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ABSTRACT. In this paper, by the Minkowski’s inequalities we define two mappings, investigate
their properties, obtain some refinements for Minkowski’s inequalities and some new inequali-
ties.
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1. I NTRODUCTION

Throughout this paper, for any given positive integern and two real numbersa, b such that
a < b, let ai > 0, bi > 0 (i = 1, 2, . . . , n) andf, g : [a, b] → (0, +∞) be two functions,0r = 0
(r < 0) is assumed.

Let fp, gp and(f + g)p be integrable functions on[a, b]. If p > 1, then

(1.1)

(
n∑

i=1

ai
p

) 1
p

+

(
n∑

i=1

bi
p

) 1
p

≥

(
n∑

i=1

(ai + bi)
p

) 1
p

,

(1.2)

(∫ b

a

fp(x)dx

) 1
p

+

(∫ b

a

gp(x)dx

) 1
p

≥
(∫ b

a

(f(x) + g(x))p dx

) 1
p

.
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The inequalities (1.1) and (1.2) are equivalent to the following:

(1.3)

( n∑
i=1

ai
p

) 1
p
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i=1

bi
p

) 1
p

−
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(ai + bi)
p

) 1
p

( n∑
i=1

(ai + bi)
p

) 1
q

=

( n∑
i=1

ai
p

) 1
p

+

(
n∑

i=1

bi
p

) 1
p

( n∑
i=1

(ai + bi)
p

) 1
q

−
n∑

i=1

(ai + bi)
p ≥ 0

and [(∫ b

a

fp(s)ds

) 1
p

+

(∫ b

a

gp(s)ds

) 1
p

−
(∫ b

a

(f(s) + g(s))p ds

) 1
p

]
(1.4)

×
(∫ b

a

(f(s) + g(s))p ds

) 1
q

=

((∫ b

a

fp(s)ds

) 1
p

+

(∫ b

a

gp(s)ds

) 1
p

)(∫ b

a

(f(s) + g(s))p ds

) 1
q

−
∫ b

a

(f(s) + g(s))p ds

≥ 0,

respectively.
If p < 1 (p 6= 0), then the inequalities in (1.1), (1.2), (1.3) and (1.4) are reversed.
The inequality (1.1) is called the Minkowski inequality, (1.2) is the integral form of inequality

(1.1) (see [1] – [5]). For some recent results which generalize, improve, and extend this classic
inequality, see [6] and [7].

To go further into (1.1) and (1.2), we define two mappingsM andm by

M : {(j, k) | 1 ≤ j ≤ k ≤ n; j, k ∈ N} → R,

M(j, k) =

( k∑
i=j

ai
p

) 1
p

+

(
k∑

i=j

bi
p

) 1
p

( k∑
i=j

(ai + bi)
p

) 1
q

−
k∑

i=j

(ai + bi)
p ,

m : {(x, y) | a ≤ x ≤ y ≤ b} → R,

m(x, y) =

[(∫ y

x

fp(s)ds

) 1
p

+

(∫ y

x

gp(s)ds

) 1
p

](∫ y

x

(f(s) + g(s))p ds

) 1
q

−
∫ y

x

(f(s) + g(s))p ds,

wherep andq be two non-zero real numbers such thatp−1 + q−1 = 1.
M andm are generated by (1.3) and (1.4), respectively.
The aim of this paper is to study the properties ofM andm, thus obtaining some new in-

equalities and refinements of (1.1) and (1.2).

2. M AIN RESULTS

The properties of the mappingM are embodied in the following theorem.
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Theorem 2.1.Letai > 0, bi > 0 (i = 1, 2, . . . , n; n > 1), p andq be two non-zero real numbers
such thatp−1 + q−1 = 1, andM be defined as in the first section. We write

D(j, k) =


(

k∑
i=j

ai
p

) 1
p

+

(
k∑

i=j

bi
p

) 1
p


(

k∑
i=j

(ai + bi)
p

) 1
q

+
n∑

i=k+1

(ai + bi)
p +

j−1∑
i=1

(ai + bi)
p

]

×

(
n∑

i=1

(ai + bi)
p

)− 1
q

, (1 ≤ j ≤ k ≤ n) ,

where
∑v−1

i=v (ai + bi)
p = 0 (v = 1, n + 1).

Whenp > 1, we get the following three class results.

(1) For any three positive integersr, j andk such that1 ≤ r ≤ j < k ≤ n, we have

(2.1) M(r, k) ≥ M(r, j) + M(j + 1, k).

(2) For l, j = 1, 2, . . . , n− 1, we have

(2.2) M(1, l + 1) ≥ M(1, l),

(2.3) M(j, n) ≥ M(j + 1, n).

