COEFFICIENT INEQUALITIES FOR CERTAIN CLASSES OF ANALYTIC AND UNIVALENT FUNCTIONS

TOSHIO HAYAMI, SHIGEYOSHI OWA, AND H.M. SRIVASTAVA
Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577-8502
JAPAN
ha_ya_to112@hotmail.com
Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577-8502
Japan
owa@math.kindai.ac.jp
Department of Mathematics and Statistics
University of Victoria
Victoria, British Columbia V8W 3P4
CANADA
harimsri@math.uvic.ca

Received 09 August, 2007; accepted 12 September, 2007
Communicated by Th.M. Rassias

Abstract

For functions $f(z)$ which are starlike of order α, convex of order α, and λ-spirallike of order α in the open unit disk \mathbb{U}, some interesting sufficient conditions involving coefficient inequalities for $f(z)$ are discussed. Several (known or new) special cases and consequences of these coefficient inequalities are also considered.

[^0]2000 Mathematics Subject Classification Primary 30A10, 30C45; Secondary 26D07.

1. Introduction, Definitions and Preliminaries

Let \mathcal{A}_{0} be the class of functions $f(z)$ of the form:

$$
\begin{equation*}
f(z)=a_{0}+a_{1} z+\sum_{n=2}^{\infty} a_{n} z^{n}, \tag{1.1}
\end{equation*}
$$

[^1]which are analytic in the open unit disk
$$
\mathbb{U}=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\} .
$$

If $f(z) \in \mathcal{A}_{0}$ is given by (1.1), together with the following normalization:

$$
a_{0}=0 \quad \text { and } \quad a_{1}=1,
$$

then we say that $f(z) \in \mathcal{A}$.
If $f(z) \in \mathcal{A}$ satisfies the following inequality:

$$
\begin{equation*}
\mathfrak{R}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(z \in \mathbb{U} ; 0 \leqq \alpha<1) \tag{1.2}
\end{equation*}
$$

then $f(z)$ is said to be starlike of order α in \mathbb{U}. We denote by $\mathcal{S}^{*}(\alpha)$ the subclass of \mathcal{A} consisting of functions $f(z)$ which are starlike of order α in \mathbb{U}. Similarly, we say that $f(z)$ is in the class $\mathcal{K}(\alpha)$ of convex functions of order α in \mathbb{U} if $f(z) \in \mathcal{A}$ satisfies the following inequality:

$$
\begin{equation*}
\mathfrak{R}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha \quad(z \in \mathbb{U} ; 0 \leqq \alpha<1) \tag{1.3}
\end{equation*}
$$

It is easily observed from (1.2) and (1.3) that (see, for details, [3])

$$
f(z) \in \mathcal{K}(\alpha) \Longleftrightarrow z f^{\prime}(z) \in \mathcal{S}^{*}(\alpha) \quad(0 \leqq \alpha<1)
$$

As usual, in our present investigation, we write

$$
\mathcal{S}^{*}:=\mathcal{S}^{*}(0) \quad \text { and } \quad \mathcal{K}:=\mathcal{K}(0) .
$$

Furthermore, we let \mathcal{B} denote the class of functions $p(z)$ of the form:

$$
p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n}
$$

which are analytic in \mathbb{U}.
Each of the following lemmas will be needed in our present investigation.
Lemma 1. A function $p(z) \in \mathcal{B}$ satisfies the following condition:

$$
\mathfrak{R}[p(z)]>0 \quad(z \in \mathbb{U})
$$

if and only if

$$
p(z) \neq \frac{\zeta-1}{\zeta+1} \quad(z \in \mathbb{U} ; \zeta \in \mathbb{C} ;|\zeta|=1)
$$

Proof. For the sake of completeness, we choose to give a proof of Lemma 1, even though it is fairly obvious that the following bilinear (or Möbius) transformation:

$$
w=\frac{z-1}{z+1}
$$

maps the unit circle $\partial \mathbb{U}$ onto the imaginary axis $\mathfrak{R}(w)=0$. Indeed, for all ζ such that $|\zeta|=1 \quad(\zeta \in \mathbb{C})$, we set

$$
w=\frac{\zeta-1}{\zeta+1} \quad(\zeta \in \mathbb{C} ;|\zeta|=1)
$$

Then

$$
|\zeta|=\left|\frac{1+w}{1-w}\right|=1
$$

which shows that

$$
\mathfrak{R}(w)=\mathfrak{R}\left(\frac{\zeta-1}{\zeta+1}\right)=0 \quad(\zeta \in \mathbb{C} ;|\zeta|=1)
$$

