s)

]
+

1

2

n−1∑
s=0

h(s)
s−1∑
t=0

k(t)

}
, n ∈ Z[0,η] .

This is the discrete analogue of a result of Pachpatte in [14]. Furthermore, ifσ = id and
w = id, this reduces to a result of Pachpatte in [18].

(ii) In caseΦ(∞) = ∞, (3.7) holds for alln ∈ Z0.

Corollary 3.7. Under Assumptions (A1) – (A4) withp ∈ F(Z0,R+), if x ∈ F(Za,R1) satisfies
the nonlinear delay inequality

(3.8) xα(n) ≤ p(n)+
n−1∑
s=0

xα (σ(s))

{
f(s) + g(s) ln x (σ(s)) + h(s)

s−1∑
t=0

k(t)w (lnx (σ(t)))

}
for all n ∈ Z0 with initial conditions (I1) and

(I6) ψ (σ(s)) ≤ 1

α
ln (p(s)) for all s ∈ Z0 with σ(s) ≤ 0 ,

whereα > 0 is any constant, then

(3.9) x(n) ≤ exp

{
Φ−1

[
Φ

((
exp

1

α

n−1∑
s=0

g(s)

)(
1

α
ln p(n) +

1

α

n−1∑
s=0

f(s)

))

+

(
exp

1

α

n−1∑
s=0

g(s)

)
· 1

α

n−1∑
s=0

h(s)
s−1∑
t=0

k(t)

]}
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for all n ∈ Z[0,λ], whereλ ≥ 0 is chosen such that the RHS of (3.9) is well-defined for all
n ∈ Z[0,λ], andΦ is defined as in Theorem 2.1.

Proof. Lettingy(n) = lnx(n), (3.8) becomes

(3.10) exp (αy(n)) ≤ p(n) +
n−1∑
s=0

exp (αy (σ(s)))

{
f(s) + g(s)y (σ(s))

+ h(s)
s−1∑
t=0

k(t)w (y (σ(t)))

}
for all n ∈ Z0. Let φ : R0 → R0 be defined byφ(r) = exp(αr), r ∈ R0. Thenφ satisfies
Assumption (A5). Hence from (3.10), we have

φ (y(n)) ≤ p(n) +
n−1∑
s=0

φ′ (y (σ(s)))

{
f(s)

α
+
g(s)

α
y (σ(s)) +

h(s)

α

s−1∑
t=0

k(t)w (y (σ(t)))

}
for all n ∈ Z0. Furthermore, it is easy to check that

ψ (σ(s)) ≤ 1

α
ln (p(s)) = φ−1 (p(s)) for all s ∈ Z0 with σ(s) ≤ 0 .

Thus Theorem 2.3 applies and we have

y(n) ≤ Φ−1

{
Φ

[(
exp

1

α

n−1∑
s=0

g(s)

)(
1

α
ln p(n) +

1

α

n−1∑
s=0

f(s)

)]

+ exp

(
1

α

n−1∑
s=0

g(s)

)
· 1

α

n−1∑
s=0

s−1∑
t=0

h(s)k(t)

}
for all n ∈ Z[0,λ], and from this the assertion follows. �

Remark 3.8.

(i) In Corollary 3.7, if we setα = 2, p(n) ≡ c2, g(n) ≡ 0, then

x2(n) ≤ c2 +
n−1∑
s=0

x2 (σ(s))

{
f(s) + h(s)

s−1∑
t=0

k(t)w (lnx (σ(t)))

}
, n ∈ Z0

implies

x(n) ≤ exp

{
Φ−1

[
Φ

(
1

2
ln p(n) +

1

2

n−1∑
s=0

f(s)

)
+

1

2

n−1∑
s=0

h(s)
s−1∑
t=0

k(t)

]}
, n ∈ Z[0,λ] .

This is the discrete version of a result of Pachpatte in [14].
(ii) In caseΦ(∞) = ∞, (3.9) holds for alln ∈ Z0.

4. APPLICATION

Consider the discrete delay equation

(4.1) xα(n) = F

(
n, x (σ(n)) ,

n−1∑
s=0

G (n, s, x (σ(s)))

)
, n ∈ Z0
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with initial conditions (I1) and (I4), whereα ≥ 1 is a constant,σ, ψ satisfy Assumptions (A3),
(A4), x ∈ F(Za,R), F ∈ C(Z0 × R2,R), andG ∈ C(Z2

0 × R,R). If F,G satisfy

|F (n, u, v)| ≤ p(n) +K|v| , n ∈ Z0, u, v ∈ R ,

|G(n, s, v)| ≤ [f(s) + g(s)|v|+ h(s)w (|v|)] |v|α−1 , n, s ∈ Z0, v ∈ R ,

for somep, f, g, h, w satisfying (A1) and (A2), and some constantK > 0, then every solution
of (4.1) satisfies

|x(n)|α =

∣∣∣∣∣F
(
n, x (σ(n)) ,

n−1∑
s=0

G (n, s, x (σ(s)))

)∣∣∣∣∣
≤ p(n) +K

∣∣∣∣∣
n−1∑
s=0

G (n, s, x (σ(s)))

∣∣∣∣∣
≤ p(n) +K

n−1∑
s=0

|G (n, s, x (σ(s)))|

≤ p(n) +K
n−1∑
s=0

[f(s) + g(s) |x (σ(s))|+ h(s)w (|x (σ(s))|)] |x (σ(s))|α−1

for all n ∈ J(x) := the maximal existence lattice on whichx is defined. Applying Corollary
3.1, this yields

|x(n)| ≤ Φ−1

{
Φ

[(
exp

K

α

n−1∑
s=0

g(α)

)(
p

1
α (n) +

K

α

n−1∑
s=0

f(s)

)]

+

(
exp

K

α

n−1∑
s=0

g(α)

)
K

α

n−1∑
t=0

h(t)

}
for all n ∈ J(x) ∩ Z[0,µ]. This gives the boundedness of solutions of (4.1).
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