(3) For any two real numbersα ≥ 0 andβ ≥ 0 such thatα + β = 1, we get the following
refinements of (1.1)(

n∑
i=1

ai
p

) 1
p

+

(
n∑

i=1

bi
p

) 1
p

= D(1, n)(2.4)

≥ αD(1, n− 1) + βD(2, n)

≥ · · ·
≥ αD(1, 2) + βD(n− 1, n)

≥ αD(1, 1) + βD(n, n)

=

(
n∑

i=1

(ai + bi)
p

) 1
p

.

Whenp < 1 (p 6= 0), the inequalities in (2.1) – (2.4) are reversed.

The properties of the mappingm are given in the following theorem.

Theorem 2.2.Letfp, gp and(f + g)p be integrable functions on[a, b], p andq be two non-zero
real numbers such thatp−1 + q−1 = 1, andm be defined as in the first section. Then we obtain
the following four class results.

(1) If p > 1, for anyx, y, z ∈ [a, b] such thatx < y < z, then

(2.5) m(x, z) ≥ m(x, y) + m(y, z).

If p < 1 (p 6= 0), then the inequality in (2.5) is reversed.
(2) The mappingm(x, b) monotonically decreases whenp > 1, and monotonically in-

creases forp < 1 (p 6= 0) on [a, b] with respect tox.
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(3) The mappingm(a, y) monotonically increases whenp > 1, and monotonically de-
creases forp < 1 (p 6= 0) on [a, b] with respect toy.

(4) For anyx ∈ (a, b) and any two real numbersα ≥ 0 andβ ≥ 0 such thatα + β = 1,
whenp > 1, we get the following refinement of (1.2)

(∫ b

a

fp(s)ds

) 1
p

+

(∫ b

a

gp(s)ds

) 1
p

(2.6)

≥ α

[((∫ x

a

fp(s)ds

) 1
p

+

(∫ x

a

gp(s)ds

) 1
p

)(∫ x

a

(f(s) + g(s))p ds

) 1
q

+

(∫ b

x

(f(s) + g(s))p ds

)](∫ b

a

(f(s) + g(s))p ds

)− 1
q

+ β

[((∫ b

x

fp(s)ds

) 1
p

+

(∫ b

x

gp(s)ds

) 1
p

)(∫ b

x

(f(s) + g(s))p ds

) 1
q

+

(∫ x

a

(f(s) + g(s))p ds

)](∫ b

a

(f(s) + g(s))p ds

)− 1
q

≥
(∫ b

a

(f(s) + g(s))p ds

) 1
p

.

If p < 1 (p 6= 0), then the inequalities in (2.6) are reversed.

3. SEVERAL L EMMAS

In order to prove the above theorems, we need the following two lemmas.

Lemma 3.1. Let ci > 0, di > 0 (i = 1, 2, . . . , n; n > 1), p andq be two non-zero real numbers
such thatp−1 + q−1 = 1. We write

H(j, k; ci, di) =

(
k∑

i=j

ci
p

) 1
p
(

k∑
i=j

di
q

) 1
q

−
k∑

i=j

cidi , (1 ≤ j ≤ k ≤ n).

For any three positive integersr, j andk such that1 ≤ r ≤ j < k ≤ n, if p > 1, we obtain

(3.1) H(r, k; ci, di) ≥ H(r, j; ci, di) + H(j + 1, k; ci, di).

The inequality in (3.1) is reversed forp < 1 (p 6= 0).

Proof of Lemma 3.1.

Case 1:p > 1. Clearly,0 < p−1 < 1 andx
1
p is a concave function on (0, +∞) with respect to

x. Using Jensen’s inequality for concave functions (see [2] – [4] and [8]) andp−1 + q−1 = 1,
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for any three positive integersr, j andk such that1 ≤ r ≤ j < k ≤ n, we have

H(r, k; ci, di)(3.2)

=

(
k∑

i=r

ci
p

) 1
p
(

k∑
i=r

di
q

) 1
q

−
k∑

i=r

cidi

=

(
k∑

i=r
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q
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q

)−1
( j∑
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q

)( j∑
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q
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p

)
+

(
k∑
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di
q

)( k∑
i=j+1

di
q

)−1( k∑
i=j+1

ci
p

) 1
p

−
k∑

i=r

cidi

≥

(
j∑

i=r

di
q

)( j∑
i=r

di
q

)−1( j∑
i=r

ci
p

) 1
p

+

(
k∑

i=j+1

di
q

)( k∑
i=j+1

di
q

)−1( k∑
i=j+1

ci
p

) 1
p

−
k∑

i=r

cidi

=

(
j∑

i=r

ci
p

) 1
p
(

j∑
i=r

di
q

) 1
q

+

(
k∑

i=j+1

ci
p

) 1
p
(

k∑
i=j+1

di
q

) 1
q

−
j∑

i=r

cidi −
k∑

i=j+1

cidi

= H(r, j; ci, di) + H(j + 1, k; ci, di),

which is (3.1).

