COEFFICIENT INEQUALITIES FOR CERTAIN CLASSES OF ANALYTIC AND UNIVALENT FUNCTIONS

TOSHIO HAYAMI, SHIGEYOSHI OWA

Department of Mathematics
Kinki University, Higashi-Osaka,
Osaka 577-8502, JAPAN
EMail: ha_ya_to112@hotmail.com, owa@math.kindai.ac.jp

Received:

09 August, 2007
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words:

Abstract:

Acknowledgements:

12 September, 2007
Th.M. Rassias
Primary 30A10, 30C45; Secondary 26D07.
Coefficient inequalities, Analytic functions, Univalent functions, Spiral-like functions, Starlike functions, Convex functions.

For functions $f(z)$ which are starlike of order α, convex of order α, and λ-spirallike of order α in the open unit disk \mathbb{U}, some interesting sufficient conditions involving coefficient inequalities for $f(z)$ are discussed. Several (known or new) special cases and consequences of these coefficient inequalities are also considered.

The present investigation was supported, in part, by the Natural Sciences and Engineering Research Council of Canada under Grant OGP0007353.

H.M. SRIVASTAVA

Department of Mathematics and Statistics University of Victoria, Victoria,
British Columbia V8W 3P4, CANADA
EMail: harimsri@math.uvic.ca

Coefficient Inequalities

Toshio Hayami, Shigeyoshi Owa and
H.M. Srivastava
vol. 8, iss. 4, art. 95, 2007

Title Page

Contents

Page 1 of 21

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Contents

1 Introduction, Definitions and Preliminaries 3
2 Coefficient Conditions for Functions in the Class $\mathcal{S}^{*}(\alpha)$ 8
3 Coefficient Conditions for Functions in the Class $\mathcal{S P}(\lambda, \alpha)$ 14

Coefficient Inequalities
Toshio Hayami, Shigeyoshi Owa and
H.M. Srivastava
vol. 8, iss. 4, art. 95, 2007

Title Page
Contents

$\boldsymbol{4}$	
$\boldsymbol{4}$	
Page 2 of 21	
Go Back	

Full Screen
journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction, Definitions and Preliminaries

Let \mathcal{A}_{0} be the class of functions $f(z)$ of the form:

$$
\begin{equation*}
f(z)=a_{0}+a_{1} z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk

$$
\mathbb{U}=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\} .
$$

If $f(z) \in \mathcal{A}_{0}$ is given by (1.1), together with the following normalization:

$$
a_{0}=0 \quad \text { and } \quad a_{1}=1,
$$

then we say that $f(z) \in \mathcal{A}$.
If $f(z) \in \mathcal{A}$ satisfies the following inequality:

$$
\begin{equation*}
\mathfrak{R}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(z \in \mathbb{U} ; 0 \leqq \alpha<1), \tag{1.2}
\end{equation*}
$$

then $f(z)$ is said to be starlike of order α in \mathbb{U}. We denote by $\mathcal{S}^{*}(\alpha)$ the subclass of \mathcal{A} consisting of functions $f(z)$ which are starlike of order α in \mathbb{U}. Similarly, we say that $f(z)$ is in the class $\mathcal{K}(\alpha)$ of convex functions of order α in \mathbb{U} if $f(z) \in \mathcal{A}$ satisfies the following inequality:

$$
\begin{equation*}
\mathfrak{R}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha \quad(z \in \mathbb{U} ; 0 \leqq \alpha<1) \tag{1.3}
\end{equation*}
$$

It is easily observed from (1.2) and (1.3) that (see, for details, [3])

$$
f(z) \in \mathcal{K}(\alpha) \Longleftrightarrow z f^{\prime}(z) \in \mathcal{S}^{*}(\alpha) \quad(0 \leqq \alpha<1)
$$

Coefficient Inequalities
Toshio Hayami, Shigeyoshi Owa and
H.M. Srivastava
vol. 8, iss. 4, art. 95, 2007

Title Page
Contents
\square
Page 3 of 21
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 144ヨ-575b

As usual, in our present investigation, we write

$$
\mathcal{S}^{*}:=\mathcal{S}^{*}(0) \quad \text { and } \quad \mathcal{K}:=\mathcal{K}(0)
$$

