INEQUALITIES FOR THE GAMMA FUNCTION
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Gamma function, psi function, inequality.

Forz > 1, the inequalities

2T wzfl/Q
ezx—1

<I(z) <

ex—1

hold, and the constantsand1/2 are the best possible, wheye= 0.577215. ..
is the Euler-Mascheroni constant. Fbk x < 1, the left-hand inequality also
holds, but the right-hand inequality is reversed. This improves the result given

by G. D. Anderson and S. -L. Qiu (1997).
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The classical gamma function is usually defined:for 0 by

Q) [(x) = /000 t" et dt,

which is one of the most important special functions and has many extensive ap-
plications in many branches, for example, statistics, physics, engineering, and other
mathematical sciences. The history and the development of this function are de-

scribed in detail in4]. The psi or digamma function, the logarithmic derivative of
the gamma function, and the polygamma functions can be expressed as

o] eft _ efxt
2 = — —dt
@ v ==+ [ o
[oe) tm

(m) — (—1)mt! v -zt
© § @) = (1 [ e
forx > 0andm = 1,2,..., wherey = 0.577215... is the Euler-Mascheroni
constant.

In 1997, G. D. Anderson and S. -L. Qi@][presented the following upper and
lower bounds foll"(x):

(4) g3 < T(2) <2t (2> 1).

Actually, the authors proved more. They established that the fundtion =
% is strictly increasing ofil, co) with lim,_,; F'(z) = 1—y andlim,_,, F'(z) =
1, which leads to4).

In 1999, H. Alzer P] showed that ifc € (1, ), then

(5) ple=1)=v ~ I(z) < pBla—1)—y
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is valid with the best possible constants-= (7%/6 —~)/2 and3 = 1. This improves
the bounds given in4). Moreover, the author showed thatzife (0, 1), then §)
holds with the best possible constaats- 1 — v andjs = (72/6 — v) /2.

Here we provide an improvement af)(as follows.

Theorem 1. For z > 1, the inequalities

T—y z—1/2
< I'(z) < ‘

(6)

hold, and the constantsand1/2 are the best possible. For< z < 1, the left-hand
inequality of (6) also holds, but the right-hand inequality ¢3) is reversed.

ex—l 61’—1

Proof. Define forz > 0,
eI (z)

xr

flz) =
Differentation yields

) _ @) — Ing) 4 2 g(a
oy = Tl ) 4y 2 g(a).

Using the representations, [p. 153]

@) ¢<x>=—2i+1m_/°°( ! —%Jr%)e‘“dt,
0

et —1
1 > —xt

(8) - = e ®dt (z>0),
r 0

and @), we imply

@ - w,(x)_é_i(lnx‘w(@) = /Ooo to(t)e " dt—/ooo e~o dt /OOO 5(t)e~ dt,
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where . .
i(t) = — =
®) 1l—et ¢t
is strictly increasing orf0, co) with lim,_o §(t) = 1 andlim,_. 6(¢) = 1.
By using the convolution theorem for Laplace transforms, we have

/ 00 00 t
g@) _ / £5(E)e=" df — / [ / 5(s) ds

xr 0 0 0
00 t Xin Li and Chao-Ping Chen
= / {/ (0(t) — d(s)) ds] e " dt > 0, vol. 8, iss. 1, art. 28, 2007

0 0

and therefore, the function is strictly increasing on0, o), and then,g(z) <
g(l) =0andf'(z) < 0for0 < =z < 1, andg(z) > ¢g(1) = 0and f'(z) > 0

for > 1. Thus, the functiory is strictly decreasing of0, 1), and is strictly in- Contents
creasing on(1, c0), and therefore, the functiofi takes its minimumyf(1) = 1 at

—xt Inequalities for the
e "t dt . .
Gamma Function

Title Page

) . . . 44 44
x = 1. Hence, the left-hand inequality di)(is valid forz > 0 andxz # 1.
Define forz > 0, ) < 4
e’ 1T (x)
h(l‘) = W Page 4 of 6
we have by 1), Go Back
B (x) * /1 _
= — —i(t it < 0. Full Screen
i = (5-o0)as :
Close

This means that the functiah is strictly decreasing of0, co), and thenh(z) <
h(1) = 1forx > 1, andh(z) > h(1) = 1 for 0 < = < 1. Thus, the right-hand
inequality of ©) is valid forz > 1, reversed fof) < = < 1.

Write (6) as
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From the asymptotic expansioh, [p. 257]

Inl'(z) = (a: — %) Inz —z+InvV2r + O(z™Y),

we conclude that

. l—z4+zlne—Inl'(z) 1
xhjEO Inz = 5 Inequalities for the

i Gamma Function
Easy computation reveals

Xin Li and Chao-Ping Chen

1 — + T ln T — ln F(.CE) vol. 8, iss. 1, art. 28, 2007
lim = .
z—0 Inzx
Hence, forr > 1, the inequalities) hold, and the constantsand1/2 are the best U
possible. The proof is completg. Contents
We remark that the upper and lower bounds=fand () cannot be compared to <« >
each other.
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