ON A DISCRETE OPIAL-TYPE INEQUALITY

WING-SUM CHEUNG

Department of Mathematics The University of Hong Kong Pokfulam Road, Hong Kong
EMail: wscheung@hku.hk

CHANG-JIAN ZHAO

Department of Information and Mathematics Sciences
College of Science, China Jiliang University
Hangzhou 310018, P.R. China
EMail: chjzhao@cjlu.edu.cn

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words:

Abstract:

Acknowledgements:

06 August, 2007
20 August, 2007
R.P. Agarwal

26D15.
Opial's inequality, discrete Opial's inequality, Hölder inequality.
The main purpose of the present paper is to establish a new discrete Opial-type inequality. Our result provide a new estimates on such type of inequality.

Research is supported Zhejiang Provincial Natural Science Foundation of China (Y605065), Foundation of the Education Department of Zhejiang Province of China (20050392), the Academic Mainstay of Middle-age and Youth Foundation of Shandong Province of China (200203).

Discrete Opial-type Inequality Wing-Sum Cheung and Chang-jian Zhao
vol. 8, iss. 4, art. 98, 2007

Title Page
Contents

Page 1 of 9
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
 issn: 1443-575b

Contents

1 Introduction 3
2 Main Results

Discrete Opial-type Inequality Wing-Sum Cheung and

Chang-jian Zhao
vol. 8, iss. 4, art. 98, 2007

Title Page
Contents

$\boldsymbol{4}$	
$\boldsymbol{4}$	
Page 2 of 9	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: l443-575b

1. Introduction

In 1960, Z. Opial [14] established the following integral inequality:
Theorem A. Suppose $f \in C^{1}[0, h]$ satisfies $f(0)=f(h)=0$ and $f(x)>0$ for all $x \in(0, h)$. Then the following integral inequality holds

$$
\begin{equation*}
\int_{0}^{h}\left|f(x) f^{\prime}(x)\right| d x \leq \frac{h}{4} \int_{0}^{h}\left(f^{\prime}\right)^{2} d x \tag{1.1}
\end{equation*}
$$

where the constant $\frac{h}{4}$ is best possible.
Opial's inequality and its generalizations, extensions and discretizations, play a fundamental role in establishing the existence and uniqueness of initial and boundary value problems for ordinary and partial differential equations as well as difference equations [1, 2, 3, 10, 12]. In recent years, inequality (1.1) has received further attention and a large number of papers dealing with new proofs, extensions, generalizations and variants of Opial's inequality have appeared in the literature [4] [9], [13], [15], [16], [18] - [20]. For an extensive survey on these inequalities, see [1, 12].

For discrete analogues of Opial-type inequalities, good accounts of the recent works in this aspect are given in [1, 12], etc. In particular, an inequality involving two sequences was established by Pachpatte in [17] as follows:

Theorem B. Let x_{i} and $y_{i}(i=0,1, \ldots, \tau)$ be non-decreasing sequences of nonnegative numbers, and $x_{0}=y_{0}=0$. Then, the following inequality holds

$$
\begin{equation*}
\sum_{i=0}^{\tau-1}\left[x_{i} \Delta y_{i}+y_{i+1} \Delta x_{i}\right] \leq \frac{\tau}{2} \sum_{i=0}^{\tau-1}\left[\left(\Delta x_{i}\right)^{2}+\left(\Delta y_{i}\right)^{2}\right] \tag{1.2}
\end{equation*}
$$

Discrete Opial-type Inequality Wing-Sum Cheung and
Chang-jian Zhao
vol. 8, iss. 4, art. 98, 2007

Title Page
Contents

Page 3 of 9
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

The main purpose of the present paper is to establish a new discrete Opial-type inequality involving two sequences as follows.

Theorem 1.1. Let $\left\{x_{i, j}\right\}$ and $\left\{y_{i, j}\right\}$ be non-decreasing sequences of non-negative numbers defined for $i=0,1, \ldots, \tau, j=0,1, \ldots, \sigma$, where τ, σ are natural numbers, and $x_{0, j}=x_{i, 0}=0, y_{0, j}=y_{i, 0}=0(i=0,1, \ldots, \tau ; j=0,1, \ldots, \sigma)$. Let

$$
\Delta_{1} x_{i, j}=x_{i+1, j}-x_{i, j}, \quad \Delta_{2} x_{i, j}=x_{i, j+1}-x_{i, j}
$$

then

$$
\begin{align*}
& \sum_{i=0}^{\tau-1} \sum_{j=0}^{\sigma-1}\left[x_{i, j} \cdot \Delta_{2} \Delta_{1} y_{i, j}+\Delta_{1} y_{i, j+1} \cdot \Delta_{2} x_{i+1, j}\right. \tag{1.3}\\
& \left.+y_{i, j} \cdot \Delta_{2} \Delta_{1} x_{i, j}+\Delta_{1} x_{i, j+1} \cdot \Delta_{2} y_{i+1, j+1}\right] \\
& \leq
\end{align*}
$$

