ON SOME INEQUALITIES FOR p-NORMS

U.S. KIRMACI
Atatürk University
K. K. Education Faculty
Department of Mathematics 25240 Kampüs, Erzurum, Turkey
EMail: kirmaci@atauni.edu.tr

M. E. ÖZDEMIR

Atatürk University
K. K. Education Faculty
Department of Mathematics
25240 Kampüs, Erzurum, Turkey
EMail: emos@atauni.edu.tr

M. KLARIČIĆ BAKULA

Department of Mathematics
Faculty of Natural Sciences, Mathematics and Education
University of Split
Teslina 12, 21000 Split, Croatia
EMail: milica@pmfst.hr

J. PEČARIĆ

Faculty of Textile Technology
University of Zagreb
Prilaz Baruna Filipovića 30
10000 Zagreb, Croatia
EMail: pecaric@hazu.hr

Some Inequalities for p-Norms U.S. Kirmaci, M. Klaričić Bakula, M. E. Özdemir and J. Pečarić vol. 9, iss. 1, art. 27, 2008

Title Page
Contents

| Page 1 of 15 |
| :---: | :---: |
| Go Back |
| Full Screen |
| Close |

journal of inequalities in pure and applied mathematics
 issn: 1443-575b

Contents

1 Introduction 3
2 Results

Some Inequalities for p-Norms U.S. Kirmaci, M. Klaričić Bakula, M. E. Özdemir and J. Pečarić vol. 9, iss. 1, art. 27, 2008

Title Page
Contents 44

Page 2 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-5?5b

1. Introduction

Integral inequalities have become a major tool in the analysis of integral equations, so it is not surprising that many of them appear in the literature (see for example [2], [5], [3] and [1]).

One of the most important inequalities in analysis is the integral Hölder's inequality which is stated as follows (for this variant see [3, p. 106]).

Theorem A. Let $p, q \in \mathbb{R} \backslash\{0\}$ be such that $\frac{1}{p}+\frac{1}{q}=1$ and let $f, g:[a, b] \rightarrow \mathbb{R}$, $a<b$, be such that $|f(x)|^{p}$ and $|g(x)|^{q}$ are integrable on $[a, b]$. If $p, q>0$, then

$$
\begin{equation*}
\int_{a}^{b}|f(x) g(x)| d x \leq\left(\int_{a}^{b}|f(x)|^{p} d x\right)^{\frac{1}{p}}\left(\int_{a}^{b}|g(x)|^{q} d x\right)^{\frac{1}{q}} \tag{1.1}
\end{equation*}
$$

If $p<0$ and additionally $f([a, b]) \subseteq \mathbb{R} \backslash\{0\}$, or $q<0$ and $g([a, b]) \subseteq \mathbb{R} \backslash\{0\}$, then the inequality in (1.1) is reversed.

The Hermite-Hadamard inequalities for convex functions is also well known. This double inequality is stated as follows (see for example [3, p. 10]): Let f be a convex function on $[a, b] \subset \mathbb{R}$, where $a \neq b$. Then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.2}
\end{equation*}
$$

Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
means defined by

$$
M_{n}^{[r]}(\boldsymbol{x} ; \boldsymbol{p})= \begin{cases}\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}^{r}\right)^{\frac{1}{r}}, & r \neq-\infty, 0, \infty ; \\ \left(\prod_{i=1}^{n} x_{i}^{p i}\right)^{\frac{1}{P_{n}}}, & r=0 ; \\ \min \left(x_{1}, \ldots, x_{n}\right), & r=-\infty \\ \max \left(x_{1}, \ldots, x_{n}\right), & r=\infty\end{cases}
$$

where $\boldsymbol{x}, \boldsymbol{p}$ are positive n-tuples and $P_{n}=\sum_{i=1}^{n} p_{i}$. It is well known that for such means the following inequality holds:

$$
\begin{equation*}
M_{n}^{[r]}(\boldsymbol{x} ; \boldsymbol{p}) \leq M_{n}^{[s]}(\boldsymbol{x} ; \boldsymbol{p}) \tag{1.3}
\end{equation*}
$$

whenever $r<s$ (see for example [3, p. 15]).
In this paper we also use the following result (see [5, p. 152]):
Theorem B. Let $\boldsymbol{\xi} \in[a, b]^{n}, 0<a<b$, and $\boldsymbol{p} \in[0, \infty)^{n}$ be two n-tuples such that

$$
\sum_{i=1}^{n} p_{i} \xi_{i} \in[a, b], \quad \sum_{i=1}^{n} p_{i} \xi_{i} \geq \xi_{j}, \quad j=1,2, \ldots, n
$$