Moreover, by noting that $p(0)=1$ for $p(z) \in \mathcal{B}$, we know that

$$
p(z) \neq \frac{\zeta-1}{\zeta+1} \quad(z \in \mathbb{U} ; \zeta \in \mathbb{C} ;|\zeta|=1)
$$

This evidently completes the proof of Lemma 1 .
Lemma 2. A function $f(z) \in \mathcal{A}$ is in the class $\mathcal{S}^{*}(\alpha)$ if and only if

$$
\begin{equation*}
1+\sum_{n=2}^{\infty} A_{n} z^{n-1} \neq 0 \tag{1.4}
\end{equation*}
$$

where

$$
A_{n}=\frac{n+1-2 \alpha+(n-1) \zeta}{2-2 \alpha} a_{n}
$$

Proof. Upon setting

$$
p(z)=\frac{\frac{z f^{\prime}(z)}{f(z)}-\alpha}{1-\alpha} \quad\left(f(z) \in \mathcal{S}^{*}(\alpha)\right)
$$

we find that

$$
p(z) \in \mathcal{B} \quad \text { and } \quad \mathfrak{R}[p(z)]>0 \quad(z \in \mathbb{U}) .
$$

Using Lemma 1, we have

$$
\begin{equation*}
\frac{\frac{z f^{\prime}(z)}{f(z)}-\alpha}{1-\alpha} \neq \frac{\zeta-1}{\zeta+1} \quad(z \in \mathbb{U} ; \zeta \in \mathbb{C} ;|\zeta|=1) \tag{1.5}
\end{equation*}
$$

which readily yields

$$
\begin{aligned}
& (\zeta+1) z f^{\prime}(z)+(1-2 \alpha-\zeta) f(z) \neq 0 \\
& \left(f(z) \in \mathcal{S}^{*}(\alpha) ; z \in \mathbb{U} ; \zeta \in \mathbb{C} ;|\zeta|=1\right)
\end{aligned}
$$

Thus we find that

$$
\begin{gathered}
(\zeta+1) z+(\zeta+1)\left(\sum_{n=2}^{\infty} n a_{n} z^{n}\right)+(1-2 \alpha-\zeta)\left(z+\sum_{n=2}^{\infty} a_{n} z^{n}\right) \neq 0 \\
(z \in \mathbb{U} ; \zeta \in \mathbb{C} ;|\zeta|=1),
\end{gathered}
$$

that is, that

$$
\begin{gather*}
2(1-\alpha) z\left(1+\sum_{n=2}^{\infty} \frac{n+1-2 \alpha+(n-1) \zeta}{2(1-\alpha)} a_{n} z^{n-1}\right) \neq 0 \tag{1.6}\\
(z \in \mathbb{U} ; \zeta \in \mathbb{C} ;|\zeta|=1) .
\end{gather*}
$$

Now, dividing both sides of (1.6) by $2(1-\alpha) z \quad(z \neq 0)$, we obtain

$$
\begin{gathered}
1+\sum_{n=2}^{\infty} \frac{n+1-2 \alpha+(n-1) \zeta}{2(1-\alpha)} a_{n} z^{n-1} \neq 0 \\
(z \in \mathbb{U} ; \zeta \in \mathbb{C} ;|\zeta|=1)
\end{gathered}
$$

which completes the proof of Lemma 2 (see also Remark 2 below).
Remark 1. It follows from the normalization conditions:

$$
a_{0}=0 \quad \text { and } \quad a_{1}=1
$$

that

$$
A_{0}=\frac{1-2 \alpha-x}{2-2 \alpha} a_{0}=0 \quad \text { and } \quad A_{1}=\frac{2-2 \alpha}{2-2 \alpha} a_{1}=1 .
$$

Remark 2. The assertion (1.4) of Lemma 2 is equivalent to

$$
\frac{1}{z}\left(f(z) * \frac{z+\frac{\zeta+2 \alpha-1}{22 \alpha} z^{2}}{(1-z)^{2}}\right) \neq 0 \quad(z \in \mathbb{U})
$$

which was given earlier by Silverman et al. [2]. Furthermore, in its special case when $\alpha=0$, Lemma 2 yields a recent result of Nezhmetdinov and Ponnusamy [1] for the sufficient conditions involving the coefficients of $f(z)$ to be in the class \mathcal{S}^{*}.

