ON THE EXISTENCE OF SOLUTIONS TO A CLASS OF p-LAPLACE ELLIPTIC EQUATIONS

HUI-MEI HE AND JIAN-QING CHEN
Fujian Normal University
Fuzhou, 350007 P.R. China
EMail: hehuimei20060670@163.com jqchen@fjnu.edu.cn

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words:
Abstract:

19 September, 2008
07 December, 2008
C. Bandle

35 J 20.
p-Laplace elliptic equations, Radial solutions, Nonradial solutions.
We study the equation $-\Delta_{p} u+|x|^{a}|u|^{p-2} u=|x|^{b}|u|^{q-2} u$ with Dirichlet boundary condition on $B(0, R)$ or on \mathbb{R}^{N}. We prove the existence of the radial solution and nonradial solutions of this equation.

Radial Solution and Nonradial Solutions

Hui-mei He and Jian-qing Chen vol. 10, iss. 2, art. 59, 2009

Title Page
Contents

44

Page 1 of 19
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-5756

Contents

1 Introduction and Main Result 3
2 Radial Solution 6
3 Nonradial Solutions 12
4 Necessary Conditions 16

Radial Solution and Nonradial Solutions

Title Page
Contents

journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction and Main Result

Equations of the form

$$
\begin{cases}-\Delta_{t} u+g(x)|u|^{s-2} u=f(x, u) & \text { in } \Omega \tag{1.1}\\ u=0, & \text { on } \partial \Omega\end{cases}
$$

have attracted much attention. Many papers deal with the problem (1.1) in the case of $t=2, \Omega=\mathbb{R}^{N}, s=2, g$ large at infinity and f superlinear, subcritical and bounded in x, see e.g. [1], [2] and [4]. The problem (1.1) with $t=2, \Omega=B(0,1), g(x)=0$ and $f(x, u)=|x|^{b} u^{l-1}$ was studied in [9]; in particular, it was proved that under some conditions the ground states are not radial symmetric. The case $t=2, \Omega=$ $B(0,1)$ or on $\mathbb{R}^{N}, g(x)=1$ and $f(x, u)=|x|^{b}|u|^{l-2} u$ was studied in [7]. The problem (1.1) with $t=s, \Omega=\mathbb{R}^{N}, g(x)=V(|x|)$ and $f(x, u)=Q(|x|)|u|^{l-2} u$ was studied by J. Su., Z.-Q. Wang and M. Willem ([11], [12]). They proved embedding results for functions in the weighted $W^{1, p}\left(\mathbb{R}^{N}\right)$ space of radial symmetry. The results were then used to obtain ground state and bound state solutions of equations with unbounded or decaying radial potentials.

In this paper, we consider the nonlinear elliptic problem

$$
\begin{cases}-\Delta_{p} u+|x|^{a}|u|^{p-2} u=|x|^{b}|u|^{q-2} u & \text { in } \Omega \tag{1.2}\\ u>0, u \in W^{1, p}(\Omega), & \\ u=0, & \text { on } \partial \Omega\end{cases}
$$

and prove the existence of the radial and the nonradial solutions of the problem (1.2). Here, $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplacian operator, and $1<p<N, a \geq$ $0, b \geq 0$.

We denote by $W_{r}^{1, p}\left(\mathbb{R}^{N}\right)$ the space of radially symmetric functions in

$$
W^{1, p}\left(\mathbb{R}^{N}\right)=\left\{u \in L^{p}\left(\mathbb{R}^{N}\right): \nabla u \in L^{p}\left(\mathbb{R}^{N}\right)\right\}
$$

Radial Solution and Nonradial Solutions

Hui-mei He and Jian-qing Chen vol. 10, iss. 2, art. 59, 2009

Title Page
Contents

Page 3 of 19
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b
$W_{r, a}^{1, p}\left(\mathbb{R}^{N}\right)$ is denoted by the space of radially symmetric functions in

$$
W_{a}^{1, p}\left(\mathbb{R}^{N}\right)=\left\{u \in W^{1, p}\left(\mathbb{R}^{N}\right): \int_{\mathbb{R}^{N}}|x|^{a}|u|^{p}<\infty\right\}
$$