Furthermore, we let \mathcal{B} denote the class of functions $p(z)$ of the form:

$$
p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n}
$$

which are analytic in \mathbb{U}.
Each of the following lemmas will be needed in our present investigation.
Lemma 1. A function $p(z) \in \mathcal{B}$ satisfies the following condition:

$$
\mathfrak{R}[p(z)]>0 \quad(z \in \mathbb{U})
$$

if and only if

$$
p(z) \neq \frac{\zeta-1}{\zeta+1} \quad(z \in \mathbb{U} ; \zeta \in \mathbb{C} ;|\zeta|=1)
$$

Proof. For the sake of completeness, we choose to give a proof of Lemma 1, even though it is fairly obvious that the following bilinear (or Möbius) transformation:

$$
w=\frac{z-1}{z+1}
$$

maps the unit circle $\partial \mathbb{U}$ onto the imaginary axis $\mathfrak{R}(w)=0$. Indeed, for all ζ such that $|\zeta|=1 \quad(\zeta \in \mathbb{C})$, we set

$$
w=\frac{\zeta-1}{\zeta+1} \quad(\zeta \in \mathbb{C} ;|\zeta|=1)
$$

Coefficient Inequalities
Toshio Hayami, Shigeyoshi Owa and
H.M. Srivastava
vol. 8, iss. 4, art. 95, 2007

Title Page
Contents

Page 4 of 21
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Then

$$
|\zeta|=\left|\frac{1+w}{1-w}\right|=1
$$

which shows that

$$
\mathfrak{R}(w)=\mathfrak{R}\left(\frac{\zeta-1}{\zeta+1}\right)=0 \quad(\zeta \in \mathbb{C} ;|\zeta|=1)
$$

Moreover, by noting that $p(0)=1$ for $p(z) \in \mathcal{B}$, we know that

$$
p(z) \neq \frac{\zeta-1}{\zeta+1} \quad(z \in \mathbb{U} ; \zeta \in \mathbb{C} ;|\zeta|=1)
$$

This evidently completes the proof of Lemma 1.
Lemma 2. A function $f(z) \in \mathcal{A}$ is in the class $\mathcal{S}^{*}(\alpha)$ if and only if

$$
\begin{equation*}
1+\sum_{n=2}^{\infty} A_{n} z^{n-1} \neq 0 \tag{1.4}
\end{equation*}
$$

where

$$
A_{n}=\frac{n+1-2 \alpha+(n-1) \zeta}{2-2 \alpha} a_{n} .
$$

$$
p(z)=\frac{\frac{z f^{\prime}(z)}{f(z)}-\alpha}{1-\alpha} \quad\left(f(z) \in \mathcal{S}^{*}(\alpha)\right)
$$

we find that

$$
p(z) \in \mathcal{B} \quad \text { and } \quad \mathfrak{R}[p(z)]>0 \quad(z \in \mathbb{U}) .
$$

Page 5 of 21
Go Back
Full Screen

Close

Title Page
Contents

journal of inequalities in pure and applied mathematics
issn: 144ヨ-575b

Using Lemma 1, we have

$$
\begin{equation*}
\frac{\frac{z f^{\prime}(z)}{f(z)}-\alpha}{1-\alpha} \neq \frac{\zeta-1}{\zeta+1} \quad(z \in \mathbb{U} ; \zeta \in \mathbb{C} ;|\zeta|=1) \tag{1.5}
\end{equation*}
$$

which readily yields

$$
\begin{aligned}
& (\zeta+1) z f^{\prime}(z)+(1-2 \alpha-\zeta) f(z) \neq 0 \\
& \left(f(z) \in \mathcal{S}^{*}(\alpha) ; z \in \mathbb{U} ; \zeta \in \mathbb{C} ;|\zeta|=1\right)
\end{aligned}
$$

Thus we find that

$$
\begin{gathered}
(\zeta+1) z+(\zeta+1)\left(\sum_{n=2}^{\infty} n a_{n} z^{n}\right)+(1-2 \alpha-\zeta)\left(z+\sum_{n=2}^{\infty} a_{n} z^{n}\right) \neq 0 \\
(z \in \mathbb{U} ; \zeta \in \mathbb{C} ;|\zeta|=1)
\end{gathered}
$$

that is, that

$$
\begin{gather*}
2(1-\alpha) z\left(1+\sum_{n=2}^{\infty} \frac{n+1-2 \alpha+(n-1) \zeta}{2(1-\alpha)} a_{n} z^{n-1}\right) \neq 0 \tag{1.6}\\
(z \in \mathbb{U} ; \zeta \in \mathbb{C} ;|\zeta|=1)
\end{gather*}
$$

Now, dividing both sides of (1.6) by $2(1-\alpha) z \quad(z \neq 0)$, we obtain

$$
\begin{gathered}
1+\sum_{n=2}^{\infty} \frac{n+1-2 \alpha+(n-1) \zeta}{2(1-\alpha)} a_{n} z^{n-1} \neq 0 \\
(z \in \mathbb{U} ; \zeta \in \mathbb{C} ;|\zeta|=1)
\end{gathered}
$$

which completes the proof of Lemma 2 (see also Remark 2 below).

