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homogeneous function. We consider polynomial functigrend also functions

of the typey (z1,22) = Alz1|* + Blza|’. Let ¥ = {(z, ¢ (z)) : « € B} Go Back

with the Lebesgue induced measure. Hore S(]R3) andx € B, let S

(Rf) (z, ¢ (z)) = f(x, v (x)), wheref denotes the usual Fourier transform. ufl screen

For a large class of functiong and for1 < p < % we characterize, up to Close

endpoints, the pairgp, ¢) such thatR is a bounded operator from” (R®) on
L7 (%) . We also give some shaif — L? estimates.
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1. Introduction

Let a,b be real numbers such that < a < b, let o : R?> — R be a mixed

homogeneous function of degree one with respect to the non isotropic dilations

1 1 .
re(xy,29) = (rexy,rvzy ), €.

(1.2) ® (réxl,r%@) =rp(x,29), 1 >0.

We also supposg to be smooth enough. We denote Bythe closed unit ball of
R?, by
Y={(z,¢(x)): v € B}
and byo the induced Lebesgue measure. Foe S (R3),letRf : ¥ — C be
defined by

-~

(1.2) (Rf) (0 () = [ (z,90(x)), x€B,

wherefdenotes the usual Fourier transform 6fWe denote byE the type set
associated t®, given by

E= {(1’ 1) S [07 1} X [07 1] : ||R||LP(R3),L4(E) < OO}
P q

Our aim in this paper is to obtain as much information as possible about ti#& set

for certain surfaceX of the type above described.

In the generak-dimensional case, the’ (R"*1)— L7 (32) boundedness properties
of the restriction operatoR have been studied by different authors. A very inter-
esting survey about recent progress in this research area can be fodr§l imHe
LP (R™*1) — L2 (X)) restriction theorems for the sphere were proved by E. Stein in
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1967, forfity < & < 1;for ;5% < - < 1 by P. Tomas in12] and then in the same

year by Stein for”j4 <l<a. The last argument has been used in several related
contexts by R. Strichartz irf] and by A. Greenleaf ind]. This method provides a
general tool to obtain, from suitable estimatesdor.? (R"*!) — L? () estimates

for R. Moreover, a general theorem, due to Stein, holds for smooth enough hyper-
surfaces with never vanishing Gaussian curvatu8g f[p.386). There it is shown

that in this case( ) € Bif 24 <1 <land—=21 4 82 <1 <1 also that
p p n q

this last relation is the best pOSSIb|e and that no restriction theorem of any kind can
hold for f € L (R"*') whenl < ;2 (I8, pp.388]). The casegty < 1 < j:2
are not completely solved. The best results for surfaces with non vanlshlng curva-
ture like the paraboloid and the sphere are due to T. T8p Restriction theorems
for the Fourier transform to homogeneous polynomial surfac&s ire obtained in
[4]. Also, in [1] the authors obtain sharf’ (]R"“) — L?(X) estimates for certain
homogeneous surfac&sof codimensiorl in R™+,

In Section2 we give some preliminary results.

In Section3 we considery (11, z;) = Al|z1|* + Blas|”, A # 0, B # 0. We de-
. - . 1 - 1 3
scribe completely, up to endpoints, the pa@s E) € E with 5> A fundamental

tool we use is Theorem 2.1 of][
In Section4 we deal with polynomial functiong. Under certain hypothesis about

¢ we can prove thatif < . < 1andthe paiv(]lg, é) satisfies some sharp conditions,

then (1 (11) € E. Finally we obtain somé s — L¢ estimates and also some sharp
LP — L? estimates.
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2. Preliminaries

We takey to be a mixed homogeneous and smooth enough function that satisfies

(1.9). If V is a measurable set ®R?, we denote2” = {(z, ¢ (z)) : z € V} andaV
as the associated surface measure. Alsof ferS (R?) , we defineRY f : =V — C

by
(RVf) (z,0(x)) = f(z,0(x)) zeV;
we note thaR? = R, o? = g andX? = ¥.
Forz = (21, 22) letting ||z|| = |z1|* + |22|", we define