We also denote by $D_{r}^{1, p}\left(\mathbb{R}^{N}\right)$ the space of radially symmetric functions in

$$
D^{1, p}\left(\mathbb{R}^{N}\right)=\left\{u \in L^{\frac{N p}{N-p}}\left(\mathbb{R}^{N}\right): \nabla u \in L^{p}\left(\mathbb{R}^{N}\right)\right\}
$$

Our main results are:
Theorem 1.1. If $a \geq 0, b \geq 0,1<p<N$ and

$$
\begin{gathered}
p<q<\tilde{q}=\frac{N p}{N-p}+\frac{b p}{N-p} \\
p b-a\left(p+\frac{(p-1)(q-p)}{p}\right)<(q-p)(N-1)
\end{gathered}
$$

then the problem (1.2) has a radial solution.
Remark 1. In [8], Sirakov proves that the problem (1.2) with $p=2$ has a solution for

$$
2<q<q^{\#}=\frac{2 N}{N-2}-\frac{4 b}{a(N-2)}
$$

In [6], P. Sintzoff and M. Willem proved the existence of a solution of the problem (1.2) with

$$
p=2, q \leq 2^{*}, \quad 2 b-a\left(1+\frac{q}{2}\right)<(N-1)(q-2)
$$

Theorem 1.1 extends the results of [6] to the general equation with a p-Laplacian operator.

Radial Solution and Nonradial Solutions

Hui-mei He and Jian-qing Chen vol. 10, iss. 2, art. 59, 2009

Title Page
Contents

$\mathbf{4 4}$	
$\mathbf{4}$	
Page 4 of 19	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Theorem 1.2. Suppose that $a \geq 0, b \geq 0,1<p<N$ and

$$
\begin{gathered}
p<q<\frac{N p}{N-p} \\
p b-a\left(p+\frac{(p-1)(q-p)}{p}\right)<(q-p)(N-1), \quad a q<p b
\end{gathered}
$$

then for every R, problem (1.2) with $\Omega=B(0, R)$, R large enough has a radial and a nonradial solution.

This paper is organized as follows: In Section 2, we study (1.2) in the case of $\Omega=\mathbb{R}^{N}$. We prove the existence of a radial least energy solution of (1.2) when

$$
1<p<N, p<q<\tilde{q}, \quad p b-a\left(p+\frac{(p-1)(q-p)}{p}\right)<(q-p)(N-1)
$$

In Section 3, we consider the existence of nonradial solutions of (1.2) with $\Omega=$ $B(0, R), R$ large enough. Finally, in Section 4, we consider necessary conditions for the existence of solutions of (1.2).

Radial Solution and Nonradial Solutions
Hui-mei He and Jian-qing Chen vol. 10, iss. 2, art. 59, 2009

Title Page
Contents

Page 5 of 19
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Radial Solution

In this paper, unless stated otherwise, all integrals are understood to be taken over all of \mathbb{R}^{N}. Also, throughout the paper, we will often denote various constants by the same letter.
Lemma 2.1. Suppose that $1<p<N$. There exist $A_{N}>0$, such that, for every $u \in W_{r, a}^{1, p}\left(\mathbb{R}^{N}\right), u \in C\left(\mathbb{R}^{N} \backslash\{0\}\right)$, for $a \geq \frac{p}{p-1}(1-N)$, we have that

$$
|x|^{\frac{N-1}{p}+\frac{a(p-1)}{p^{2}}}|u(x)| \leq A_{N}\left(\int|x|^{a}|u|^{p}\right)^{\frac{p-1}{p^{2}}}\left(\int|\nabla u|^{p}\right)^{\frac{1}{p^{2}}} .
$$

Radial Solution and

 Nonradial SolutionsHui-mei He and Jian-qing Chen vol. 10, iss. 2, art. 59, 2009

Proof. Since

$$
\begin{aligned}
\frac{d}{d r}\left(|u|^{p} r^{a \cdot \frac{p-1}{p}} r^{N-1}\right)=\frac{p}{2}\left(|u|^{2}\right)^{\frac{p}{2}-1} & \cdot 2 u \cdot \frac{d u}{d r} r^{a \cdot \frac{p-1}{p}} r^{N-1} \\
& +|u|^{p}\left(a \cdot \frac{p-1}{p}+N-1\right) r^{a \cdot \frac{p-1}{p}-1} r^{N-1}
\end{aligned}
$$