Coefficient Inequalities
Toshio Hayami, Shigeyoshi Owa and
H.M. Srivastava
vol. 8, iss. 4, art. 95, 2007

Title Page
Contents

$\boldsymbol{4}$	
$\mathbf{4}$	
Page 6 of 21	
Go Back	

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Remark 1. It follows from the normalization conditions:

$$
a_{0}=0 \quad \text { and } \quad a_{1}=1
$$

that

$$
A_{0}=\frac{1-2 \alpha-x}{2-2 \alpha} a_{0}=0 \quad \text { and } \quad A_{1}=\frac{2-2 \alpha}{2-2 \alpha} a_{1}=1
$$

Remark 2. The assertion (1.4) of Lemma 2 is equivalent to

$$
\frac{1}{z}\left(f(z) * \frac{z+\frac{\zeta+2 \alpha-1}{2-2 \alpha} z^{2}}{(1-z)^{2}}\right) \neq 0 \quad(z \in \mathbb{U})
$$

which was given earlier by Silverman et al. [2]. Furthermore, in its special case when $\alpha=0$, Lemma 2 yields a recent result of Nezhmetdinov and Ponnusamy [1] for the sufficient conditions involving the coefficients of $f(z)$ to be in the class \mathcal{S}^{*}.

The object of the present paper is to give some generalizations of the aforementioned result due to Nezhmetdinov and Ponnusamy [1]. We also briefly discuss several interesting corollaries and consequences of our main results.

Coefficient Inequalities
Toshio Hayami, Shigeyoshi Owa and
H.M. Srivastava
vol. 8, iss. 4, art. 95, 2007

Title Page
Contents

Page 7 of 21
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 144ヨ-5?5b

2. Coefficient Conditions for Functions in the Class $\mathcal{S}^{*}(\alpha)$

Our first result for functions $f(z)$ to be in the class $\mathcal{S}^{*}(\alpha)$ is contained in Theorem 1 below.

Theorem 1. If $f(z) \in \mathcal{A}$ satisfies the following condition:

$$
\begin{gather*}
\sum_{n=2}^{\infty}\left(\left|\sum_{k=1}^{n}\left[\sum_{j=1}^{k}(-1)^{k-j}(j+1-2 \alpha)\binom{\beta}{k-j} a_{j}\right]\binom{\gamma}{n-k}\right|\right. \\
\left.+\left|\sum_{k=1}^{\infty}\left[\sum_{j=1}^{k}(-1)^{k-j}(j-1)\binom{\beta}{k-j} a_{j}\right]\binom{\gamma}{n-k}\right|\right) \leqq 2(1-\alpha) \tag{2.1}\\
(0 \leqq \alpha<1 ; \beta \in \mathbb{R} ; \gamma \in \mathbb{R})
\end{gather*}
$$

Coefficient Inequalities
Toshio Hayami, Shigeyoshi Owa and
H.M. Srivastava
vol. 8, iss. 4, art. 95, 2007

Title Page
Contents
\square
Page 8 of 21
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
which is the relation (1.4) of Lemma 2. It is easily seen that (2.1) is equivalent to

$$
\begin{equation*}
\left(1+\sum_{n=2}^{\infty} A_{n} z^{n-1}\right)\left(\sum_{n=0}^{\infty}(-1)^{n} b_{n} z^{n}\right)\left(\sum_{n=0}^{\infty} c_{n} z^{n}\right) \neq 0 \tag{2.3}
\end{equation*}
$$

where, for convenience,

$$
b_{n}:=\binom{\beta}{n} \quad \text { and } \quad c_{n}:=\binom{\gamma}{n}
$$

Considering the Cauchy product of the first two factors, (2.3) can be rewritten as follows:

