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Abstract: We study the equation−∆pu + |x|a|u|p−2u = |x|b|u|q−2u with Dirichlet
boundary condition onB(0, R) or on RN . We prove the existence of the ra-
dial solution and nonradial solutions of this equation.
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1. Introduction and Main Result

Equations of the form

(1.1)

{
−∆tu + g(x)|u|s−2u = f(x, u) in Ω

u = 0, on∂Ω

have attracted much attention. Many papers deal with the problem (1.1) in the case of
t = 2, Ω = RN , s = 2, g large at infinity andf superlinear, subcritical and bounded
in x, see e.g. [1], [2] and [4]. The problem (1.1) with t = 2, Ω = B(0, 1), g(x) = 0
andf(x, u) = |x|bul−1 was studied in [9]; in particular, it was proved that under
some conditions the ground states are not radial symmetric. The caset = 2, Ω =
B(0, 1) or on RN , g(x) = 1 andf(x, u) = |x|b|u|l−2u was studied in [7]. The
problem (1.1) with t = s, Ω = RN , g(x) = V (|x|) andf(x, u) = Q(|x|)|u|l−2u was
studied by J. Su., Z.-Q. Wang and M. Willem ([11], [12]). They proved embedding
results for functions in the weightedW 1,p(RN) space of radial symmetry. The results
were then used to obtain ground state and bound state solutions of equations with
unbounded or decaying radial potentials.

In this paper, we consider the nonlinear elliptic problem

(1.2)


−∆pu + |x|a|u|p−2u = |x|b|u|q−2u in Ω

u > 0, u ∈ W 1,p(Ω),

u = 0, on∂Ω

and prove the existence of the radial and the nonradial solutions of the problem (1.2).
Here,∆pu = div(|∇u|p−2∇u) is thep-Laplacian operator, and1 < p < N, a ≥
0, b ≥ 0.

We denote byW 1,p
r (RN) the space of radially symmetric functions in

W 1,p(RN) =
{
u ∈ Lp(RN) : ∇u ∈ Lp(RN)

}
.
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W 1,p
r,a (RN) is denoted by the space of radially symmetric functions in

W 1,p
a (RN) =

{
u ∈ W 1,p(RN) :

∫
RN

|x|a|u|p < ∞
}

.

We also denote byD1,p
r (RN) the space of radially symmetric functions in

D1,p(RN) =
{

u ∈ L
Np

N−p
(
RN

)
: ∇u ∈ Lp

(
RN

)}
.

Our main results are:

Theorem 1.1. If a ≥ 0, b ≥ 0, 1 < p < N and

p < q < q̃ =
Np

N − p
+

bp

N − p
,

pb− a

(
p +

(p− 1)(q − p)

p

)
< (q − p)(N − 1),

then the problem (1.2) has a radial solution.

Remark1. In [8], Sirakov proves that the problem (1.2) with p = 2 has a solution
for

2 < q < q# =
2N

N − 2
− 4b

a(N − 2)
.

In [6], P. Sintzoff and M. Willem proved the existence of a solution of the prob-
lem (1.2) with

p = 2, q ≤ 2∗, 2b− a
(
1 +

q

2

)
< (N − 1)(q − 2).

Theorem1.1 extends the results of [6] to the general equation with ap−Laplacian
operator.
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Theorem 1.2.Suppose thata ≥ 0, b ≥ 0, 1 < p < N and

p < q <
Np

N − p
,

pb− a

(
p +

(p− 1)(q − p)

p

)
< (q − p)(N − 1), aq < pb,

then for everyR, problem (1.2) with Ω = B(0, R), R large enough has a radial and
a nonradial solution.

This paper is organized as follows: In Section2, we study (1.2) in the case of
Ω = RN . We prove the existence of a radial least energy solution of (1.2) when

1 < p < N, p < q < q̃, pb− a

(
p +

(p− 1)(q − p)

p

)
< (q − p)(N − 1).

In Section3, we consider the existence of nonradial solutions of (1.2) with Ω =
B(0, R), R large enough. Finally, in Section4, we consider necessary conditions
for the existence of solutions of (1.2).
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2. Radial Solution

In this paper, unless stated otherwise, all integrals are understood to be taken over
all of RN . Also, throughout the paper, we will often denote various constants by the
same letter.