If $f:[a, b] \rightarrow \mathbb{R}$ is such that the function $f(x) / x$ is decreasing, then

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} p_{i} \xi_{i}\right) \leq \sum_{i=1}^{n} p_{i} f\left(\xi_{i}\right) \tag{1.4}
\end{equation*}
$$

If $f(x) / x$ is increasing, then the inequality in (1.4) is reversed.
Our goal is to establish several new inequalities for functions whose absolute values raised to some real powers are convex functions.
J

Some Inequalities for p-Norms U.S. Kirmaci, M. Klaričić Bakula, M. E. Özdemir and J. Pečarić vol. 9, iss. 1, art. 27, 2008

Title Page
Contents

Page 4 of 15

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Results

In the literature, the following definition is well known.
Let $f:[a, b] \rightarrow \mathbb{R}$ and $p \in \mathbb{R}^{+}$. The p-norm of the function f on $[a, b]$ is defined by

$$
\|f\|_{p}= \begin{cases}\left(\int_{a}^{b}|f(x)|^{p} d x\right)^{\frac{1}{p}}, & 0<p<\infty \\ \sup |f(x)|, & p=\infty\end{cases}
$$

and $L^{p}([a, b])$ is the set of all functions $f:[a, b] \rightarrow \mathbb{R}$ such that $\|f\|_{p}<\infty$.
Observe that if $|f|^{p}$ is convex (or concave) on $[a, b]$ it is also integrable on $[a, b]$, hence $0 \leq\|f\|_{p}<\infty$, that is, f belongs to $L^{p}([a, b])$.

Although p-norms are not defined for $p<0$, for the sake of the simplicity we will use the same notation $\|f\|_{p}$ when $p \in \mathbb{R} \backslash\{0\}$.

In order to prove our results we need the following two lemmas.
Lemma 2.1. Let \boldsymbol{x} and \boldsymbol{p} be two n-tuples such that

$$
\begin{equation*}
x_{i}>0, p_{i} \geq 1, \quad i=1,2, \ldots, n \tag{2.1}
\end{equation*}
$$

If $r<s<0$ or $0<r<s$, then

$$
\begin{equation*}
\left(\sum_{i=1}^{n} p_{i} x_{i}^{s}\right)^{\frac{1}{s}} \leq\left(\sum_{i=1}^{n} p_{i} x_{i}^{r}\right)^{\frac{1}{r}} \tag{2.2}
\end{equation*}
$$

and if $r<0<s$, then

$$
\left(\sum_{i=1}^{n} p_{i} x_{i}^{r}\right)^{\frac{1}{r}} \leq\left(\sum_{i=1}^{n} p_{i} x_{i}^{s}\right)^{\frac{1}{s}}
$$

If the n-tuple \boldsymbol{x} is only nonnegative, then (2.2) holds whenever $0<r<s$.
J

Some Inequalities for p-Norms U.S. Kirmaci, M. Klaričić Bakula, M. E. Özdemir and J. Pečarić
vol. 9, iss. 1, art. 27, 2008