$$
\begin{equation*}
\left(1+\sum_{n=2}^{\infty} B_{n} z^{n-1}\right)\left(\sum_{n=0}^{\infty} c_{n} z^{n}\right) \neq 0 \tag{2.4}
\end{equation*}
$$

where

$$
B_{n}:=\sum_{j=1}^{n}(-1)^{n-j} A_{j} b_{n-j} .
$$

Furthermore, by applying the same method for the Cauchy product in (2.4), we find that

$$
1+\sum_{n=2}^{\infty}\left(\sum_{k=1}^{n} B_{k} c_{n-k}\right) z^{n-1} \neq 0 \quad(z \in \mathbb{U})
$$

or, equivalently, that

$$
1+\sum_{n=2}^{\infty}\left[\sum_{k=1}^{n}\left(\sum_{j=1}^{k}(-1)^{k-j} A_{j} b_{k-j}\right) c_{n-k}\right] z^{n-1} \neq 0 \quad(z \in \mathbb{U})
$$

Coefficient Inequalities
Toshio Hayami, Shigeyoshi Owa and
H.M. Srivastava
vol. 8, iss. 4, art. 95, 2007

Title Page
Contents

Page 9 of 21
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Thus, if $f(z) \in \mathcal{A}$ satisfies the following inequality:

$$
\sum_{n=2}^{\infty}\left|\sum_{k=1}^{n}\left(\sum_{j=1}^{k}(-1)^{k-j} A_{j} b_{k-j}\right) c_{n-k}\right| \leqq 1
$$

that is, if

$$
\begin{aligned}
& \frac{1}{2(1-\alpha)} \sum_{n=2}^{\infty}\left|\sum_{k=1}^{n}\left(\sum_{j=1}^{k}(-1)^{k-j}[(j+1-2 \alpha)+(j-1) \zeta] a_{j} b_{k-j}\right) c_{n-k}\right| \\
& \leqq \frac{1}{2(1-\alpha)} \sum_{n=2}^{\infty}\left(\left|\sum_{k=1}^{n}\left[\sum_{j=1}^{k}(-1)^{k-j}(j+1-2 \alpha) a_{j} b_{k-j}\right] c_{n-k}\right|\right. \\
& \left.\quad+|\zeta|\left|\sum_{k=1}^{n}\left[\sum_{j=1}^{k}(-1)^{k-j}(j-1) b_{k-j} a_{j}\right] c_{n-k}\right|\right) \\
& \leqq 1 \quad(0 \leqq \alpha<1 ; \zeta \in \mathbb{C} ;|\zeta|=1),
\end{aligned}
$$

then $f(z) \in \mathcal{S}^{*}(\alpha)$. This completes the proof of Theorem 1 .
Setting $\alpha=0$ in Theorem 1, we deduce the following corollary.
Corollary 1. If $f(z) \in \mathcal{A}$ satisfies the following condition:

$$
\begin{gather*}
\sum_{n=2}^{\infty}\left(\left|\sum_{k=1}^{n}\left[\sum_{j=1}^{k}(-1)^{k-j}(j+1)\binom{\beta}{k-j} a_{j}\right]\binom{\gamma}{n-k}\right|\right. \\
\left.+\left|\sum_{k=1}^{\infty}\left[\sum_{j=1}^{k}(-1)^{k-j}(j-1)\binom{\beta}{k-j} a_{j}\right]\binom{\gamma}{n-k}\right|\right) \leqq 2 \tag{2.5}\\
(\beta \in \mathbb{R} ; \gamma \in \mathbb{R}),
\end{gather*}
$$

Coefficient Inequalities
Toshio Hayami, Shigeyoshi Owa and
H.M. Srivastava
vol. 8, iss. 4, art. 95, 2007

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 10 of 21	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-5756
then $f(z) \in \mathcal{S}^{*}$.
Remark 3. If, in the hypothesis (2.5) of Corollary 1, we set

$$
\beta-1=\gamma=0 \quad \text { or } \quad \beta=\gamma=1 \quad \text { or } \quad \beta-2=\gamma=0,
$$

we arrive at the result given by Nezhmetdinov and Ponnusamy [1]. Moreover, for $\beta=\gamma=0$ in Theorem 1, we obtain Corollary 2 below.