1

and forj € N, 4
Aj - 2_J . Ao.
ThusB C |J A;. A standard homogeneity argument (see, e5j) dives, for
JENU{0}
1<p,qg< oo,
A]' e .QTH liat‘bﬂ»ab‘i’% u.#;b«kub A
(2.1) HR “LI’(R3),L‘1(2AJ’) = 927 7ab (q +b +b ) H’R OHLP(]R3),L‘1(EA0)'

From this we obtain the following remarks.
Remarkl. If <%, %) c Ethen% > _atbtabl | atbtab

a+b p a+b
+b+ab 1 +b+ab 1
Remark2. If — e >+ e < . < 1 and
A
(2.2) HR O”LP(RZ"),LQ(EAO) < 00,

then <l l) c k.

p’q
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We will use a theorem due to Strichartz (s8p,[whose proof relies on the Stein
complex interpolation theorem, which givés (R3) — L2 (EV) estimates for the

operatorR" depending on the behavior at infinity of . In [4] we obtained infor-
mation about the size of the constants. There we found the following:

Remark3. If V is a measurable set it* of positive measure and if
oV (@) <A+l

for somer > 0 and for all¢ = (£, &, &) € R3, then there exists a positive constant
¢, such that

HRVHLP R3) < CTA2(1+T

L2(zV) =
forp = 327,

In [2] the authors obtain a result (Theorem 2.1, p.155) from which they also obtain
the following consequence

Remark4 ([2, Corollary 2.2]). Let I, J be two real intervals, and let
M = {(331,$2aw (1’1,1’2)) : (513'1,332) € I x ‘]}7
wherey : I x J — R is a smooth function such that eitﬁ%iiﬁ (1, x2)

2
?)Tzé} (xla IQ)

>c>0o0r

> ¢ > 0, uniformly on/ x J. If M has the Lebesgue surface measure,

;=3 (1 — ]l)) and} < - < 1then there exists a positive constarstuch that

2:3) | 71|

ian < €1 50y

for f € S(R?).
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Following the proof of Theorem 2.1 ir2] we can check that if in the last remark
we takeJ = [27%,27%+1] 'k € Nin the case tha*tg%ﬁ (1, 172)‘ > ¢ > 0 uniformly
1

on/ x J with cindependent ok, or I = [2*’“, 2*’”1} , k € Ninthe other case, then
we can replace3) by

2.4) | 71|

o~k(3+5-1)

A1 2o sy

< —
La(M) Fourier Restriction

Estimates
with ¢/ independent ofk.
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3. The Casesp (z1,25) = Al|z1|* + Bz,

In this cases we characterize, up to endpoints, the @ir? € Ewith§ < <1
We also obtain some border segments. If eitAee= 0 or B = 0, ¢ becomes
homogeneous and these cases are treated].inHor the remainder situation we
obtain the following

Theorem 3.1.Leta,b,A,B € Rwith2 <a <b, A#0,B #0,lety(z,xs) =
Alz|* + B|zy|” and let E be the type set associated ¢o If 3 < ; < land

_atbtabl + a+b+ab < < 1then( > cE.

atb p a+b

Proof. Suppose} < | < 1 and—*ita . 4 afbtad < 1 < 1. By Remark? it
is enough to prove2(2) Now, A is contained in the union of the rectanglgs=
[—1,1]x [3,1], @ = [3,1] x[~1,1], and its symmetrics with respect to theand

xo axes. Now we will stud){r\RQHLp(Rg) Lo, - We decompos® = |J Qi with

(29)°
keN

1
Qi = ([_2—k+17 _2—1:} U [Q—k’Q—k—&-l]) % [57 1] '
Now, as in Theorem 1, (3.2), i3] we have
0 (6)] < A42F* (1+ Jg))
and then Remark implies

(3.1) IR <

L3 (R3) LQ(EQk)
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Also, since‘%‘é (x1,22)| > ¢ > 0 uniformly onQy, from (2.4) we obtain
2

| RO < ¢ FG+i-1)