Title Page
Contents

Page 5 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof. Suppose that \boldsymbol{x} and \boldsymbol{p} are such that the inequalities in (2.1) hold. It can be easily seen that in this case for any $q \in \mathbb{R}$

$$
\sum_{i=1}^{n} p_{i} x_{i}^{q} \geq x_{j}^{q}>0, \quad j=1,2, \ldots, n
$$

To prove the lemma we must consider three cases: (i) $r<s<0$, (ii) $0<r<s$ and (iii) $r<0<s$. In case (i) we define the function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$by $f(x)=x^{\frac{s}{r}}$. Since in this case we have $(s-r) / r<0$, the function

$$
f(x) / x=x^{\frac{s}{r}-1}=x^{\frac{s-r}{r}}
$$

is decreasing. Applying Theorem B on $f, \boldsymbol{\xi}=\left(x_{1}^{r}, \ldots, x_{n}^{r}\right)$ and \boldsymbol{p} we obtain

$$
\left(\sum_{i=1}^{n} p_{i} x_{i}^{r}\right)^{\frac{s}{r}} \leq \sum_{i=1}^{n} p_{i}\left(x_{i}^{r}\right)^{\frac{s}{r}}=\sum_{i=1}^{n} p_{i} x_{i}^{s}
$$

i.e.,

$$
\left(\sum_{i=1}^{n} p_{i} x_{i}^{r}\right)^{\frac{1}{r}} \geq\left(\sum_{i=1}^{n} p_{i} x_{i}^{s}\right)^{\frac{1}{s}}
$$

since s is negative.
In case $(i i)$ for the same f as in (i) we have $(s-r) / r>0$, so similarly as before from Theorem B we obtain

$$
\left(\sum_{i=1}^{n} p_{i} x_{i}^{r}\right)^{\frac{s}{r}} \geq \sum_{i=1}^{n} p_{i}\left(x_{i}^{r}\right)^{\frac{s}{r}}=\sum_{i=1}^{n} p_{i} x_{i}^{s}
$$

and since s is positive, (2.2) immediately follows.

Some Inequalities for p-Norms U.S. Kirmaci, M. Klaričić Bakula,
M. E. Özdemir and J. Pečarić
vol. 9, iss. 1, art. 27, 2008

Title Page
Contents

Page 6 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

And in the end, in case (iii) we have $(s-r) / r<0$, so using again Theorem B we obtain (2.2) reversed.

Remark 1. In this paper we will use Lemma 2.1 only in a special case when all weights are equal to 1 . Then for $r<s<0$ or $0<r<s$, (2.2) becomes

$$
\begin{equation*}
\left(\sum_{i=1}^{n} x_{i}^{s}\right)^{\frac{1}{s}} \leq\left(\sum_{i=1}^{n} x_{i}^{r}\right)^{\frac{1}{r}} \tag{2.3}
\end{equation*}
$$

and for $r<0<s$,

$$
\left(\sum_{i=1}^{n} x_{i}^{s}\right)^{\frac{1}{s}} \geq\left(\sum_{i=1}^{n} x_{i}^{r}\right)^{\frac{1}{r}}
$$

In the rest of the paper we denote

$$
C_{p}=\left\{\begin{array}{ll}
2^{-\frac{1}{p}}, & p \leq-1 \text { or } p \geq 1 ; \\
2, & -1<p<0 ; \\
2^{-1}, & 0<p<1 ;
\end{array} \quad \widetilde{C}_{p}= \begin{cases}2, & p \leq-1 \\
2^{-\frac{1}{p}}, & -1<p<1, p \neq 0 \\
2^{-1}, & p \geq 1\end{cases}\right.
$$

Lemma 2.2. Let $f:[a, b] \rightarrow \mathbb{R}, a<b$. If $|f|^{p}$ is convex on $[a, b]$ for some $p>0$, then
$\left|f\left(\frac{a+b}{2}\right)\right| \leq(b-a)^{-\frac{1}{p}}\|f\|_{p} \leq\left(\frac{|f(a)|^{p}+|f(b)|^{p}}{2}\right)^{\frac{1}{p}} \leq C_{p}(|f(a)|+|f(b)|)$,
and if $|f|^{p}$ is concave on $[a, b]$, then
$\widetilde{C}_{p}(|f(a)|+|f(b)|) \leq\left(\frac{|f(a)|^{p}+|f(b)|^{p}}{2}\right)^{\frac{1}{p}} \leq(b-a)^{-\frac{1}{p}}\|f\|_{p} \leq\left|f\left(\frac{a+b}{2}\right)\right|$.