The object of the present paper is to give some generalizations of the aforementioned result due to Nezhmetdinov and Ponnusamy [1]. We also briefly discuss several interesting corollaries and consequences of our main results.

2. Coefficient Conditions for Functions in the Class $\mathcal{S}^{*}(\alpha)$

Our first result for functions $f(z)$ to be in the class $\mathcal{S}^{*}(\alpha)$ is contained in Theorem 1 below.
Theorem 1. If $f(z) \in \mathcal{A}$ satisfies the following condition:

$$
\begin{gather*}
\sum_{n=2}^{\infty}\left(\left|\sum_{k=1}^{n}\left[\sum_{j=1}^{k}(-1)^{k-j}(j+1-2 \alpha)\binom{\beta}{k-j} a_{j}\right]\binom{\gamma}{n-k}\right|\right. \\
\left.+\left|\sum_{k=1}^{\infty}\left[\sum_{j=1}^{k}(-1)^{k-j}(j-1)\binom{\beta}{k-j} a_{j}\right]\binom{\gamma}{n-k}\right|\right) \leqq 2(1-\alpha) \tag{2.1}\\
(0 \leqq \alpha<1 ; \beta \in \mathbb{R} ; \gamma \in \mathbb{R}),
\end{gather*}
$$

then $f(z) \in \mathcal{S}^{*}(\alpha)$.
Proof. First of all, we note that

$$
(1-z)^{\beta} \neq 0 \quad \text { and } \quad(1+z)^{\gamma} \neq 0 \quad(z \in \mathbb{U} ; \beta \in \mathbb{R} ; \gamma \in \mathbb{R})
$$

Hence, if the following inequality:

$$
\begin{equation*}
\left(1+\sum_{n=2}^{\infty} A_{n} z^{n-1}\right)(1-z)^{\beta}(1+z)^{\gamma} \neq 0 \quad(z \in \mathbb{U} ; \beta \in \mathbb{R} ; \gamma \in \mathbb{R}) \tag{2.2}
\end{equation*}
$$

holds true, then we have

$$
1+\sum_{n=2}^{\infty} A_{n} z^{n-1} \neq 0
$$

which is the relation (1.4) of Lemma2. It is easily seen that (2.1) is equivalent to

$$
\begin{equation*}
\left(1+\sum_{n=2}^{\infty} A_{n} z^{n-1}\right)\left(\sum_{n=0}^{\infty}(-1)^{n} b_{n} z^{n}\right)\left(\sum_{n=0}^{\infty} c_{n} z^{n}\right) \neq 0 \tag{2.3}
\end{equation*}
$$

where, for convenience,

$$
b_{n}:=\binom{\beta}{n} \quad \text { and } \quad c_{n}:=\binom{\gamma}{n}
$$

Considering the Cauchy product of the first two factors, 2.3) can be rewritten as follows:

$$
\begin{equation*}
\left(1+\sum_{n=2}^{\infty} B_{n} z^{n-1}\right)\left(\sum_{n=0}^{\infty} c_{n} z^{n}\right) \neq 0 \tag{2.4}
\end{equation*}
$$

where

$$
B_{n}:=\sum_{j=1}^{n}(-1)^{n-j} A_{j} b_{n-j}
$$

Furthermore, by applying the same method for the Cauchy product in (2.4), we find that

$$
1+\sum_{n=2}^{\infty}\left(\sum_{k=1}^{n} B_{k} c_{n-k}\right) z^{n-1} \neq 0 \quad(z \in \mathbb{U})
$$

or, equivalently, that

$$
1+\sum_{n=2}^{\infty}\left[\sum_{k=1}^{n}\left(\sum_{j=1}^{k}(-1)^{k-j} A_{j} b_{k-j}\right) c_{n-k}\right] z^{n-1} \neq 0 \quad(z \in \mathbb{U})
$$