HLP(R3),L‘1 (k)

for % =3 <1 - %) and2 < % < 1. Applying the Riesz interpolation theorem and

then performing the sum dn<€ N we obtain FEUI G IRESECT
Estimates
HRQ HLP(R3),L‘1(EQ) < 00, E. Ferreyra and M. Urciuolo

vol. 10, iss. 2, art. 35, 2009

for Zt3a (1 — l) < ;<landj <> <1. Inasimilar way we get that

2+a p q
Title Page
R < 00
H LP(R3)7LQ(ZQ/) ’ Contents
_ 4« »
for 283 (1 — 1) <1 < 1and? < 1 < 1. The study for the symmetric rectangles
_ 2+b P q 4 P 4 >
is analogous. Thus
A
HR OHLp(RS),Lq(on) < 00 Page 9 of 24
for 2 <1 <1and—atbtabl | atbieb 1 <1 gnd the theorem follows. O Go Back
P a+b p a+b q
Remarks Full Screen
] bo 3 Close
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From (3.1) and the Holder inequality we obtain that

=, 4 < (7 )

L3(]R3 Lq(sz)
< 1. Thenif <2 < % < 1 we perform the sum over € N to get
IR ,4

L3(R3 ,L1(2Q) < 0,

3 £b+2 1
for theseg's. Analogously, |f% <, < 1weget

=

< 00
L3 (r3),La(22") ’

thus sincer < b, if 22 < % <1,

HRAOHLs (R3) Lq(on) < 09,

andi) follows from Remark?.
Assertionii) follows from Remark3, since from Lemma 3 in] we have that

5 (&) < c(1+ &)=
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4. The Polynomial Cases

In this section we deal with mixed homogeneous polynomial functjosatisfying
(1.1). The following result is sharp (up to the endpoints) ﬁor< 1—17 < 1,as a
consequence of Remaik

Theorem 4.1. Let ¢ be a mixed homogeneous polynomial function satisfying.(
Suppose that the gaussian curvatureXbfioes not vanish identically and that at

each point of22-1% with vanishing curvature, at least one principal curvature is

different from zero. Ifa, b) # (2,4), § < < 1and—ettebl 4 afbtad < 1 <
then (l, l) €E.
p’q

Proof. We first study the operatdR“c. Let (29, 29) € Aq. If Hessp (29, 29) # 0
there exists a neighborhodtof (2?, 29) such thatfessyp (1, 22) # 0for (xq, 25) €
U. From the proposition ind, pp. 386], it follows that

(4.2) < 00

”RU HLP(R3),LG(EU)

forl:2(1—l) and3 <

1

p 4 — 5

elther—ﬁ (29,29) # 0 or (:cl,:z:Q) # 0. Then there exists a neighborhobd=

IxJ of (29, 29) such that elthe %;ﬁ (x1,22)| > ¢ > 0o0r ‘ & (21, 22)
uniformly onV. So from Remarkl we obtain that

(4.2)

< 1. Suppose now thalfessy (29, 29) = 0 and that

>c>0

HRVHLP R3),L(ZV) <00

for . =3 (1 — %) and§ < > < 1. From (1.1), (4.2 and Holder’s inequality, it
follows that
(4.3) | R4

HLP(R?’),Lq(EAO) < 0
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for . >3 <1 — ]l)) and} < . < 1. So, if atbtab > 3, the theorem follows from

Remark2. The only cases left argi,b) = (3,4), (a,b) = (3,5), (a,b) = (4,5)
and(a,b) = (2,0), b > 2. If (a,b) = (3,4) and has a monomial of the form
a;;a'y’, with a;; # 0, thent + 4 = 1 so4i + 35 = 12 and so eithe(i, j) = (0,4) or

(1,7) = (3,0). S0 (1, 72) = az oz} + ap4x3. The hypothesis about the derivatives
of ¢ imply thatas, # 0 andays # 0 and the theorem follows using Theorem

3.1in each quadrant. The casesb) = (3,5), or (a,b) = (4,5) are completely
analogous.
Now we deal with the casds,b) = (2,b), b > 2. We note that

b
(4.4) ¢ (1, 29) = Ax% + Bryzd + ng

where B = 0 for b odd. The hypothesis about implies A # 0. For b odd,
@ (71, 12) = Ax? + Czf and sinceC' # 0 (on the contrani essy (1, 12) = 0), the
theorem follows using Theorefh1as before. Now we considéreven andp given
by (4.4). If B = 0 the theorem follows as above, so we suppBsg 0.