Our result in special cases yields some of the recent results on Opial's inequality and provides a new estimate on such types of inequalities.
J

Discrete Opial-type Inequality Wing-Sum Cheung and

Chang-jian Zhao

vol. 8, iss. 4, art. 98, 2007

Title Page
Contents

$\boldsymbol{4}$	
$\mathbf{~ P a g e ~} 4$ of 9	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Main Results

Theorem 2.1. Let $\left\{x_{i, j}\right\}$ and $\left\{y_{i, j}\right\}$ be non-decreasing sequences of non-negative numbers defined for $i=0,1, \ldots, \tau, j=0,1, \ldots, \sigma$, where τ, σ are natural numbers, with $x_{0, j}=x_{i, 0}=0, y_{0, j}=y_{i, 0}=0(i=0,1, \ldots, \tau ; j=0,1, \ldots, \sigma)$. Let $\frac{1}{p}+\frac{1}{q}=1, p>1$, and

$$
\Delta_{1} x_{i, j}=x_{i+1, j}-x_{i, j}, \quad \Delta_{2} x_{i, j}=x_{i, j+1}-x_{i, j}
$$

then
(2.1) $\sum_{i=0}^{\tau-1} \sum_{j=0}^{\sigma-1}\left[x_{i, j} \cdot \Delta_{2} \Delta_{1} y_{i, j}+\Delta_{1} y_{i, j+1} \cdot \Delta_{2} x_{i+1, j}\right.$

$$
\begin{aligned}
& \left.\quad+y_{i, j} \cdot \Delta_{2} \Delta_{1} x_{i, j}+\Delta_{1} x_{i, j+1} \cdot \Delta_{2} y_{i+1, j+1}\right] \\
& \leq \frac{1}{p}(\sigma \tau)^{p / q} \sum_{i=0}^{\tau-1} \sum_{j=0}^{\sigma-1}\left(\Delta_{2} \Delta_{1} x_{i, j}\right)^{p}+\frac{1}{q}(\sigma \tau)^{q / p} \sum_{i=0}^{\tau-1} \sum_{j=0}^{\sigma-1}\left(\Delta_{2} \Delta_{1} y_{i, j}\right)^{q} .
\end{aligned}
$$

Discrete Opial-type Inequality Wing-Sum Cheung and

Chang-jian Zhao

vol. 8, iss. 4, art. 98, 2007

Title Page
Contents

Page 5 of 9

Go Back

Full Screen

Close
journal of inequalities in pure and applied mathematics
$0,1, \ldots, \sigma)$, it follows that

$$
\begin{array}{r}
\sum_{i=0}^{\tau-1} \sum_{j=0}^{\sigma-1}\left[x_{i, j} \cdot \Delta_{2} \Delta_{1} y_{i, j}+\Delta_{1} y_{i, j+1} \cdot \Delta_{2} x_{i+1, j}+y_{i, j} \cdot \Delta_{2} \Delta_{1} x_{i, j}+\Delta_{1} x_{i, j+1} \cdot \Delta_{2} y_{i+1, j+1}\right] \\
=x_{\tau, \sigma} \cdot y_{\tau, \sigma}
\end{array}
$$

Now, using the elementary inequality

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}, \quad \frac{1}{p}+\frac{1}{q}=1, \quad p>1
$$

Discrete Opial-type Inequality Wing-Sum Cheung and

> Chang-jian Zhao
vol. 8, iss. 4, art. 98, 2007
the facts that

$$
\begin{aligned}
& x_{\tau, \sigma}=\sum_{i=0}^{\tau-1} \sum_{j=0}^{\sigma-1} \Delta_{2} \Delta_{1} x_{i, j} \\
& y_{\tau, \sigma}=\sum_{i=0}^{\tau-1} \sum_{j=0}^{\sigma-1} \Delta_{2} \Delta_{1} y_{i, j}
\end{aligned}
$$

and Hölder's inequality, we obtain

Page 6 of 9

Go Back

Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
$\leq \frac{1}{p}(\sigma \tau)^{p / q} \sum_{i=0}^{\tau-1} \sum_{j=0}^{\sigma-1}\left(\Delta_{2} \Delta_{1} x_{i, j}\right)^{p}+\frac{1}{q}(\sigma \tau)^{q / p} \sum_{i=0}^{\tau-1} \sum_{j=0}^{\sigma-1}\left(\Delta_{2} \Delta_{1} y_{i, j}\right)^{q}$.