Thus, if $f(z) \in \mathcal{A}$ satisfies the following inequality:

$$
\sum_{n=2}^{\infty}\left|\sum_{k=1}^{n}\left(\sum_{j=1}^{k}(-1)^{k-j} A_{j} b_{k-j}\right) c_{n-k}\right| \leqq 1
$$

that is, if

$$
\begin{aligned}
& \frac{1}{2(1-\alpha)} \sum_{n=2}^{\infty}\left|\sum_{k=1}^{n}\left(\sum_{j=1}^{k}(-1)^{k-j}[(j+1-2 \alpha)+(j-1) \zeta] a_{j} b_{k-j}\right) c_{n-k}\right| \\
& \leqq \frac{1}{2(1-\alpha)} \sum_{n=2}^{\infty}\left(\left|\sum_{k=1}^{n}\left[\sum_{j=1}^{k}(-1)^{k-j}(j+1-2 \alpha) a_{j} b_{k-j}\right] c_{n-k}\right|\right. \\
& \left.\quad+|\zeta|\left|\sum_{k=1}^{n}\left[\sum_{j=1}^{k}(-1)^{k-j}(j-1) b_{k-j} a_{j}\right] c_{n-k}\right|\right) \\
& \leqq 1 \quad(0 \leqq \alpha<1 ; \zeta \in \mathbb{C} ;|\zeta|=1),
\end{aligned}
$$

then $f(z) \in \mathcal{S}^{*}(\alpha)$. This completes the proof of Theorem 1 .
Setting $\alpha=0$ in Theorem 1, we deduce the following corollary.
Corollary 1. If $f(z) \in \mathcal{A}$ satisfies the following condition:

$$
\begin{gather*}
\sum_{n=2}^{\infty}\left(\left|\sum_{k=1}^{n}\left[\sum_{j=1}^{k}(-1)^{k-j}(j+1)\binom{\beta}{k-j} a_{j}\right]\binom{\gamma}{n-k}\right|\right. \\
\left.+\left|\sum_{k=1}^{\infty}\left[\sum_{j=1}^{k}(-1)^{k-j}(j-1)\binom{\beta}{k-j} a_{j}\right]\binom{\gamma}{n-k}\right|\right) \leqq 2 \tag{2.5}\\
(\beta \in \mathbb{R} ; \gamma \in \mathbb{R}),
\end{gather*}
$$

then $f(z) \in \mathcal{S}^{*}$.
Remark 3. If, in the hypothesis (2.5) of Corollary 1 , we set

$$
\beta-1=\gamma=0 \quad \text { or } \quad \beta=\gamma=1 \quad \text { or } \quad \beta-2=\gamma=0,
$$

we arrive at the result given by Nezhmetdinov and Ponnusamy [1]. Moreover, for $\beta=\gamma=0$ in Theorem11, we obtain Corollary 2 below.

Corollary 2. If $f(z) \in \mathcal{A}$ satisfies the following coefficient inequality:

$$
\begin{equation*}
\sum_{n=2}^{\infty}(n-\alpha)\left|a_{n}\right| \leqq 1-\alpha \quad(0 \leqq \alpha<1) \tag{2.6}
\end{equation*}
$$

then $f(z) \in \mathcal{S}^{*}(\alpha)$.
In particular, by putting $\alpha=0$ in (2.6), we get the following well-known coefficient condition for the familiar class \mathcal{S}^{*} of starlike functions in \mathbb{U}.

Corollary 3. If $f(z) \in \mathcal{A}$ satisfies the following coefficient inequality:

$$
\begin{equation*}
\sum_{n=2}^{\infty} n\left|a_{n}\right| \leqq 1 \tag{2.7}
\end{equation*}
$$

then $f(z) \in \mathcal{S}^{*}$.
We next derive the coefficient condition for functions $f(z)$ to be in the class $\mathcal{K}(\alpha)$.
Theorem 2. If $f(z) \in \mathcal{A}$ satisfies the following condition:

$$
\begin{gather*}
\sum_{n=2}^{\infty}\left(\left|\sum_{k=1}^{n}\left[\sum_{j=1}^{k}(-1)^{k-j} j(j+1-2 \alpha)\binom{\beta}{k-j} a_{j}\right]\binom{\gamma}{n-k}\right|\right. \\
\left.+\left|\sum_{k=1}^{\infty}\left[\sum_{j=1}^{k}(-1)^{k-j} j(j-1)\binom{\beta}{k-j} a_{j}\right]\binom{\gamma}{n-k}\right|\right) \leqq 2(1-\alpha) \tag{2.8}\\
(0 \leqq \alpha<1 ; \beta \in \mathbb{R} ; \gamma \in \mathbb{R})
\end{gather*}
$$

then $f(z) \in \mathcal{K}(\alpha)$.
Proof. Since $z f^{\prime}(z)$ belongs to the class $\mathcal{S}^{*}(\alpha)$ if and only if $f(z)$ is in the class $\mathcal{K}(\alpha)$, and since