(4.5)  Hessp(xq,x2)
L2
= 22 (B2 + 8ACH — 8BACI) 2§ — 2(b — 2)ABba, )

Soif Hessp (29, 29) = 0 then eitherr) = 0 or
(B2 + 8ACh — SACH?) (22) — 2(b — 2) ABba? = 0.

In the first case we have> 4. We take a neighborhodd’; = I x [—27% 27%]
Ag, ky € N, of the point(2?,0) such thatHessp vanishes, oV, only along the
r; axes. Fork € N, k > ko, we takelU, = I x J, whereJ, = [—27%F1 —27K] U
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[27% 27F+1] . SoW, = UU,. For (a1, x5) € Uy, it follows from (4.5) that
|Hessp (x1,x2)] > 27 (*_2>
so foré = (1,6, 63) € R?,

0T (6)] < 2% (14 [g]) ™"
and from Remark we get

(4.6) ||RUk||L§(R3 () S R

Also, smce‘ 2 (21, 272)’ > ¢ > 0 uniformly onU,, as in ¢.4) we obtain

(4.7) RV )< 27 F(2=3)

Lr(R3),L3(5Uk
forf < <land =3 (1 — %) . From (4.6), (4.7) and the Riesz Thorin theorem
we obtain

(4-8) HRUkHLpt(RS)’th(EUk) < C2k( —-(1- t)( ))

ty

forqit:t%+(1—t)3<1——) and_- =3+ (1—1) .
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SO for% > % andt < t,, both near enough, the exponent is still negative and
1 243b 1
(e
@ 2+0b Dt

thus

(4.9) |R™

“LP(R3),L‘I(EW1) <

3 1 _ 243b 1 H H
for § < . near enough andl = 373 (1 - 5) . Finally, if

(B2? + 8ACh — SACH) (22)* — 2(b — 2) ABba? = 0

then we study the order dfessyp (21, 29) for 27%=1 < |z, — 29| < 27% ke N.

b
2

(4.10) (xo% (B2 +84Ch — 8ACY?) (a5)

—2(b— 2)ABbx1)

L)
(9)? > ok

(b—2)ABb (z; — 2Y)

We take the following neighborhood 69, 29) , W5 = Ugen'Vi, With
1
Vi = {(r;xl,r})x% skl < |x1 —x?’ < 2_k, 3 <r< 2} )
From the homogeneity af and ¢.10) we obtain

1 1 _2 _
‘Hessgo <7’2x1,7’bx3> =7rl=b ‘Hessgo (xl,a:g)‘ > 27k
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then from Proposition 6 ing, p. 344], we get fo€ = (&, &, &3) € R3

% (©) < 2t (L4 Jal)

so from Remark3 .
Vi k
and by Hdlder’s inequality, fof < 2 we have

IRV 4 —— < 25,

This exponent is negative fér> ¢ and so we sum oh to obtain

(4.11) HRW2}|L%(R3),L<1(2W2) <

for 3 <. <1.Sinceb>6, 3 < fgjg and then from4.1), (4.9) and ¢.11), we get

HRAO ||LP(]R3),L‘1(EA0) < 00,

for § < . near enough andl > %52 (1 — —) and the theorem follows from standard

conS|deratlons involving Holders inequality, the Riesz Thorin theorem and from
Remark?. O

Remark6. In the casga,b) = (2,b), b > 2, we have {.11). In a similar way we
get, from ¢.6) and Hdélder’s inequality,
IR 4

L3 (R3) La(n71) <0
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for”j—64<%§1.80

||R||L%(R3),Lq(2) < 0

for max {3, 4, 243801 < . < 1. We observe that ib = 6 then] = b = M
thus from RemarK. we see that, in this case, this condition gois sharp, up to the
end point.