and

$$
a \geq \frac{p}{p-1}(1-N)
$$

we get that

$$
\frac{d}{d r}\left(|u|^{p} r^{a \cdot \frac{p-1}{p}} r^{N-1}\right) \geq p u|u|^{p-2} \frac{d u}{d r} r^{a \cdot \frac{p-1}{p}} r^{N-1}
$$

and obtain

$$
\begin{aligned}
r^{a \cdot \frac{p-1}{p}} r^{N-1}|u(r)|^{p} & \leq A_{N} \int_{r}^{+\infty}|u|^{p-1}\left|\frac{d u}{d r}\right| S^{N-1} S^{a \cdot \frac{p-1}{p}} d S \\
& \leq A_{N} \int|u|^{p-1}\left|\frac{d u}{d r}\right||x|^{a \cdot \frac{p-1}{p}} d x
\end{aligned}
$$

Title Page
Contents

Page 6 of 19
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\leq A_{N}\left(\int|x|^{a}|u|^{p}\right)^{\frac{p-1}{p}}\left(\int|\nabla u|^{p}\right)^{\frac{1}{p}}
$$

It follows that

$$
|x|^{N-1+a \cdot \frac{p}{p-1}}|u(x)|^{p} \leq A_{N}\left(\int|x|^{a}|u|^{p}\right)^{\frac{p-1}{p}}\left(\int|\nabla u|^{p}\right)^{\frac{1}{p}},
$$

and we have

$$
|x|^{\frac{N-1}{p}+\frac{a(p-1)}{p^{2}}}|u(x)| \leq A_{N}\left(\int|x|^{a}|u|^{p}\right)^{\frac{p-1}{p^{2}}}\left(\int|\nabla u|^{p}\right)^{\frac{1}{p^{2}}} .
$$

Lemma 2.2. If $1<p<N, p \leq r<\frac{p N}{N-p}$, then for any $u \in W^{1, p}\left(\mathbb{R}^{N}\right)$, we have that

$$
\int|u|^{r} d x \leq C\left(\int|\nabla u|^{p}\right)^{\frac{N(r-p)}{p^{2}}}\left(\int|u|^{p}\right)^{\frac{N p+r(p-N)}{p^{2}}} .
$$

Radial Solution and

 Nonradial SolutionsHui-mei He and Jian-qing Chen vol. 10, iss. 2, art. 59, 2009

Title Page
Contents

Page 7 of 19
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
there exist $B_{N, p, c}$ such that for every $u \in D_{r}^{1, p}\left(\mathbb{R}^{N}\right)$, we have

$$
\int|x|^{c}|u|^{q} d x \leq B_{N, p, c}\left(\int|\nabla u|^{p}\right)^{\frac{c}{p(N-1)+\alpha(p-1)}+\frac{N}{p^{2}}\left(q-p-\frac{c p^{2}}{p(N-1)+a(p-1)}\right)} .
$$

Proof. Using Lemma 2.1 and Lemma 2.2, we have

$$
\begin{aligned}
& \int|x|^{c}|u|^{q} d x \\
&= \int\left(|x|^{\frac{N-1}{p}+\frac{a(p-1)}{p^{2}}}\right)^{\frac{c}{(N-1) / p+a(p-1) p^{-2}}}(|u|)^{\frac{c}{(N-1) / p+a(p-1) p^{-2}}}(|u|)^{q-\frac{c}{(N-1) / p+a(p-1) p^{-2}}} d x \\
& \leq\left(\int|x|^{a}|u|^{p}\right)^{\frac{p-1}{p^{2}} \cdot \frac{c}{(N-1) / p+a(p-1) p^{-2}}}\left(\int|\nabla u|^{p}\right)^{\frac{1}{p^{2} / \cdot} \frac{c}{(N-1) / p+a(p-1) p^{-2}}} \\
& \cdot\left(\int|\nabla u|^{p}\right)^{\frac{N}{p^{2}}\left(q-p-\frac{c}{\left.(N-1) / p+a(p-1) p^{-2}\right)}\right.}\left(\int|u|^{p}\right)^{\frac{N p}{p^{2}+\frac{p-N}{p^{2}}\left(q-\frac{c}{(N-1) / p+a(p-1) p^{-2}}\right)}} \\
&=\left(\int|x|^{a}|u|^{p} d x\right)^{\frac{c(p-1)}{p(N-1)+a(p-1)}}\left(\int|u|^{p}\right)^{\frac{N p}{p^{2}}+\frac{p-N}{p^{2}}\left(q-\frac{c p^{2}}{p(N-1)+a(p-1)}\right)} \\
& \quad \cdot\left(\int|\nabla u|^{p}\right)^{\frac{c}{p(N-1)+a(p-1)}+\frac{N}{p^{2}}\left(q-p-\frac{c p^{2}}{p(N-1)+a(p-1)}\right)} \\
& \leq B_{N, p, c}\left(\int|\nabla u|^{p}\right)^{\frac{c}{p(N-1)+a(p-1)}+\frac{N}{p^{2}}\left(q-p-\frac{c p^{2}}{p(N-1)+a(p-1)}\right)} .
\end{aligned}
$$