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
z f^{\prime}(z)=z+\sum_{n=2}^{\infty} n a_{n} z^{n} \tag{2.10}
\end{equation*}
$$

upon replacing a_{j} in Theorem 1 by $j a_{j}$, we readily prove Theorem 2
By considering some special values for the parameters α, β and γ, we can deduce the following corollaries.
Corollary 4. If $f(z) \in \mathcal{A}$ satisfies the following condition:

$$
\begin{align*}
& \sum_{n=2}^{\infty}\left(\left|\sum_{k=1}^{n}\left[\sum_{j=1}^{k}(-1)^{k-j} j(j+1)(-1)^{k-j}\binom{\beta}{k-j} a_{j}\right]\binom{\gamma}{n-k}\right|\right. \tag{2.11}\\
& \left.\quad+\left|\sum_{k=1}^{\infty}\left[\sum_{j=1}^{k}(-1)^{k-j} j(j-1)\binom{\beta}{k-j} a_{j}\right]\binom{\gamma}{n-k}\right|\right) \leqq 2 \quad(\beta \in \mathbb{R} ; \gamma \in \mathbb{R})
\end{align*}
$$

then $f(z) \in \mathcal{K}$.

Corollary 5. If $f(z) \in \mathcal{A}$ satisfies the following coefficient inequality:

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-\alpha)\left|a_{n}\right| \leqq 1-\alpha \quad(0 \leqq \alpha<1) \tag{2.12}
\end{equation*}
$$

then $f(z) \in \mathcal{K}(\alpha)$.
Corollary 6. If $f(z) \in \mathcal{A}$ satisfies the following coefficient inequality:

$$
\begin{equation*}
\sum_{n=2}^{\infty} n^{2}\left|a_{n}\right| \leqq 1 \tag{2.13}
\end{equation*}
$$

then $f(z) \in \mathcal{K}$.

3. Coefficient Conditions for Functions in the Class $\mathcal{S} \mathcal{P}(\lambda, \alpha)$

In this section, we consider the subclass $\mathcal{S P}(\lambda, \alpha)$ of \mathcal{A}, which consists of functions $f(z) \in \mathcal{A}$ if and only if the following inequality holds true:

$$
\begin{equation*}
\mathfrak{R}\left[e^{i \lambda}\left(\frac{z f^{\prime}(z)}{f(z)}-\alpha\right)\right]>0 \quad\left(z \in \mathbb{U} ; 0 \leqq \alpha<1 ;-\frac{\pi}{2}<\lambda<\frac{\pi}{2}\right) . \tag{3.1}
\end{equation*}
$$

For $f(z) \in \mathcal{S P}(\lambda, \alpha)$, we first derive Lemma 3 below.
Lemma 3. A function $f(z) \in \mathcal{A}$ is in the class $\mathcal{S P}(\lambda, \alpha)$ if and only if

$$
\begin{equation*}
1+\sum_{n=2}^{\infty} C_{n} z^{n-1} \neq 0 \tag{3.2}
\end{equation*}
$$

where

$$
C_{n}:=\frac{n-1+2(1-\alpha) e^{-i \lambda} \cos \lambda+(n-1) \zeta}{2(1-\alpha) e^{-i \lambda} \cos \lambda} a_{n} .
$$

Proof. Letting

$$
p(z)=\frac{e^{i \lambda}\left(\frac{z f^{\prime}(z)}{f(z)}-\alpha\right)-i(1-\alpha) \sin \lambda}{(1-\alpha) \cos \lambda}
$$

we see that

$$
p(z) \in \mathcal{B} \quad \text { and } \quad \mathfrak{R}[p(z)]>0 \quad(z \in \mathbb{U})
$$

