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Abstract

In this note, we establish new integral inequalities involving two functions and
their derivatives. The discrete analogues of the main results are also given.
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1. Introduction
Inequalities have proved to be one of the most powerful and far-reaching tools
for the development of many branches of mathematics. The monographs [1] –
[3] contain an extensive number of surveys of inequalities up to the year of their
publications. In the last few decades, much significant development in the clas-
sical and new inequalities, particularly in analysis has been witnessed. The aim
of the present note is to establish new integral inequalities, providing approxi-
mation formulae which can be used to estimate the deviation of the product of
two functions. The discrete versions of the main results are also given.
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2. Statement of Results
Our main results are given in the following theorem.

Theorem 2.1.Letf, g ∈ C1 ([a, b] ,R), [a, b] ⊂ R, a < b. Then

(2.1)

∣∣∣∣f (x) g (x)− 1

2
[g (x) F + f (x) G]

∣∣∣∣
≤ 1

4

[
|g (x)|

∫ b

a

|f ′ (t)| dt + |f (x)|
∫ b

a

|g′ (t)| dt

]
,

and

(2.2) |f (x) g (x)− [g (x) F + f (x) G] + FG|

≤ 1

4

(∫ b

a

|f ′ (t)| dt

)(∫ b

a

|g′ (t)| dt

)
,

for all x ∈ [a, b], where

(2.3) F =
f (a) + f (b)

2
, G =

g (a) + g (b)

2
.

The constant1
4

in (2.1) and (2.2) is sharp.

Remark 1. If we takeg(x) = 1 and henceg′ (x) = 0 in (2.1), then by simple
calculation we get the inequality

(2.4) |f (x)− F | ≤ 1

2

∫ b

a

|f ′ (t)| dt,
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which is established in [5, p.28]. We believe that the inequality established in
(2.2) is new to the literature.

The discrete versions of the inequalities in Theorem2.1are embodied in the
following theorem.

Theorem 2.2.Let{ui} , {vi} for i = 0, 1, 2, . . . , n, n ∈ N be sequences of real
numbers. Then

(2.5)

∣∣∣∣uivi −
1

2
[viU + uiV ]

∣∣∣∣ ≤ 1

4

[
|vi|

n−1∑
j=0

|∆uj|+ |ui|
n−1∑
j=0

|∆vj|

]
,

and

(2.6) |uivi − [viU + uiV ] + UV | ≤ 1

4

(
n−1∑
j=0

|∆uj|

)(
n−1∑
j=0

|∆vj|

)
,

for i = 0, 1, 2, . . . , n, where

(2.7) U =
u0 + un

2
, V =

v0 + vn

2
,

and∆ is the forward difference operator. The constant1
4

in (2.5) and (2.6) is
sharp.
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3. Proof of Theorem2.1
From the hypotheses of Theorem2.1we have the following identities (see [5],
[6, p. 267]):

(3.1) f (x)− F =
1

2

[∫ x

a

f ′ (t) dt−
∫ b

x

f ′ (t) dt

]
,

(3.2) g (x)−G =
1

2

[∫ x

a

g′ (t) dt−
∫ b

x

g′ (t) dt

]
.

Multiplying both sides of (3.1) and (3.2) by g(x) andf(x) respectively, adding
the resulting identities and rewriting we have

(3.3) f (x) g (x)− 1

2
[g (x) F + f (x) G]

=
1

4

[
g (x)

[∫ x

a

f ′ (t) dt−
∫ b

x

f ′ (t) dt

]
+f (x)

[∫ x

a

g′ (t) dt−
∫ b

x

g′ (t) dt

]]
.

From (3.3) and using the properties of modulus we have∣∣∣∣f (x) g (x)− 1

2
[g (x) F + f (x) G]

∣∣∣∣
≤ 1

4

[
|g (x)|

∫ b

a

|f ′ (t)| dt + |f (x)|
∫ b

a

|g′ (t)| dt

]
.
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This is the required inequality in (2.1).
Multiplying the left sides and right sides of (3.1) and (3.2) we get

(3.4) f (x) g (x)− [g (x) F + f (x) G] + FG

=
1

4

[∫ x

a

f ′ (t) dt−
∫ b

x

f ′ (t) dt

] [∫ x

a

g′ (t) dt−
∫ b

x

g′ (t) dt

]
.

From (3.4) and using the properties of modulus we have

|f (x) g (x)− [g (x) F + f (x) G] + FG| ≤ 1

4

[∫ b

a

|f ′ (t)| dt

] [∫ b

a

|g′ (t)| dt

]
.