Radial Solution and

 Nonradial SolutionsHui-mei He and Jian-qing Chen vol. 10, iss. 2, art. 59, 2009

Title Page

Contents

44

Page 8 of 19

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Next, to prove Theorem 1.1, we consider the following minimization problem

$$
m=m(a, b, p, q)=\inf _{\substack{\left.u \in W^{1, p}, \mathbb{R}^{N}\right) \\ \int|x|^{b}|u|^{\mid} d x=1}} \int\left(|\nabla u|^{p}+|x|^{a}|u|^{p}\right) d x .
$$

Theorem 2.4. If $a \geq 0, b \geq 0,1<p<N$ and

$$
\begin{gathered}
p<q<\tilde{q}=\frac{N p}{N-p}+\frac{b p}{N-p} \\
p b-a\left(p+\frac{(p-1)(q-p)}{p}\right)<(q-p)(N-1)
\end{gathered}
$$

then $m(a, b, p, q)$ is achieved.
Proof. Let $\left(u_{n}\right) \subset W_{r, a}^{1, p}\left(\mathbb{R}^{N}\right)$ be a minimizing sequence for $m=m(a, b, p, q)$:

$$
\begin{gathered}
\int|x|^{b}\left|u_{n}\right|^{q} d x=1 \\
\int\left(\left|\nabla u_{n}\right|^{p}+|x|^{a}\left|u_{n}\right|^{p}\right) d x \rightarrow m
\end{gathered}
$$

By going (if necessary) to a subsequence, we can assume that $u_{n} \rightharpoonup u$ in $W_{r, a}^{1, p}\left(\mathbb{R}^{N}\right)$. Hence, by weak lower semicontinuity, we have

$$
\begin{gathered}
\int\left(|\nabla u|^{p}+|x|^{a}|u|^{p}\right) d x \leq m \\
\int|x|^{b}|u|^{q} d x \leq 1
\end{gathered}
$$

Radial Solution and Nonradial Solutions

Hui-mei He and Jian-qing Chen vol. 10, iss. 2, art. 59, 2009

Title Page
Contents

Page 9 of 19
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

If c is defined by $q=\frac{p N}{N-p}+\frac{p c}{N-p}$, then $c<b$ and it follows from Lemma 2.3 that

$$
\int_{|x| \leq \varepsilon}|x|^{b}\left|u_{n}\right|^{q} d x \leq \varepsilon^{b-c} \int|x|^{c}\left|u_{n}\right|^{q} d x \leq C \varepsilon^{b-c} .
$$

Since $\left(u_{n}\right)$ is bounded in $W_{r, a}^{1, p}\left(\mathbb{R}^{N}\right)$. We deduce from Lemma 2.1 that

$$
\begin{aligned}
\int_{|x| \geq \frac{1}{\varepsilon}}|x|^{b}\left|u_{n}\right|^{q} d x & =\int_{|x| \geq \frac{1}{\varepsilon}}|x|^{b-a}\left|u_{n}\right|^{q-p}|x|^{a}\left|u_{n}\right|^{p} d x \\
& \leq\left(\frac{1}{\varepsilon}\right)^{b-a-(q-p)\left(\frac{N-1}{p}+\frac{a(p-1)}{p^{2}}\right)} C \int|x|^{a}|u|^{p} d x \\
& \leq C \varepsilon^{a\left(\frac{q+1}{p}-\frac{q}{p^{2}}\right)-b+\frac{(q-p)(N-1)}{p}} .
\end{aligned}
$$