It follows from Lemma 1 that

$$
\begin{equation*}
\frac{e^{i \lambda}\left(\frac{z f^{\prime}(z)}{f(z)}-\alpha\right)-i(1-\alpha) \sin \lambda}{(1-\alpha) \cos \lambda} \neq \frac{\zeta-1}{\zeta+1} \quad(z \in \mathbb{U} ; \zeta \in \mathbb{C} ;|\zeta|=1) . \tag{3.3}
\end{equation*}
$$

We need not consider Lemma 1 for the case when $z=0$, because (3.3) implies that

$$
p(0) \neq \frac{\zeta-1}{\zeta+1} \quad(\zeta \in \mathbb{C} ;|\zeta|=1)
$$

It also follows from (3.3) that

$$
\begin{gathered}
\frac{e^{i \lambda}\left[z f^{\prime}(z)-\alpha f(z)\right]-i(1-\alpha) f(z) \sin \lambda}{(1-\alpha) \cos \lambda} \neq\left(\frac{\zeta-1}{\zeta+1}\right) f(z) \\
(z \in \mathbb{U} ; \zeta \in \mathbb{C} ;|\zeta|=1)
\end{gathered}
$$

which readily yields

$$
\begin{gathered}
(\zeta+1)\left\{e^{i \lambda}\left[z f^{\prime}(z)-\alpha f(z)\right]-i(1-\alpha) f(z) \sin \lambda\right\} \neq(\zeta-1)(1-\alpha) f(z) \cos \lambda \\
(z \in \mathbb{U} ; \zeta \in \mathbb{C} ;|\zeta|=1)
\end{gathered}
$$

or, equivalently,

$$
\begin{gather*}
(\zeta+1) e^{i \lambda} z f^{\prime}(z)-\alpha e^{i \lambda} f(z)-\zeta \alpha e^{i \lambda} f(z)-i(1-\alpha) f(z) \sin \lambda-i \zeta(1-\alpha) f(z) \sin \lambda \tag{3.4}\\
\neq \zeta(1-\alpha) f(z) \cos \lambda-(1-\alpha) f(z) \cos \lambda \\
(z \in \mathbb{U} ; \zeta \in \mathbb{C} ;|\zeta|=1)
\end{gather*}
$$

We find from (3.4) that

$$
\begin{gathered}
(\zeta+1) e^{i \lambda} z f^{\prime}(z)-\alpha e^{i \lambda} f(z)-\zeta \alpha e^{i \lambda} f(z)-\zeta(1-\alpha) e^{i \lambda} f(z)+(1-\alpha) e^{-i \lambda} f(z) \neq 0 \\
(z \in \mathbb{U} ; \zeta \in \mathbb{C} ;|\zeta|=1)
\end{gathered}
$$

that is, that

$$
\begin{gathered}
(1+\zeta) e^{i \lambda} z f^{\prime}(z)+\left(e^{-i \lambda}-2 \alpha \cos \lambda-\zeta e^{i \lambda}\right) f(z) \neq 0 \\
(z \in \mathbb{U} ; \zeta \in \mathbb{C} ;|\zeta|=1)
\end{gathered}
$$

which, in light of (1.1) with $a_{0}=a_{1}-1=0$, assumes the following form:

$$
\begin{gathered}
(\zeta+1) e^{i \lambda}\left(z+\sum_{n=2}^{\infty} n a_{n} z^{n}\right)+\left(e^{-i \lambda}-\zeta e^{i \lambda}-2 \alpha \cos \lambda\right)\left(z+\sum_{n=2}^{\infty} a_{n} z^{n}\right) \neq 0 \\
(z \in \mathbb{U} ; \zeta \in \mathbb{C} ;|\zeta|=1)
\end{gathered}
$$

or, equivalently,

$$
\begin{gather*}
2(1-\alpha) z \cos \lambda\left(1+\sum_{n=2}^{\infty} \frac{n+e^{-2 i \lambda}-2 \alpha e^{-i \lambda} \cos \lambda+(n-1) \zeta}{2(1-\alpha) e^{-i \lambda} \cos \lambda} a_{n} z^{n-1}\right) \neq 0 \tag{3.5}\\
(z \in \mathbb{U} ; \zeta \in \mathbb{C} ;|\zeta|=1)
\end{gather*}
$$