Case 2:p < 1 (p 6= 0). Clearly,x
1
p is a convex function on (0, +∞). Using Jensen’s inequality

for convex functions (see [2] – [4] and [8]), we obtain the reverse of (3.2), which is the reverse
of (3.1).

The proof of Lemma 3.1 is completed. �

Lemma 3.2. Letp andq be two non-zero real numbers such thatp−1 + q−1 = 1, and letup, vp

and(u + v)p be positive integrable functions on[a, b]. We write

h(x, y; u, v) =

(∫ y

x

up(s)ds

) 1
p
(∫ y

x

vq(s)ds

) 1
q

−
∫ y

x

u(s)v(s)ds, (a ≤ x ≤ y ≤ b).

Whenp > 1, for anyx, y, z ∈ [a, b] such thatx < y < z, we obtain

(3.3) h(x, z; u, v) ≥ h(x, y; u, v) + h(y, z; u, v).

Whenp < 1 (p 6= 0), the inequality in (3.3) is reversed.

Proof of Lemma 3.2.Whenp > 1, i. e. 0 < p−1 < 1, x
1
p is a concave function on (0, +∞).

Using Jensen’s integral inequality for concave functions (see [2] – [4] and [8]) andp−1 + q−1 =
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1, for anyx, y, z ∈ [a, b] such thatx < y < z, we obtain

h(x, z; u, v)(3.4)

=

∫ z

x

vq(s)ds

[(∫ z

x

vq(s)ds

)−1
(∫ y

x

vq(s)ds

(∫ y

x

vq(s)ds

)−1 ∫ y

x

up(s)ds

+

∫ z

y

vq(s)ds

(∫ z

y

vq(s)ds

)−1 ∫ z

y

up(s)ds

)] 1
p

−
∫ z

x

u(s)v(s)ds

≥

∫ y

x

vq(s)ds

((∫ y

x

vq(s)ds

)−1 ∫ y

x

up(s)ds

) 1
p

+

∫ z

y

vq(s)ds

((∫ z

y

vq(s)ds

)−1 ∫ z

y

up(s)ds

) 1
p


−
∫ y

x

u(s)v(s)ds−
∫ z

y

u(s)v(s)ds

=

(∫ y

x

up(s)ds

) 1
p
(∫ y

x

vq(s)ds

) 1
q

+

(∫ z

y

up(s)ds

) 1
p
(∫ z

y

vq(s)ds

) 1
q

−
∫ y

x

u(s)v(s)ds−
∫ z

y

u(s)v(s)ds

= h(x, y; u, v) + h(y, z; u, v),

which is (3.3).
Whenp < 1 (p 6= 0), x

1
p is a convex function on (0, +∞). Using Jensen’s integral inequality

for convex functions (see [2] – [4] and [8]), we obtain the reverse of (3.4), which is the reverse
of (3.3).

The proof of Lemma 3.2 is completed. �

4. PROOF OF THE THEOREMS

Proof of Theorem 2.1.Fromp−1 + q−1 = 1 (i. e. p = q(p − 1)) and definitions ofM andH,
we get

(4.1) M(j, k) = H
(
j, k; ai, (ai + bi)

p−1)+ H
(
j, k; bi, (ai + bi)

p−1) .

Case 1:p > 1.

(1) For any three positive integersr, j andk such that1 ≤ r ≤ j < k ≤ n, from (4.1) and
(3.1), we obtain

M(r, k) = H
(
r, k; ai, (ai + bi)

p−1)+ H
(
r, k; bi, (ai + bi)

p−1)(4.2)

≥ H
(
r, j; ai, (ai + bi)

p−1)+ H
(
r, j; bi, (ai + bi)

p−1)
+ H

(
j + 1, k; ai, (ai + bi)

p−1)+ H
(
j + 1, k; bi, (ai + bi)

p−1)
= M(r, j) + M(j + 1, k),

which is (2.1).
(2) For l = 1, 2, . . . , n − 1, replacingr, j andk in (2.1) with 1, l and l + 1, respectively,

then (2.1) reduces to (2.2) (becauseM(l + 1, l + 1) = 0). For j = 1, 2, . . . , n − 1,
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replacingr andk in (2.1) withj andn, respectively, then (2.1) reduces to (2.3) (because
M(j, j) = 0).

(3) From the definitions ofD andM , we have

(4.3) D(j, k) =

[
M(j, k) +

n∑
i=1

(ai + bi)
p

](
n∑

i=1

(ai + bi)
p

)− 1
q

.