This proves the inequality in (2.2).
To prove the sharpness of the constant1

4
in (2.1) and (2.2), assume that the

inequalities (2.1) and (2.2) hold with constantsc > 0 andk > 0 respectively.
That is,

(3.5)

∣∣∣∣f (x) g (x)− 1

2
[|g (x)|F + |f (x)|G]

∣∣∣∣
≤ c

[
|g (x)|

∫ b

a

|f ′ (t)| dt + |f (x)|
∫ b

a

|g′ (t)| dt

]
,

and

(3.6) |f (x) g (x)− [|g (x)|F + |f (x)|G] + FG|

≤ k

(∫ b

a

|f ′ (t)| dt

)(∫ b

a

|g′ (t)| dt

)
,
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for x ∈ [a, b]. In (3.5) and (3.6), choosef (x) = g (x) = x and hencef ′ (x) =
g′ (x) = 1, F = G = a+b

2
. Then by simple computation, we get

(3.7)

∣∣∣∣x− 1

2
(a + b)

∣∣∣∣ ≤ 2c (b− a) ,

and

(3.8)

∣∣∣∣∣x (x− (a + b)) +

(
a + b

2

)2
∣∣∣∣∣ ≤ k (b− a)2 .

By taking x = b, from (3.7) we observe thatc ≥ 1
4

and from (3.8) it is easy
to observe thatk ≥ 1

4
, which proves the sharpness of the constants in (2.1) and

(2.2). The proof is complete.
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4. Proof of Theorem2.2
From the hypotheses of Theorem2.2we have the following identities (see [5],
[6, p. 352]):

(4.1) ui − U =
1

2

[
i−1∑
j=0

∆uj −
n−1∑
j=i

∆uj

]
and

(4.2) vi − V =
1

2

[
i−1∑
j=0

∆vj −
n−1∑
j=i

∆vj

]
.

Multiplying both sides of (4.1) and (4.2) by vi andui (i = 0, 1, 2, . . . , n) re-
spectively, adding the resulting identities and rewriting we get

(4.3) uivi −
1

2
[viU + uiV ]

=
1

4

[
vi

[
i−1∑
j=0

∆uj −
n−1∑
j=i

∆uj

]
+ ui

[
i−1∑
j=0

∆vj −
n−1∑
j=i

∆vj

]]
.

Multiplying the left sides and right sides of (4.1) and (4.2) we have

(4.4) uivi − [viU + uiV ] + UV

=
1

4

[
i−1∑
j=0

∆uj−
n−1∑
j=i

∆uj

][
i−1∑
j=0

∆vj−
n−1∑
j=i

∆vj

]
.
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From (4.3) and (4.4) and following the proof of Theorem2.1, we get the desired
inequalities in (2.5) and (2.6).

Assume that the inequalities (2.5) and (2.6) hold with constantsα > 0 and
β > 0 respectively. Taking{ui} = {vi} = {i} for i = 0, 1, 2, . . . , n and
U = V = n

2
and following similar arguments to those used in the last part of

the proof of Theorem2.1, it is easy to observe thatα ≥ 1
4

andβ ≥ 1
4

and hence
the constants in (2.5) and (2.6) are sharp. The proof is complete.

Remark 2. Dividing both sides of (3.3) and (3.4) by (b − a), then integrat-
ing both sides with respect tox over [a, b] and closely looking at the proof of
Theorem2.1we get

(4.5)

∣∣∣∣ 1

b− a

∫ b

a

f (x) g (x) dx

− 1

2 (b− a)

[
F

∫ b

a

g (x) dx + G

∫ b

a

f (x) dx

]∣∣∣∣
≤ 1

4 (b− a)

[(∫ b

a

|g (x)| dx

)(∫ b

a

|f ′ (x)| dx

)
+

(∫ b

a

|f (x)| dx

)(∫ b

a

|g′ (x)| dx

)]
,

and

(4.6)

∣∣∣∣ 1

b− a

∫ b

a

f (x) g (x) dx

− 1

(b− a)

[
F

∫ b

a

g (x) dx + G

∫ b

a

f (x) dx− FG

]∣∣∣∣
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≤ 1

4

(∫ b

a

|f ′ (x)| dx

)(∫ b

a

|g′ (x)| dx

)
.

We note that the inequalities (4.5) and (4.6) are similar to those of the well
known inequalities due to Grüss andČebyšev, see [3, 4].
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