Lemma 2.1. Suppose that1 < p < N. There existAN > 0, such that, for every
u ∈ W 1,p

r,a (RN), u ∈ C(RN\{0}), for a ≥ p
p−1

(1−N), we have that

|x|
N−1

p
+

a(p−1)

p2 |u(x)| ≤ AN

(∫
|x|a|u|p

) p−1

p2
(∫

|∇u|p
) 1

p2

.

Proof. Since

d

dr

(
|u|pra· p−1

p rN−1
)

=
p

2

(
|u|2

) p
2
−1 · 2u · du

dr
ra· p−1

p rN−1

+ |u|p
(

a · p− 1

p
+ N − 1

)
ra· p−1

p
−1rN−1,

and
a ≥ p

p− 1
(1−N),

we get that
d

dr

(
|u|pra· p−1

p rN−1
)
≥ pu|u|p−2du

dr
ra· p−1

p rN−1

and obtain

ra· p−1
p rN−1|u(r)|p ≤ AN

∫ +∞

r

|u|p−1

∣∣∣∣du

dr

∣∣∣∣ SN−1Sa· p−1
p dS

≤ AN

∫
|u|p−1

∣∣∣∣du

dr

∣∣∣∣ |x|a· p−1
p dx
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≤ AN

(∫
|x|a|u|p

) p−1
p

(∫
|∇u|p

) 1
p

.

It follows that

|x|N−1+a· p
p−1 |u(x)|p ≤ AN

(∫
|x|a|u|p

) p−1
p

(∫
|∇u|p

) 1
p

,

and we have

|x|
N−1

p
+

a(p−1)

p2 |u(x)| ≤ AN

(∫
|x|a|u|p

) p−1

p2
(∫

|∇u|p
) 1

p2

.

Lemma 2.2. If 1 < p < N, p ≤ r < pN
N−p

, then for anyu ∈ W 1,p(RN), we have
that ∫

|u|rdx ≤ C

(∫
|∇u|p

)N(r−p)

p2
(∫

|u|p
)Np+r(p−N)

p2

.

Proof. The proof can be adapted directly from the Gagliardo-Nirenberg inequality.

The following inequality extends the results of [5] to the general equation with
thep−Laplacian operator.

Lemma 2.3. For

1 < p < N, p < q <
pN

N − p
+

c
N−1

p
+ a(p−1)

p2

, a ≥ p

p− 1
(1−N),
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there existBN,p,c such that for everyu ∈ D1,p
r (RN), we have

∫
|x|c|u|qdx ≤ BN,p,c

(∫
|∇u|p

) c
p(N−1)+a(p−1)

+ N
p2

(
q−p− cp2

p(N−1)+a(p−1)

)
.

Proof. Using Lemma2.1and Lemma2.2, we have∫
|x|c|u|qdx

=

∫ (
|x|

N−1
p

+
a(p−1)

p2

) c
(N−1)/p+a(p−1)p−2

(
|u|

) c
(N−1)/p+a(p−1)p−2

(
|u|

)q− c
(N−1)/p+a(p−1)p−2

dx

≤
(∫

|x|a|u|p
) p−1

p2 · c
(N−1)/p+a(p−1)p−2

(∫
|∇u|p

) 1
p2 ·

c
(N−1)/p+a(p−1)p−2

·
(∫

|∇u|p
) N

p2 (q−p− c
(N−1)/p+a(p−1)p−2 ) (∫

|u|p
)Np

p2 + p−N

p2

(
q− c

(N−1)/p+a(p−1)p−2

)

=

(∫
|x|a|u|pdx

) c(p−1)
p(N−1)+a(p−1)

(∫
|u|p

)Np

p2 + p−N

p2

(
q− cp2

p(N−1)+a(p−1)

)

·
(∫

|∇u|p
) c

p(N−1)+a(p−1)
+ N

p2

(
q−p− cp2

p(N−1)+a(p−1)

)

≤ BN,p,c

(∫
|∇u|p

) c
p(N−1)+a(p−1)

+ N
p2

(
q−p− cp2

p(N−1)+a(p−1)

)
.
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Next, to prove Theorem1.1, we consider the following minimization problem

m = m(a, b, p, q) = inf
u∈W 1,p

r,a (RN )∫
|x|b|u|qdx=1

∫ (
|∇u|p + |x|a|u|p

)
dx.