So we get that, for every $t<1$, there exists $\varepsilon>0$, such that for every n,

$$
\int_{\varepsilon \leq|x| \leq \frac{1}{\varepsilon}}|x|^{b}\left|u_{n}\right|^{q} d x \geq t
$$

By the Rellich theorem and Lemma 2.1,

$$
1 \geq \int|x|^{b}\left|u_{n}\right|^{q} d x \geq \int_{\varepsilon \leq|x| \leq \frac{1}{\varepsilon}}|x|^{b}\left|u_{n}\right|^{q} d x \geq t
$$

Finally $\int|x|^{b}|u|^{q} d x=1$ and $m=m(a, b, p, q)$ is achieved at u.
Now we will prove Theorem 1.1.
Proof. By Theorem 2.4, m is achieved. Then by the Lagrange multiplier rule, the symmetric criticality principle (see e.g. [13]) and the maximum principle, we obtain

Go Back

Full Screen

Close

Radial Solution and Nonradial Solutions

Hui-mei He and Jian-qing Chen vol. 10, iss. 2, art. 59, 2009

Title Page
Contents

Page 10 of 19
journal of inequalities in pure and applied mathematics
issn: 1443-575b
a solution of

$$
\left\{\begin{array}{l}
-\Delta_{p} v+|x|^{a}|v|^{p-2} v=\lambda|x|^{b}|v|^{q-2} v \\
v>0, \quad v \in W^{1, p}\left(\mathbb{R}^{N}\right)
\end{array}\right.
$$

Hence $u=\lambda^{\frac{1}{q-p}} v$ is a radial solution of (1.2), with $\lambda=\frac{p}{q} m$.
Radial Solution and Nonradial Solutions

Hui-mei He and Jian-qing Chen vol. 10, iss. 2, art. 59, 2009

Title Page
Contents

$\mathbf{4}$	
Page 11 of 19	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

3. Nonradial Solutions

In this section, we will prove Theorem 1.2. We use the preceding results to construct nonradial solutions of problem (1.2) in the case $\Omega=B(0, R)$.

Consider

$$
M=M(a, b, p, q)=\inf _{\substack{u \in W^{1, p}\left(\mathbb{R}^{N}\right) \\ \int|x|^{a}|u|^{q} d x=1}} \int\left(|\nabla u|^{p}+|x|^{a}|u|^{p}\right) d x .
$$

It is clear that $M \leq m$, and using our previous results, we prove that M is achieved under some conditions.

Theorem 3.1. If $a \geq 0, b \geq 0,1<p<N$ and

$$
p<q<q^{\#}=\frac{p N}{N-p}-\frac{p^{2} b}{a(N-p)}
$$

then $M(a, b, p, q)$ is achieved.
Proof. Let $\left(u_{n}\right) \subset W_{a}^{1, p}\left(\mathbb{R}^{N}\right)$ be a minimizing sequence for $M=M(a, b, p, q)$:

$$
\begin{gathered}
\int|x|^{b}\left|u_{n}\right|^{q} d x=1 \\
\int\left(\left|\nabla u_{n}\right|^{p}+|x|^{a}\left|u_{n}\right|^{p}\right) d x \rightarrow M
\end{gathered}
$$

By going (if necessary) to a subsequence, we can assume that $u_{n} \rightharpoonup u$ in $W_{a}^{1, p}\left(\mathbb{R}^{N}\right)$.
Page 12 of 19
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Hence, by weak lower semicontinuity, we have

$$
\begin{gathered}
\int\left(|\nabla u|^{p}+|x|^{a}|u|^{p}\right) d x \leq M \\
\int|x|^{b}|u|^{q} d x \leq 1
\end{gathered}
$$