Corollary 2. If $f(z) \in \mathcal{A}$ satisfies the following coefficient inequality:

$$
\begin{equation*}
\sum_{n=2}^{\infty}(n-\alpha)\left|a_{n}\right| \leqq 1-\alpha \quad(0 \leqq \alpha<1) \tag{2.6}
\end{equation*}
$$

then $f(z) \in \mathcal{S}^{*}(\alpha)$.
In particular, by putting $\alpha=0$ in (2.6), we get the following well-known coefficient condition for the familiar class \mathcal{S}^{*} of starlike functions in \mathbb{U}.

Corollary 3. If $f(z) \in \mathcal{A}$ satisfies the following coefficient inequality:

$$
\begin{equation*}
\sum_{n=2}^{\infty} n\left|a_{n}\right| \leqq 1 \tag{2.7}
\end{equation*}
$$

Page 11 of 21
Go Back
Full Screen
then $f(z) \in \mathcal{S}^{*}$.
We next derive the coefficient condition for functions $f(z)$ to be in the class $\mathcal{K}(\alpha)$.

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Theorem 2. If $f(z) \in \mathcal{A}$ satisfies the following condition:

$$
\begin{gather*}
\sum_{n=2}^{\infty}\left(\left|\sum_{k=1}^{n}\left[\sum_{j=1}^{k}(-1)^{k-j} j(j+1-2 \alpha)\binom{\beta}{k-j} a_{j}\right]\binom{\gamma}{n-k}\right|\right. \\
\left.+\left|\sum_{k=1}^{\infty}\left[\sum_{j=1}^{k}(-1)^{k-j} j(j-1)\binom{\beta}{k-j} a_{j}\right]\binom{\gamma}{n-k}\right|\right) \leqq 2(1-\alpha) \tag{2.8}\\
(0 \leqq \alpha<1 ; \beta \in \mathbb{R} ; \gamma \in \mathbb{R}),
\end{gather*}
$$

then $f(z) \in \mathcal{K}(\alpha)$.
Proof. Since $z f^{\prime}(z)$ belongs to the class $\mathcal{S}^{*}(\alpha)$ if and only if $f(z)$ is in the class $\mathcal{K}(\alpha)$, and since

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
z f^{\prime}(z)=z+\sum_{n=2}^{\infty} n a_{n} z^{n} \tag{2.10}
\end{equation*}
$$

upon replacing a_{j} in Theorem 1 by $j a_{j}$, we readily prove Theorem 2.
By considering some special values for the parameters α, β and γ, we can deduce the following corollaries.

M

Coefficient Inequalities
Toshio Hayami, Shigeyoshi Owa and
H.M. Srivastava
vol. 8, iss. 4, art. 95, 2007

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 12 of 21	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Corollary 4. If $f(z) \in \mathcal{A}$ satisfies the following condition:
(2.11) $\sum_{n=2}^{\infty}\left(\left|\sum_{k=1}^{n}\left[\sum_{j=1}^{k}(-1)^{k-j} j(j+1)(-1)^{k-j}\binom{\beta}{k-j} a_{j}\right]\binom{\gamma}{n-k}\right|\right.$

$$
\left.+\left|\sum_{k=1}^{\infty}\left[\sum_{j=1}^{k}(-1)^{k-j} j(j-1)\binom{\beta}{k-j} a_{j}\right]\binom{\gamma}{n-k}\right|\right)
$$

$$
\leqq 2 \quad(\beta \in \mathbb{R} ; \gamma \in \mathbb{R})
$$

then $f(z) \in \mathcal{K}$.
Corollary 5. If $f(z) \in \mathcal{A}$ satisfies the following coefficient inequality:

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-\alpha)\left|a_{n}\right| \leqq 1-\alpha \quad(0 \leqq \alpha<1) \tag{2.12}
\end{equation*}
$$

then $f(z) \in \mathcal{K}(\alpha)$.
Corollary 6. If $f(z) \in \mathcal{A}$ satisfies the following coefficient inequality:

$$
\begin{equation*}
\sum_{n=2}^{\infty} n^{2}\left|a_{n}\right| \leqq 1 \tag{2.13}
\end{equation*}
$$