Using (4.3), fromα ≥ 0, β ≥ 0, (2.2) and (2.3), we get

(4.4) αD(1, n) ≥ αD(1, n− 1) ≥ · · · ≥ αD(1, 2) ≥ αD(1, 1)

and

(4.5) βD(1, n) ≥ βD(2, n) ≥ · · · ≥ βD(n− 1, n) ≥ βD(n, n),

respectively. Fromα + β = 1, expression (4.4) combined with (4.5) yields (2.4).

Case 2:p < 1 (p 6= 0). The reverse of (3.1) implies the reverse of (4.2). Further, the reverse
of (4.2) implies the reverse of (2.1), (2.2) and (2.3). The reverse of (2.2) and (2.3) implies the
reverse of (4.4) and (4.5), respectively. The reverse of (4.4) combined with the reverse of (4.5)
yields the reverse of (2.4).

The proof of Theorem 2.1 is completed. �

Proof of Theorem 2.2.Fromp−1 + q−1 = 1 (i. e. p = q(p− 1)) and the definitions ofm andh,
we get

(4.6) m(x, y) = h
(
x, y; f, (f + g)p−1)+ h

(
x, y; g, (f + g)p−1) .

(1) If p > 1, for anyx, y, z ∈ [a, b] such thatx < y < z, from (4.6) and (3.3), we get

m(x, z) = h(x, z; f, (f + g)p−1) + h(x, z; g, (f + g)p−1)(4.7)

≥ h(x, y; f, (f + g)p−1) + h(x, y; g, (f + g)p−1)

+ h(y, z; f, (f + g)p−1) + h(y, z; g, (f + g)p−1)

= m(x, y) + m(y, z),

which is (2.5).
If p < 1 (p 6= 0), then the reverse of (3.3) implies the reverse of (4.7). Further, (2.5)

is reversed.
(2) Whenp > 1, for anyx1, x2 ∈ [a, b], x1 < x2, if x2 < b, takingz = b, x = x1 and

y = x2 in (2.5) and usingm(x1, x2) ≥ 0, we obtain

(4.8) m(x1, b) ≥ m(x1, x2) + m(x2, b) ≥ m(x2, b).

If x2 = b, by the definition ofm we have

(4.9) m(x1, b) ≥ 0 = m(b, b) = m(x2, b).

Then (4.8) and (4.9) imply thatm(x, b) is monotonically decreasing on[a, b].
When p < 1 (p 6= 0), then the inequality in (2.5) is reversed,m(x, y) ≤ 0 and

m(x, b) ≤ 0. Further, the inequalities in (4.8) and (4.9) are reversed, which implies that
m(x, b) is monotonically increasing on[a, b].

(3) Using the same method as that for the proof of the monotonicity ofm(x, b), we can
prove the monotonicity ofm(a, y) on [a, b] with respect toy.
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(4) Case 1: p > 1. For anyx ∈ (a, b), from the increasing property ofm(a, y) on [a, b]
with respect toy, m(a, a) = 0 andα ≥ 0, we get

α

[
m(a, b) +

∫ b

a

(f(s) + g(s))p ds

](∫ b

a

(f(s) + g(s))p ds

)− 1
q

(4.10)

≥ α

[
m(a, x) +

∫ b

a

(f(s) + g(s))p ds

](∫ b

a

(f(s) + g(s))p ds

)− 1
q

≥ α

[
m(a, a) +

∫ b

a

(f(s) + g(s))p ds

](∫ b

a

(f(s) + g(s))p ds

)− 1
q

.

From the decreasing property ofm(x, b) on [a, b] with respect tox, m(b, b) = 0 and
β ≥ 0, we get

β

[
m(a, b) +

∫ b

a

(f(s) + g(s))p ds

](∫ b

a

(f(s) + g(s))p ds

)− 1
q

(4.11)

≥ β

[
m(x, b) +

∫ b

a

(f(s) + g(s))p ds

](∫ b

a

(f(s) + g(s))p ds

)− 1
q

≥ β

[
m(b, b) +

∫ b

a

(f(s) + g(s))p ds

](∫ b

a

(f(s) + g(s))p ds

)− 1
q

.

Fromα + β = 1, expression (4.10) plus (4.11), with a simple manipulation, we obtain
(2.6).

Case 2:p < 1 (p 6= 0). The decreasing property ofm(a, y) on [a, b] with respect toy
and the increasing property ofm(x, b) on [a, b] with respect tox imply the reverse of
(4.10) and (4.11), respectively. The reverse of (4.10) and (4.11) yields the reverse of
(2.6).

The proof of Theorem 2.2 is completed. �
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