If c is defined by $q=\frac{p N}{N-p}-\frac{p^{2} c}{a(N-p)}$, then $c>b$ and

$$
r=\frac{a}{c}, \quad s=\frac{\frac{a N p}{N-p}}{a q-p c}
$$

are conjugate. It follows from the Hölder and Sobolev inequalities that

$$
\begin{aligned}
\int_{|x| \geq \frac{1}{\varepsilon}}|x|^{b}\left|u_{n}\right|^{q} d x & \leq\left(\frac{1}{\varepsilon}\right)^{b-c} \int|x|^{c}\left|u_{n}\right|^{q} d x \\
& =\left(\frac{1}{\varepsilon}\right)^{b-c} \int|x|^{c}\left|u_{n}\right|^{\frac{p c}{a}}\left|u_{n}\right|^{q-\frac{p c}{a}} d x \\
& \leq \varepsilon^{c-b}\left(\int|x|^{a}\left|u_{n}\right|^{p} d x\right)^{\frac{1}{r}}\left(\int\left|u_{n}\right|^{\frac{N p}{N-p}} d x\right)^{\frac{1}{s}} \\
& \leq C \varepsilon^{c-b} .
\end{aligned}
$$

Radial Solution and Nonradial Solutions

Hui-mei He and Jian-qing Chen vol. 10, iss. 2, art. 59, 2009

Title Page
Contents
44

Page 13 of 19
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics

By the compactness of the Sobolev theorem in the bounded domain, for $1<p<$
$N, p<q<\frac{N p}{N-p}$,

$$
1 \geq \int|x|^{b}|u|^{q} d x \geq \int_{|x| \leq \frac{1}{\varepsilon}}|x|^{b}\left|u_{n}\right|^{q} d x \geq t
$$

Hence $\int|x|^{b}|u|^{q} d x=1$ and $M=M(a, b, p, q)$ is achieved at u.
Now we will prove Theorem 1.2.
Proof. By Theorem 2.4, $m(a, b, p, q)$ is positive. Since $p b>a q$, it is easy to verify that $M(a, b, p, q)=0$. Let us define

$$
\begin{aligned}
& M(a, b, p, q, R)=\inf _{\substack{u \in W_{a}^{1, p}(B(0, R)) \\
\int_{B(0, R)}|x|^{\mid}|u|^{q} d x=1}} \int_{B(0, R)}\left(|\nabla u|^{p}+|x|^{a}|u|^{p}\right) d x, \\
& m(a, b, p, q, R)=\inf _{\substack{u \in W_{r}^{1, p}(B(0, R)) \\
\int_{B(0, R)}|x|^{\mid}|u|^{q} d x=1}} \int_{B(0, R)}\left(|\nabla u|^{p}+|x|^{a}|u|^{p}\right) d x .
\end{aligned}
$$

It is clear that, for every $R>0, M(a, b, p, q, R)$ and $m(a, b, p, q, R)$ are achieved and

$$
\begin{aligned}
\lim _{R \rightarrow \infty} M(a, b, p, q, R) & =M(a, b, p, q)=0 \\
\lim _{R \rightarrow \infty} m(a, b, p, q, R) & =m(a, b, p, q)>0
\end{aligned}
$$

Then from Theorem 1.1, we know that problem (1.2) with $B(0, R)$ has a radial solution.

Radial Solution and

 Nonradial SolutionsHui-mei He and Jian-qing Chen vol. 10, iss. 2, art. 59, 2009

Title Page
Contents

Page 14 of 19
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

On the other hand, by the Lagrange multiplier rule, the symmetric criticality principle (see e.g.[13]) and the maximum principle, we obtain a solution of

$$
\begin{cases}-\Delta_{p} v+|x|^{a}|v|^{p-2} v=\lambda|x|^{b}|v|^{q-2} v & \text { in } B(0, R) \\ v>0, u \in W^{1, p}(B(0, R)), & \text { on } \partial B(0, R) \\ v=0, & \end{cases}
$$

Hence $u=\lambda^{\frac{1}{q-p}} v$ is a solution of (1.2), with $\lambda=\frac{p}{q} M(a, b, p, q, R)$. Thus, Problem (1.2) has a nonradial solution.

Hui-mei He and Jian-qing Chen vol. 10, iss. 2, art. 59, 2009

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 15 of 19	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

4. Necessary Conditions

In this section we obtain a nonexistence result for the solution of problem (1.2) using a Pohozaev-type identity. The Pohozaev identity has been derived for very general problems by H. Egnell [3].