Now we will show some examples of functiopsot satisfying the hypothesis of
the previous theorem, for which we obtain that the portion of the typé /satthe
region3 < }—17 < 1is smaller than the region

11\ 3 1 b+ ab 1 1
Ea,b:{<—,—):—<—§1,m(1——)<—§1}
pq) 4 p a+b p q

stated in Theorem. 1.
We considerp (21, z2) = 22, which is a mixed homogeneous function satisfying
(1.7) for anyb > 2. In this casep,,,, = 2 but Hessp = 0. From Remark 2.8 in4]

and Remark we obtain that the corresponding type set is the regiQnS (1 — %) ,

% < 1 <1 which is smaller than the regiaf, ;.
e consider now a mixed homogeneous functiosatisfying (L.1), of the form

(412) 2 (371,1'2) = .I'ZQP (xl7$2) )

with P (z1,0) # 0 for z; # 0. Sincea < b it can be checked that> 2 and that for
1> 2, 0, (21,0) = Quya, (11,0) = 0. Moreover

(4.13)  Hessp =13 *(Pyyay (1(1— 1) P+ 2lzo Py, + 25 Py,
- (ZPCL‘l + x2px1x2)2 )7

which vanishes atz;,0) . A computation shows that the second factor is different
from zero at a point of the forrf,, 0) . So Hessy does not vanish identically.

Fourier Restriction
Estimates

E. Ferreyra and M. Urciuolo

vol. 10, iss. 2, art. 35, 2009

Title Page
Contents
44 44
< >
Page 16 of 24
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au

Proposition 4.2. Letp be a mixed homogeneous function satisfyin@)@nd ¢@.12).

1 1 1 1
I (5,5) € Ethen® > (1+1) (1— 5) .
Proof. Let fe = x. the characteristic function of the skt = [0, 5] x [0,

oi},witth P (21, 2) . If (l,l) E then
[ M ration - o) Gg) €

141

(4.14) ”RszLq(z) <c HfEHLP(R3) =ce v,
By the other side,

IRy > ( /
We

wherel, = [3,1] x [0,¢]. Now, for (z1,z2) € W. and(y1, y2,y3) € K-,

1
o~ q q
fe (%;Iz,‘ﬂ(ﬂch@))‘ d$1d$2>

|11 + Tays + @ (21, 22) y3] < 1

SO
J- 1,22, (@1,)
— / e—i($1y1+w2y2+w(w1Jz)ya)dyldwdy?)
> / cos (z1y1 + Taye + ¢ (21, 22) ys3) dyrdyadys > ce™ '~
Thus
(4.15) IR fell gy = ce™ 7.

The proposition follows from4.14) and ¢.15).

e

l
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We note that in the case that+ b) [ > ab (for examplep (z1, z9) = x5 (23 + x3))
the portion of the type set correspondin@t@( % < 1 will be smaller than the region
Eqp.

Also, ¢ (x1,x9) = 23 (z1 + x3) is an example where= 2,b = 4, Hessy (1, 7o)
= —4x3 and ifzo = 0 andz; # 0, Qupe, (T1,72) = 22, # 0. Again, since

12 = (a+b)l > ab = 8, we get that the portion of the type set corresponding

to2 < }D < 1 will be smaller than the regioR, ;.

Proposition 4.3. Letp be a mixed homogeneous function satisfyind)@nd ¢.12)
with! > 2.1 < > <land; > (1 +1) (1—%>,then

HRAO < ec.

||LP(R3),L‘1(EAO)
Proof. Let (29, 29) € Ay, if Hessp (29,29) # 0, as in the proof of Theorem.1
we find a neighborhood of (29, 29) such that4.1) holds. If Hessy (29, 29) = 0,
by (4.19, eitherz) = 0 or the polynomial) given by P, (1(l — 1) P + 2lx5 P,
+23 Pyryzy) — (1P, + T2 Py, 0, )? vanishes atz?, 9) . In the first case, using the fact
that P (z1,0) # 0 for z; # 0, we get that

(Pl (1= 1) P = PPy (24,0) # 0.
We take a neighborhood’; of the point(x?, 0) andU}, as in the proof of Theorem
4.1. So for (1, z5) € Uy,

|Hessp (x1,22)| 2 c2 K2

and so
2k:(l—1)

oUr (£1,82,&3)| < ar
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By the other side,
o (51,52,@\ <2t

sofor0 <7 <1,

k(rl-1)
ol 51752753 ‘ < —
‘ (T+ &))"
and by Remark
U k(ri-1)
||R kHLP (R3), LQ(EUk) < CTQ 2(1+T)