Finally, upon dividing both sides of (3.5) by

$$
2(1-\alpha) z \cos \lambda \neq 0
$$

and noting that

$$
e^{-2 i \lambda}=-1+2 e^{-i \lambda} \cos \lambda
$$

we obtain

$$
\begin{gathered}
1+\sum_{n=2}^{\infty} \frac{n-1+2(1-\alpha) e^{-i \lambda} \cos \lambda+(n-1) \zeta}{2(1-\alpha) e^{-i \lambda} \cos \lambda} a_{n} \neq 0 \\
\quad\left(0 \leqq \alpha<1 ;-\frac{\pi}{2}<\lambda<\frac{\pi}{2} ; \zeta \in \mathbb{C} ;|\zeta|=1\right)
\end{gathered}
$$

which completes the proof of Lemma 3 (see also the proof of a known result [1, Theorem 3.1]).

By applying Lemma 3, we now prove Theorem 3 below.

Theorem 3. If $f(z) \in \mathcal{A}$ satisfies the following condition:

$$
\begin{gather*}
\sum_{n=2}^{\infty}\left(\left|\sum_{k=1}^{n}\left[\sum_{j=1}^{k}(-1)^{k-j}\left[j-\alpha+(1-\alpha) e^{-2 i \lambda}\right]\binom{\beta}{k-j} a_{j}\right]\binom{\gamma}{n-k}\right|\right. \\
\left.+\left|\sum_{k=1}^{\infty}\left[\sum_{j=1}^{k}(-1)^{k-j}(j-1)\binom{\beta}{k-j} a_{j}\right]\binom{\gamma}{n-k}\right|\right) \leqq 2(1-\alpha) \cos \lambda \tag{3.6}\\
\\
\left(0 \leqq \alpha<1 ;-\frac{\pi}{2}<\lambda<\frac{\pi}{2} ; \beta \in \mathbb{R} ; \gamma \in \mathbb{R}\right),
\end{gather*}
$$

then $f(z) \in \mathcal{S P}(\lambda, \alpha)$.
Proof. Applying the same method as in the proof of Theorem 1, we see that $f(z)$ is in the class $\mathcal{S P}(\lambda, \alpha)$ if

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left|\sum_{k=1}^{n}\left(\sum_{j=1}^{k}(-1)^{k-j} C_{j} b_{k-j}\right) c_{n-k}\right| \leqq 1 \tag{3.7}
\end{equation*}
$$

where, as before,

$$
b_{n}:=\binom{\beta}{n} \quad \text { and } \quad c_{n}:=\binom{\gamma}{n}
$$

the coefficients C_{n} being given as in Lemma3. It follows from the inequality (3.7) that

$$
\begin{aligned}
& \frac{1}{\left|2(1-\alpha) e^{-i \lambda} \cos \lambda\right|} \\
& \quad \cdot \sum_{n=2}^{\infty}\left|\sum_{k=1}^{n}\left[\sum_{j=1}^{k}\left((-1)^{k-j}\left(j-1+2(1-\alpha) e^{-i \lambda} \cos \lambda\right)+\zeta(j-1)\right) a_{j} b_{k-j}\right] c_{n-k}\right| \\
& \leqq \frac{1}{2(1-\alpha) \cos \lambda} \\
& \quad \cdot \sum_{n=2}^{\infty}\left(\left|\sum_{k=1}^{n}\left[\sum_{j=1}^{k}(-1)^{k-j}\left(j-\alpha+(1-\alpha)\left(-1+2 e^{-i \lambda} \cos \lambda\right)\right) b_{k-j} a_{j}\right] c_{n-k}\right|\right. \\
& \\
& \left.\quad+|\zeta| \sum_{k=1}^{n}\left[\sum_{j=1}^{k}(-1)^{k-j}(j-1) b_{k-j} a_{j}\right] c_{n-k} \mid\right) \\
& \text { (3.8) } \leqq 1 \quad\left(0 \leqq \alpha<1 ;-\frac{\pi}{2}<\lambda<\frac{\pi}{2} ; \zeta \in \mathbb{C} ;|\zeta|=1\right),
\end{aligned}
$$

which implies that, if $f(z)$ satisfies the hypothesis 3.6) of Theorem 3, then $f(z) \in \mathcal{S P}(\lambda, \alpha)$. This completes the proof of Theorem 3.