Lemma 4.1. Let $u \in W^{1, p}\left(\mathbb{R}^{N}\right)$ be a solution of (1.2), then u satisfies

$$
\frac{N-p}{p} \int|\nabla u|^{p} d x+\frac{N+a}{p} \int|x|^{a}|u|^{p} d x-\frac{N+b}{q} \int|x|^{b}|u|^{q} d x=0 .
$$

Theorem 4.2. Suppose that

$$
\tilde{q}=\frac{N p}{N-p}+\frac{p b}{N-p} \leq q
$$

or

$$
\frac{N+a}{p} \leq \frac{N+b}{q}
$$

Then there is no solution for problem (1.2).

Proof. Multiplying (1.2) by u and integrating, we see that

$$
\int|x|^{b}|u|^{q} d x=\int\left(|\nabla u|^{p}+|x|^{a}|u|^{p}\right) d x
$$

On the other hand, using Lemma 4.1, we obtain

$$
\left(\frac{N-p}{p}-\frac{N+b}{q}\right) \int|\nabla u|^{p} d x+\left(\frac{N+a}{p}-\frac{N+b}{q}\right) \int|x|^{a}|u|^{p} d x=0 .
$$

Radial Solution and

 Nonradial SolutionsHui-mei He and Jian-qing Chen vol. 10, iss. 2, art. 59, 2009

Title Page
Contents

Page 16 of 19
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

So, if u is a solution of problem (1.2), we must have

$$
\frac{N-p}{p}<\frac{N+b}{q}, \quad \frac{N+a}{p}>\frac{N+b}{q} .
$$

Remark 2. The second assumption of Theorem 2.4,

$$
p b-a\left(p+\frac{(q-p)(p-1)}{p}\right)<(q-p)(N-1)
$$

implies that

$$
\frac{N+b}{q}<\frac{N+a}{p} .
$$

Radial Solution and

 Nonradial SolutionsHui-mei He and Jian-qing Chen vol. 10, iss. 2, art. 59, 2009

Title Page
Contents

journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] T. BARTSCH AND Z.-Q. WANG, Existence and multiplicity results for some superlinear elliptic problem on \mathbb{R}^{N}, Comm. Partial Diff. Eq., 20 (1995), 17251741.
[2] W. OMANA AND M. WILLEM, Homoclinic orbits for a class of Hamiltonian systems, Diff. Int. Eq., 5 (1992), 115-1120.
[3] H. EGNELL, Semilinear elliptic equations involving critical Sobolev exponents, Arch. Rat. Mech. Anal., 104 (1988), 27-56.
[4] P.H. RABINOWITZ, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.
[5] W . ROTHER, Some existence results for the equation $-\Delta u+k(x) u^{p}=0$, Comm. Partial Differential Eq., 15 (1990), 1461-1473.
[6] P. SINTZOFF And M. WILLEM, A semilinear elliptic equation on \mathbb{R}^{N} with unbounded coefficients, in Variational and Topological Methods in the Study of Nonlinear Phenomena, V. Benci et al. eds., PNLDE Vol. Birkhäuser, Boston, 49 (2002), 105-113.
[7] P. SINTZOFF, Symmetry of solutions of a semilinear elliptic equation with unbound coefficients, Diff. Int. Eq., 7 (2003), 769-786.
[8] B. SIRAKOV, Existence and multiplicity of solutions of semi-linear elliptic equations in \mathbb{R}^{N}, Calc. Var. Partial Differential Equations, 11 (2002), 119-142.
[9] D. SMETS, J. SU and M. WILLEM, Non radial ground states for the Hénon equation, Commun. Contemp. Math., 4 (2002), 467-480.
[10] W.A. STRAUSS, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.

Radial Solution and Nonradial Solutions

Hui-mei He and Jian-qing Chen vol. 10, iss. 2, art. 59, 2009

Title Page
Contents

Page 18 of 19
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
[11] J. SU, Z.-Q. WANG and M. WILLEM, Weighted Sobolev embedding with unbounded decaying radial potentials, J. Differential Equations, 238 (2007), 201-219.
[12] J. SU, Z.-Q. WANG AND M. WILLEM, Nonlinear Schrödinger equations with unbounded and decaying radial potentials, Commun. Contemp. Math., 9(4) (2007), 571-583.
[13] M. WILLEM, Minimax Theorems, Birkhäuser, Boston, 1996.

Radial Solution and Nonradial Solutions

Hui-mei He and Jian-qing Chen vol. 10, iss. 2, art. 59, 2009

Title Page
Contents

Page 19 of 19
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