Page 13 of 21

```
Go Back
```

Full Screen

```
Close
```

journal of inequalities in pure and applied mathematics

3. Coefficient Conditions for Functions in the Class $\mathcal{S P}(\lambda, \alpha)$

In this section, we consider the subclass $\mathcal{S P}(\lambda, \alpha)$ of \mathcal{A}, which consists of functions $f(z) \in \mathcal{A}$ if and only if the following inequality holds true:

$$
\begin{equation*}
\mathfrak{R}\left[e^{i \lambda}\left(\frac{z f^{\prime}(z)}{f(z)}-\alpha\right)\right]>0 \quad\left(z \in \mathbb{U} ; 0 \leqq \alpha<1 ;-\frac{\pi}{2}<\lambda<\frac{\pi}{2}\right) . \tag{3.1}
\end{equation*}
$$

Coefficient Inequalities
Toshio Hayami, Shigeyoshi Owa and
H.M. Srivastava
vol. 8, iss. 4, art. 95, 2007

Title Page
Contents

Page 14 of 21
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

We need not consider Lemma 1 for the case when $z=0$, because (3.3) implies that

$$
p(0) \neq \frac{\zeta-1}{\zeta+1} \quad(\zeta \in \mathbb{C} ;|\zeta|=1)
$$

It also follows from (3.3) that

$$
\begin{gathered}
\frac{e^{i \lambda}\left[z f^{\prime}(z)-\alpha f(z)\right]-i(1-\alpha) f(z) \sin \lambda}{(1-\alpha) \cos \lambda} \neq\left(\frac{\zeta-1}{\zeta+1}\right) f(z) \\
(z \in \mathbb{U} ; \zeta \in \mathbb{C} ;|\zeta|=1),
\end{gathered}
$$

which readily yields

$$
\begin{gathered}
(\zeta+1)\left\{e^{i \lambda}\left[z f^{\prime}(z)-\alpha f(z)\right]-i(1-\alpha) f(z) \sin \lambda\right\} \neq(\zeta-1)(1-\alpha) f(z) \cos \lambda \\
(z \in \mathbb{U} ; \zeta \in \mathbb{C} ;|\zeta|=1)
\end{gathered}
$$

or, equivalently,
(3.4) $(\zeta+1) e^{i \lambda} z f^{\prime}(z)-\alpha e^{i \lambda} f(z)-\zeta \alpha e^{i \lambda} f(z)$

$$
\begin{aligned}
& -i(1-\alpha) f(z) \sin \lambda-i \zeta(1-\alpha) f(z) \sin \lambda \\
& \quad \neq \zeta(1-\alpha) f(z) \cos \lambda-(1-\alpha) f(z) \cos \lambda \\
& \quad(z \in \mathbb{U} ; \zeta \in \mathbb{C} ;|\zeta|=1)
\end{aligned}
$$

We find from (3.4) that

$$
\begin{gathered}
(\zeta+1) e^{i \lambda} z f^{\prime}(z)-\alpha e^{i \lambda} f(z)-\zeta \alpha e^{i \lambda} f(z)-\zeta(1-\alpha) e^{i \lambda} f(z)+(1-\alpha) e^{-i \lambda} f(z) \neq 0 \\
(z \in \mathbb{U} ; \zeta \in \mathbb{C} ;|\zeta|=1)
\end{gathered}
$$

that is, that

$$
\begin{gathered}
(1+\zeta) e^{i \lambda} z f^{\prime}(z)+\left(e^{-i \lambda}-2 \alpha \cos \lambda-\zeta e^{i \lambda}\right) f(z) \neq 0 \\
(z \in \mathbb{U} ; \zeta \in \mathbb{C} ;|\zeta|=1)
\end{gathered}
$$

Coefficient Inequalities
Toshio Hayami, Shigeyoshi Owa and
H.M. Srivastava
vol. 8, iss. 4, art. 95, 2007

Title Page
Contents
\square
Page 15 of 21
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b
which, in light of (1.1) with $a_{0}=a_{1}-1=0$, assumes the following form:

$$
\begin{gathered}
(\zeta+1) e^{i \lambda}\left(z+\sum_{n=2}^{\infty} n a_{n} z^{n}\right)+\left(e^{-i \lambda}-\zeta e^{i \lambda}-2 \alpha \cos \lambda\right)\left(z+\sum_{n=2}^{\infty} a_{n} z^{n}\right) \neq 0 \\
(z \in \mathbb{U} ; \zeta \in \mathbb{C} ;|\zeta|=1)
\end{gathered}
$$

or, equivalently,

$$
\begin{gather*}
2(1-\alpha) z \cos \lambda\left(1+\sum_{n=2}^{\infty} \frac{n+e^{-2 i \lambda}-2 \alpha e^{-i \lambda} \cos \lambda+(n-1) \zeta}{2(1-\alpha) e^{-i \lambda} \cos \lambda} a_{n} z^{n-1}\right) \neq 0 \tag{3.5}\\
(z \in \mathbb{U} ; \zeta \in \mathbb{C} ;|\zeta|=1)
\end{gather*}
$$

Coefficient Inequalities
Toshio Hayami, Shigeyoshi Owa and
H.M. Srivastava
vol. 8, iss. 4, art. 95, 2007

Title Page
Contents
\square
Page 16 of 21
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 144ヨ-575b

By applying Lemma 3, we now prove Theorem 3 below.