Theorem 2.4. If a ≥ 0, b ≥ 0, 1 < p < N and

p < q < q̃ =
Np

N − p
+

bp

N − p
,

pb− a

(
p +

(p− 1)(q − p)

p

)
< (q − p)(N − 1),

thenm(a, b, p, q) is achieved.

Proof. Let (un) ⊂ W 1,p
r,a (RN) be a minimizing sequence form = m(a, b, p, q) :∫

|x|b|un|qdx = 1,∫
(|∇un|p + |x|a|un|p) dx → m.

By going (if necessary) to a subsequence, we can assume thatun ⇀ u in W 1,p
r,a (RN).

Hence, by weak lower semicontinuity, we have∫
(|∇u|p + |x|a|u|p) dx ≤ m,∫

|x|b|u|qdx ≤ 1.
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If c is defined byq = pN
N−p

+ pc
N−p

, thenc < b and it follows from Lemma2.3that∫
|x|≤ε

|x|b|un|qdx ≤ εb−c

∫
|x|c|un|qdx ≤ Cεb−c.

Since(un) is bounded inW 1,p
r,a (RN). We deduce from Lemma2.1that∫

|x|≥ 1
ε

|x|b|un|qdx =

∫
|x|≥ 1

ε

|x|b−a|un|q−p|x|a|un|pdx

≤
(

1

ε

)b−a−(q−p)(N−1
p

+
a(p−1)

p2 )

C

∫
|x|a|u|pdx

≤ Cε
a( q+1

p
− q

p2 )−b+
(q−p)(N−1)

p .

So we get that, for everyt < 1, there existsε > 0, such that for everyn,∫
ε≤|x|≤ 1

ε

|x|b|un|qdx ≥ t.

By the Rellich theorem and Lemma2.1,

1 ≥
∫
|x|b|un|qdx ≥

∫
ε≤|x|≤ 1

ε

|x|b|un|qdx ≥ t.

Finally
∫
|x|b|u|qdx = 1 andm = m(a, b, p, q) is achieved atu.

Now we will prove Theorem1.1.

Proof. By Theorem2.4, m is achieved. Then by the Lagrange multiplier rule, the
symmetric criticality principle (see e.g. [13]) and the maximum principle, we obtain
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a solution of  −∆pυ + |x|a|υ|p−2υ = λ|x|b|υ|q−2υ,

υ > 0, υ ∈ W 1,p(RN).

Henceu = λ
1

q−p υ is a radial solution of (1.2), with λ = p
q
m.
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3. Nonradial Solutions

In this section, we will prove Theorem1.2. We use the preceding results to construct
nonradial solutions of problem (1.2) in the caseΩ = B(0, R).

Consider

M = M(a, b, p, q) = inf
u∈W 1,p

a (RN )∫
|x|b|u|qdx=1

∫ (
|∇u|p + |x|a|u|p

)
dx.

It is clear thatM ≤ m, and using our previous results, we prove thatM is achieved
under some conditions.

Theorem 3.1. If a ≥ 0, b ≥ 0, 1 < p < N and

p < q < q# =
pN

N − p
− p2b

a(N − p)
,

thenM(a, b, p, q) is achieved.

Proof. Let (un) ⊂ W 1,p
a (RN) be a minimizing sequence forM = M(a, b, p, q) :∫

|x|b|un|qdx = 1,∫ (
|∇un|p + |x|a|un|p

)
dx → M.

By going (if necessary) to a subsequence, we can assume thatun ⇀ u in W 1,p
a (RN).
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Hence, by weak lower semicontinuity, we have∫ (
|∇u|p + |x|a|u|p

)
dx ≤ M,∫

|x|b|u|qdx ≤ 1.