In its special case when

$$
\beta-1=\gamma=0 \quad \text { or } \quad \beta=\gamma=1 \quad \text { or } \quad \beta-2=\gamma=0,
$$

Theorem 3 would immediately yield the following corollary.
Corollary 7 (cf. [1]). If $f(z) \in \mathcal{A}$ satisfies any one of the following conditions:

$$
\begin{align*}
& \sum_{n=2}^{\infty}\left(\left|\left[n-\alpha+(1-\alpha) e^{-2 i \lambda}\right]\left(a_{n}-a_{n-1}\right)+a_{n-1}\right|+\left|(n-1)\left(a_{n}-a_{n-1}\right)+a_{n-1}\right|\right) \tag{3.9}\\
& \leqq 2(1-\alpha) \cos \lambda \quad\left(0 \leqq \alpha<1 ;-\frac{\pi}{2}<\lambda<\frac{\pi}{2}\right)
\end{align*}
$$

or

$$
\begin{array}{r}
\sum_{n=2}^{\infty}\left(\left|\left[n-\alpha+(1-\alpha) e^{-2 i \lambda}\right]\left(a_{n}-a_{n-2}\right)+2 a_{n-2}\right|+\left|(n-1)\left(a_{n}-a_{n-2}\right)+2 a_{n-2}\right|\right) \tag{3.10}\\
\leqq 2(1-\alpha) \cos \lambda \quad\left(0 \leqq \alpha<1 ;-\frac{\pi}{2}<\lambda<\frac{\pi}{2}\right)
\end{array}
$$

or

$$
\begin{align*}
& \sum_{n=2}^{\infty}\left(\left|\left[n-1-\alpha+(1-\alpha) e^{-2 i \lambda}\right]\left(a_{n}-2 a_{n-1}+a_{n-2}\right)+a_{n}-a_{n-2}\right|\right. \tag{3.11}\\
& \left.+\left|(n-2)\left(a_{n}-2 a_{n-1}+a_{n-2}\right)+a_{n}-a_{n-2}\right|\right) \\
& \quad \leqq 2(1-\alpha) \cos \lambda \quad\left(0 \leqq \alpha<1 ;-\frac{\pi}{2}<\lambda<\frac{\pi}{2}\right)
\end{align*}
$$

then $f(z) \in \mathcal{S P}(\lambda, \alpha)$.
Remark 4. For $\lambda=0$, Theorem 3 implies Theorem 1. Furthermore, by setting $\alpha=0$ in Theorem 3, we arrive at the following sufficient condition for functions $f(z) \in \mathcal{A}$ to be in the class $\mathcal{S P}(\lambda)$.
Corollary 8. If $f(z) \in \mathcal{A}$ satisfies the following condition:

$$
\begin{align*}
& \sum_{n=2}^{\infty}\left(\left|\sum_{k=1}^{n}\left[\sum_{j=1}^{k}(-1)^{k-j}\left(j+e^{-2 i \lambda}\right)\binom{\beta}{k-j} a_{j}\right]\binom{\gamma}{n-k}\right|\right. \tag{3.12}\\
& \left.+\left|\sum_{k=1}^{\infty}\left[\sum_{j=1}^{k}(-1)^{k-j}(j-1)\binom{\beta}{k-j} a_{j}\right]\binom{\gamma}{n-k}\right|\right) \\
& \leqq 2 \cos \lambda \quad\left(0 \leqq \alpha<1 ; \beta \in \mathbb{R} ; \gamma \in \mathbb{R} ;-\frac{\pi}{2}<\lambda<\frac{\pi}{2}\right)
\end{align*}
$$

then

$$
f(z) \in \mathcal{S P}(\lambda):=\mathcal{S P}(\lambda, 0)
$$

References

[1] I.R. NEZHMETDINOV AND S. PONNUSAMY, New coefficient conditions for the starlikeness of analytic functions and their applications, Houston J. Math., 31 (2005), 587-604.
[2] H. SILVERMAN, E.M. SILVIA AND D. TELAGE, Convolution conditions for convexity, starlikeness and spiral-likeness, Math. Zeitschr., 162 (1978), 125-130.
[3] H.M. SRIVASTAVA and S. OWA (Editors), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.

[^0]: Key words and phrases: Coefficient inequalities, Analytic functions, Univalent functions, Spiral-like functions, Starlike functions, Convex functions.

[^1]: The present investigation was supported, in part, by the Natural Sciences and Engineering Research Council of Canada under Grant OGP0007353.

 260-07