Theorem 3. If $f(z) \in \mathcal{A}$ satisfies the following condition:

$$
\begin{gather*}
\sum_{n=2}^{\infty}\left(\left|\sum_{k=1}^{n}\left[\sum_{j=1}^{k}(-1)^{k-j}\left[j-\alpha+(1-\alpha) e^{-2 i \lambda}\right]\binom{\beta}{k-j} a_{j}\right]\binom{\gamma}{n-k}\right|\right. \\
\left..6)+\left|\sum_{k=1}^{\infty}\left[\sum_{j=1}^{k}(-1)^{k-j}(j-1)\binom{\beta}{k-j} a_{j}\right]\binom{\gamma}{n-k}\right|\right) \leqq 2(1-\alpha) \cos \lambda \tag{3.6}\\
\left(0 \leqq \alpha<1 ;-\frac{\pi}{2}<\lambda<\frac{\pi}{2} ; \beta \in \mathbb{R} ; \gamma \in \mathbb{R}\right)
\end{gather*}
$$

then $f(z) \in \mathcal{S P}(\lambda, \alpha)$.
Proof. Applying the same method as in the proof of Theorem 1, we see that $f(z)$ is in the class $\mathcal{S P}(\lambda, \alpha)$ if

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left|\sum_{k=1}^{n}\left(\sum_{j=1}^{k}(-1)^{k-j} C_{j} b_{k-j}\right) c_{n-k}\right| \leqq 1 \tag{3.7}
\end{equation*}
$$

where, as before,

$$
b_{n}:=\binom{\beta}{n} \quad \text { and } \quad c_{n}:=\binom{\gamma}{n}
$$

the coefficients C_{n} being given as in Lemma 3. It follows from the inequality (3.7) that

$$
\begin{aligned}
& \frac{1}{\left|2(1-\alpha) e^{-i \lambda} \cos \lambda\right|} \\
& \cdot \sum_{n=2}^{\infty}\left|\sum_{k=1}^{n}\left[\sum_{j=1}^{k}\left((-1)^{k-j}\left(j-1+2(1-\alpha) e^{-i \lambda} \cos \lambda\right)+\zeta(j-1)\right) a_{j} b_{k-j}\right] c_{n-k}\right|
\end{aligned}
$$

Coefficient Inequalities
Toshio Hayami, Shigeyoshi Owa and
H.M. Srivastava
vol. 8, iss. 4, art. 95, 2007

Title Page
Contents
\square
Page 17 of 21
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\begin{aligned}
& \quad \leqq \frac{1}{2(1-\alpha) \cos \lambda} \\
& \\
& \quad \sum_{n=2}^{\infty}\left(\left|\sum_{k=1}^{n}\left[\sum_{j=1}^{k}(-1)^{k-j}\left(j-\alpha+(1-\alpha)\left(-1+2 e^{-i \lambda} \cos \lambda\right)\right) b_{k-j} a_{j}\right] c_{n-k}\right|\right. \\
& \\
& \left.\quad+|\zeta|\left|\sum_{k=1}^{n}\left[\sum_{j=1}^{k}(-1)^{k-j}(j-1) b_{k-j} a_{j}\right] c_{n-k}\right|\right) \\
& \text { (3.8) } \leqq 1 \quad\left(0 \leqq \alpha<1 ;-\frac{\pi}{2}<\lambda<\frac{\pi}{2} ; \zeta \in \mathbb{C} ;|\zeta|=1\right),
\end{aligned}
$$

which implies that, if $f(z)$ satisfies the hypothesis (3.6) of Theorem 3, then $f(z) \in$ $\mathcal{S P}(\lambda, \alpha)$. This completes the proof of Theorem 3.
Coefficient Inequalities
Toshio Hayami, Shigeyoshi Owa and
H.M. Srivastava
vol. 8, iss. 4, art. 95, 2007