If c is defined byq = pN
N−p

− p2c
a(N−p)

, thenc > b and

r =
a

c
, s =

aNp
N−p

aq − pc

are conjugate. It follows from the Hölder and Sobolev inequalities that∫
|x|≥ 1

ε

|x|b|un|qdx ≤
(

1

ε

)b−c ∫
|x|c|un|qdx

=

(
1

ε

)b−c ∫
|x|c|un|

pc
a |un|q−

pc
a dx

≤ εc−b

(∫
|x|a|un|pdx

) 1
r
(∫

|un|
Np

N−p dx

) 1
s

≤ Cεc−b.

As in Theorem2.4, for everyt < 1, there existsε > 0 such that, for everyn,∫
|x|≤ 1

ε

|x|b|un|qdx ≥ t.

By the compactness of the Sobolev theorem in the bounded domain, for1 < p <
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N, p < q < Np
N−p

,

1 ≥
∫
|x|b|u|qdx ≥

∫
|x|≤ 1

ε

|x|b|un|qdx ≥ t.

Hence
∫
|x|b|u|qdx = 1 andM = M(a, b, p, q) is achieved atu.

Now we will prove Theorem1.2.

Proof. By Theorem2.4, m(a, b, p, q) is positive. Sincepb > aq, it is easy to verify
thatM(a, b, p, q) = 0. Let us define

M(a, b, p, q, R) = inf
u∈W 1,p

a (B(0,R))∫
B(0,R) |x|

b|u|qdx=1

∫
B(0,R)

(
|∇u|p + |x|a|u|p

)
dx,

m(a, b, p, q, R) = inf
u∈W 1,p

r,a (B(0,R))∫
B(0,R) |x|

b|u|qdx=1

∫
B(0,R)

(
|∇u|p + |x|a|u|p

)
dx.

It is clear that, for everyR > 0, M(a, b, p, q, R) andm(a, b, p, q, R) are achieved
and

lim
R→∞

M(a, b, p, q, R) = M(a, b, p, q) = 0,

lim
R→∞

m(a, b, p, q, R) = m(a, b, p, q) > 0.

Then from Theorem1.1, we know that problem (1.2) with B(0, R) has a radial
solution.
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On the other hand, by the Lagrange multiplier rule, the symmetric criticality prin-
ciple (see e.g.[13]) and the maximum principle, we obtain a solution of

−∆pυ + |x|a|υ|p−2υ = λ|x|b|υ|q−2υ in B(0, R)

υ > 0, u ∈ W 1,p(B(0, R)),

υ = 0, on∂B(0, R).

Henceu = λ
1

q−p υ is a solution of (1.2), with λ = p
q
M(a, b, p, q, R). Thus, Prob-

lem (1.2) has a nonradial solution.
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4. Necessary Conditions

In this section we obtain a nonexistence result for the solution of problem (1.2) using
a Pohozaev-type identity. The Pohozaev identity has been derived for very general
problems by H. Egnell [3].

Lemma 4.1. Letu ∈ W 1,p(RN) be a solution of (1.2), thenu satisfies

N − p

p

∫
|∇u|pdx +

N + a

p

∫
|x|a|u|pdx− N + b

q

∫
|x|b|u|qdx = 0.

Theorem 4.2.Suppose that

q̃ =
Np

N − p
+

pb

N − p
≤ q

or
N + a

p
≤ N + b

q
.

Then there is no solution for problem (1.2).

Proof. Multiplying (1.2) by u and integrating, we see that∫
|x|b|u|qdx =

∫ (
|∇u|p + |x|a|u|p

)
dx.

On the other hand, using Lemma4.1, we obtain(
N − p

p
− N + b

q

) ∫
|∇u|pdx +

(
N + a

p
− N + b

q

) ∫
|x|a|u|pdx = 0.
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So, if u is a solution of problem (1.2), we must have

N − p

p
<

N + b

q
,

N + a

p
>

N + b

q
.

Remark2. The second assumption of Theorem2.4,

pb− a

(
p +

(q − p)(p− 1)

p

)
< (q − p)(N − 1)

implies that
N + b

q
<

N + a

p
.
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