(1+T

forp = and so Hdlder’s inequality implies, far< ¢ < 2,

Tl—1 2—q

| RV = e, ¢ (")

“LP(R3),Lq<EUk
and a computation shows that this exponent is negative for (I + 1) (1 - %) .
Thus

w-
(4.16) ”R IHLP(R3),L‘1(ZW1) <
for § < <land(l+1) ( - %) < ; < 1. Now we suppos€) (7, z5) = 0. We
observe that
deg@Q <2degP —2<2(b—1)—2<20—2

and soHessy (x1,239) vanishes at! with order at mosel — 2. Then definingi?,
andV}, as in the proof of Theorem. 1, we have

‘Hessgo (xl,xg)‘ > 9—k(21=2)
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and as in the previous case we obtain

w-

(4.17) IR oy sy < o

for 3 < ﬁ <1 and% > (1+1) (1 - %) . The proposition follows from4.16),
(4.17) and @.10). O]

From Propositiont.3 and Remark? we obtain the following result, sharp up to

the end points, fof < % < 1.

Theorem 4.4. Let ¢ be a mixed homogeneous function satisfying)(and @.12)
With 1> 5. 1f m = max {I+ 1,252} 2 < 1 < 1and! > m (1 1), then

(l,l) € k.
p’q

4.1. Sharp L? — L? Estimates

In [4] we obtain shard.? — L? estimates for the restriction of the Fourier transform to
homogeneous polynomial surfacetih The principal tools we used there were two
Littlewood Paley decompositions. Adapting this proof to the setting of non isotropic
dilations we obtain the following results.

a+b+2ab
Lemma 4.5. Letm < <1.If

HRAOHLP(R3),L2(EAO) <00

then (l, %) cE.
p

Proof. From @.1), the lemma follows from a process analogous to the proof of
Lemma 4.3 in4]. O]
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Theorem 4.6.

i) If ¢ is a mixed homogeneous polynomial function satisfying the hypothesis of

Theorem4.1then(—Zgjgjfgzb, ek

. . 1 atbdt2ab 2041 ; ; ;
i1) Let = max{2a+2b+2ab, 5im 1 - |f ¢ is a mixed homogeneous polynomial

function satisfying the hypothesis of Theorérthen (i, %) S Fourier Restriction
Po Estimates
Proof. i) If &2 > 3 ) follows from (4.3) and Lemma4.5. The casega, b) = E. Ferreyra and M. Urciuolo
(3,4), (a,b) = (3,5) and(a, b) = (4,5) are solved in Remark, partii). The cases Viek HEh 155 EHE, £, 200
(a,b) = (2,b) with b odd or B = 0 are also included in Rematk partii). For the
reI:OTa_linder case®, b), we observe that, i§ > 6, from the proof of Theoremt.1we TiflelPags
obtain
Contents
A
(4.18) IR O”LP(]R3),L2(EAO) < o0, pp )
for Il? = %, soi) follows from Lemma4.5. Forb = 6, as before we get < >
R HLp(R?’),LQ(EWI) < 0, Page 21 of 24
and Go Back
HRVk HLP(R3),L2(ZVk) < o0 Full Screen
for k € N, % = sl In a similar way to Lemma 4.3 of4], we use a uni- Close
dimensional Littlewood Paley decomposition to obtain journal of inequalities
RWa < 00 in pure and applied
| HL‘”(W%LQ(EWQ) mathematics
and then we havei(19 for 1 = ;4t2k24b- . So4) follows from Lemmad. 5. 1ssni MHSSSTEE
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i1) From the proof of Propositios.3, we use a uni-dimensional Littlewood Paley
decomposition to obtaini(1§) for | = max { ;252 S04 andii) follows from
Lemma4.5. 0

Remark?7. In [7] the authors obtain sharp estimates for the Fourier transform of
measures associated to surfaces like ours, wheny is a polynomial function
satisfiyng (..1) and the condition that and H essp do not vanish simultaneously on
B—{(0,0)}. Inthese cases, paitof the above theorem follows from RemarkWe
observe that our hypotheses are less restrictive, for exap(plg z,) = ziz2 + 21°
satisfies the hypothesis of pajtof the above theorem byt and Hessy vanish at
any(ﬂfl,l‘g) with Te = 0.
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