In its special case when

$$
\beta-1=\gamma=0 \quad \text { or } \quad \beta=\gamma=1 \quad \text { or } \quad \beta-2=\gamma=0,
$$

Theorem 3 would immediately yield the following corollary.
Corollary 7 (cf. [1]). If $f(z) \in \mathcal{A}$ satisfies any one of the following conditions:

$$
\begin{gather*}
\sum_{n=2}^{\infty}\left(\left|\left[n-\alpha+(1-\alpha) e^{-2 i \lambda}\right]\left(a_{n}-a_{n-1}\right)+a_{n-1}\right|+\left|(n-1)\left(a_{n}-a_{n-1}\right)+a_{n-1}\right|\right) \tag{3.9}\\
\leqq 2(1-\alpha) \cos \lambda \quad\left(0 \leqq \alpha<1 ;-\frac{\pi}{2}<\lambda<\frac{\pi}{2}\right)
\end{gather*}
$$

or
(3.10) $\sum_{n=2}^{\infty}\left(\left|\left[n-\alpha+(1-\alpha) e^{-2 i \lambda}\right]\left(a_{n}-a_{n-2}\right)+2 a_{n-2}\right|\right.$

Page 18 of 21
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 144ヨ-575b

$$
\begin{aligned}
& \left.+\left|(n-1)\left(a_{n}-a_{n-2}\right)+2 a_{n-2}\right|\right) \\
& \quad \leqq 2(1-\alpha) \cos \lambda \quad\left(0 \leqq \alpha<1 ;-\frac{\pi}{2}<\lambda<\frac{\pi}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left|(n-2)\left(a_{n}-2 a_{n-1}+a_{n-2}\right)+a_{n}-a_{n-2}\right|\right) \\
& \quad \leqq 2(1-\alpha) \cos \lambda \quad\left(0 \leqq \alpha<1 ;-\frac{\pi}{2}<\lambda<\frac{\pi}{2}\right)
\end{aligned}
$$

H.M. Srivastava

vol. 8, iss. 4, art. 95, 2007
then $f(z) \in \mathcal{S P}(\lambda, \alpha)$.
Remark 4. For $\lambda=0$, Theorem 3 implies Theorem 1. Furthermore, by setting $\alpha=0$ in Theorem 3, we arrive at the following sufficient condition for functions $f(z) \in \mathcal{A}$ to be in the class $\mathcal{S P}(\lambda)$.
Corollary 8. If $f(z) \in \mathcal{A}$ satisfies the following condition:
(3.12) $\sum_{n=2}^{\infty}\left(\left|\sum_{k=1}^{n}\left[\sum_{j=1}^{k}(-1)^{k-j}\left(j+e^{-2 i \lambda}\right)\binom{\beta}{k-j} a_{j}\right]\binom{\gamma}{n-k}\right|\right.$

$$
\begin{aligned}
& \left.+\left|\sum_{k=1}^{\infty}\left[\sum_{j=1}^{k}(-1)^{k-j}(j-1)\binom{\beta}{k-j} a_{j}\right]\binom{\gamma}{n-k}\right|\right) \\
& \quad \leqq 2 \cos \lambda \quad\left(0 \leqq \alpha<1 ; \beta \in \mathbb{R} ; \gamma \in \mathbb{R} ;-\frac{\pi}{2}<\lambda<\frac{\pi}{2}\right),
\end{aligned}
$$

then

$$
f(z) \in \mathcal{S P}(\lambda):=\mathcal{S P}(\lambda, 0)
$$

Title Page
Contents
\square
Page 19 of 21
Go Back
Full Screen

```
    Close
```

journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] I.R. NEZHMETDINOV AND S. PONNUSAMY, New coefficient conditions for the starlikeness of analytic functions and their applications, Houston J. Math., 31 (2005), 587-604.
[2] H. SILVERMAN, E.M. SILVIA AND D. TELAGE, Convolution conditions for convexity, starlikeness and spiral-likeness, Math. Zeitschr., 162 (1978), 125-130.
[3] H.M. SRIVASTAVA and S. OWA (Editors), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.

Coefficient Inequalities

Toshio Hayami, Shigeyoshi Owa and H.M. Srivastava
vol. 8, iss. 4, art. 95, 2007

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 20 of 21	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 144ヨ-575b