Remark 1. Taking $p=q=2$, Theorem 2.1 reduces to Theorem 1.1.
Furthermore, by reducing $\left\{x_{i, j}\right\}$ and $\left\{y_{i, j}\right\}$ to $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}(i=0,1, \ldots, \tau)$, respectively, and with suitable changes, we have

$$
\sum_{i=0}^{\tau-1}\left[x_{i} \Delta y_{i}+y_{i+1} \Delta x_{i}\right] \leq \frac{\tau}{2} \sum_{i=0}^{\tau-1}\left[\left(\Delta x_{i}\right)^{2}+\left(\Delta y_{i}\right)^{2}\right]
$$

Discrete Opial-type Inequality Wing-Sum Cheung and

> Chang-jian Zhao
vol. 8, iss. 4, art. 98, 2007

Title Page
Contents

journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] R.P. AGARWAL and P.Y.H. PANG, Opial Inequalities with Applications in Differential and Difference Equations, Kluwer Academic Publishers, Dordrecht, 1995.
[2] R.P. AGARWAL AND V. LAKSHMIKANTHAM, Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations, World Scientific, Singapore, 1993.
[3] D. BAINOV AND P. SIMEONOV, Integral Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, 1992.
[4] W.S. CHEUNG, On Opial-type inequalities in two variables, Aequationes Math., 38 (1989), 236-244.
[5] W.S. CHEUNG, Some new Opial-type inequalities, Mathematika, 37 (1990), 136-142.
[6] W.S. CHEUNG, Some generalized Opial-type inequalities, J. Math. Anal. Appl., 162 (1991), 317-321.
[7] W.S. CHEUNG, Opial-type inequalities with m functions in n variables, Mathematika, 39 (1992), 319-326.
[8] W.S. CHEUNG, D.D. ZHAO AND J.E. PEČARIĆ, Opial-type inequalities for differential operators, to appear in Nonlinear Anal.
[9] E.K. GODUNOVA and V.I. LEVIN, On an inequality of Maroni, Mat. Zametki, 2 (1967), 221-224.
[10] J.D. LI, Opial-type integral inequalities involving several higher order derivatives, J. Math. Anal. Appl., 167 (1992), 98-100.

Discrete Opial-type Inequality Wing-Sum Cheung and

Chang-jian Zhao
vol. 8, iss. 4, art. 98, 2007

Title Page	
Contents	
$\mathbf{4 4}$	
$\mathbf{4}$	
Page 8 of 9	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b
[11] G.V. MILOVANOVIĆ and I.Z. MILOVANOVIĆ, Some discrete inequalities of Opial's type, Acta Scient. Math. (Szeged), 47 (1984), 413-417.
[12] D.S. MITRINOVIĆ, J.E. PEČARIĆ AND A.M. FINK, Inequalities involving Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, Dordrecht, 1991.
[13] D.S. MITRINOVIĆ, Analytic Inequalities, Springer-Verlag, Berlin, New York, 1970.
[14] Z. OPIAL, Sur une inégalité, Ann. Polon. Math., 8 (1960), 29-32.
[15] B.G. PACHPATTE, On integral inequalities similar to Opial's inequality, Demonstratio Math., 22 (1989), 21-27.
[16] B.G. PACHPATTE, Some inequalities similar to Opial's inequality, Demonstratio Math., 26 (1993), 643-647.
[17] B.G. PACHPATTE, A note on Opial and Wirtinger type discrete inequalities, J. Math. Anal. Appl., 127 (1987), 470-474.
[18] J.E. PEČARIĆ, An integral inequality, in Analysis, Geometry, and Groups: A Riemann Legacy Volume (H.M. Srivastava and Th.M. Rassias, Editors), Part II, Hadronic Press, Palm Harbor, Florida, 1993, pp. 472-478.
[19] J.E. PEČARIĆ AND I. BRNETIĆ, Note on generalization of Godunova-LevinOpial inequality, Demonstratio Math., 30 (1997), 545-549.
[20] J.E.P EČARIĆ AND I. BRNETIĆ, Note on the Generalization of Godunova-Levin-Opial inequality in Several Independent Variables, J. Math. Anal. Appl., 215 (1997), 274-282.

Discrete Opial-type Inequality Wing-Sum Cheung and

Chang-jian Zhao
vol. 8 , iss. 4 , art. 98,2007

Title Page	
Contents	
$\mathbf{4 4}$	
$\mathbf{4}$	
Page 9 of 9	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