Some Inequalities for p-Norms U.S. Kirmaci, M. Klaričić Bakula, M. E. Özdemir and J. Pečarić vol. 9, iss. 1, art. 27, 2008

Title Page
Contents

$\boldsymbol{\triangleleft}$	
Page 7 of 15	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof. Suppose first that $|f|^{p}$ is convex on $[a, b]$ for some $p>0$. We have

$$
\|f\|_{p}=\left(\int_{a}^{b}|f(x)|^{p} d x\right)^{\frac{1}{p}}=(b-a)^{\frac{1}{p}}\left(\frac{1}{b-a} \int_{a}^{b}|f(x)|^{p} d x\right)^{\frac{1}{p}}
$$

From (1.2) we obtain

$$
\begin{equation*}
\left|f\left(\frac{a+b}{2}\right)\right|^{p} \leq \frac{1}{b-a} \int_{a}^{b}|f(x)|^{p} d x \leq \frac{|f(a)|^{p}+|f(b)|^{p}}{2} \tag{2.4}
\end{equation*}
$$

hence

$$
\left|f\left(\frac{a+b}{2}\right)\right| \leq(b-a)^{-\frac{1}{p}}\|f\|_{p} \leq\left(\frac{|f(a)|^{p}+|f(b)|^{p}}{2}\right)^{\frac{1}{p}}
$$

Now we must consider two cases. If $p \geq 1$ we can use (2.3) to obtain

$$
\left(|f(a)|^{p}+|f(b)|^{p}\right)^{\frac{1}{p}} \leq|f(a)|+|f(b)|
$$

hence

$$
\begin{equation*}
\left(\frac{|f(a)|^{p}+|f(b)|^{p}}{2}\right)^{\frac{1}{p}} \leq C_{p}(|f(a)|+|f(b)|) \tag{2.5}
\end{equation*}
$$

Some Inequalities for p-Norms U.S. Kirmaci, M. Klaričić Bakula, M. E. Özdemir and J. Pečarić vol. 9, iss. 1, art. 27, 2008

Title Page
Contents

Page 8 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
so again we obtain (2.5), where $C_{p}=2^{-1}$. This completes the proof for $|f|^{p}$ convex.

Suppose now that $|f|^{p}$ is concave on $[a, b]$ for some $p>0$. In that case $-|f|^{p}$ is convex on $[a, b]$, hence (1.2) implies

$$
\frac{|f(a)|^{p}+|f(b)|^{p}}{2} \leq \frac{1}{b-a} \int_{a}^{b}|f(x)|^{p} d x \leq\left|f\left(\frac{a+b}{2}\right)\right|^{p}
$$

If $p \geq 1$ from (1.3) we obtain

$$
\left(\frac{|f(a)|^{p}+|f(b)|^{p}}{2}\right)^{\frac{1}{p}} \geq \frac{|f(a)|+|f(b)|}{2}
$$

Some Inequalities for p-Norms U.S. Kirmaci, M. Klaričić Bakula, M. E. Özdemir and J. Pečarić vol. 9, iss. 1, art. 27, 2008
hence

$$
\left(\frac{|f(a)|^{p}+|f(b)|^{p}}{2}\right)^{\frac{1}{p}} \geq \widetilde{C}_{p}(|f(a)|+|f(b)|)
$$

where $\widetilde{C}_{p}=2^{-1}$.
In the other case, when $0<p<1$, from (2.3) we have

$$
\left(|f(a)|^{p}+|f(b)|^{p}\right)^{\frac{1}{p}} \geq|f(a)|+|f(b)|
$$

hence

$$
\left(\frac{|f(a)|^{p}+|f(b)|^{p}}{2}\right)^{\frac{1}{p}} \geq \widetilde{C}_{p}(|f(a)|+|f(b)|)
$$

Page 9 of 15

Go Back

Full Screen
where $\widetilde{C}_{p}=2^{-\frac{1}{p}}$. This completes the proof.
Lemma 2.3. Let $f:[a, b] \rightarrow \mathbb{R} \backslash\{0\}, a<b$. If $|f|^{p}$ is convex on $[a, b]$ for some $p<0$, then

$$
C_{p} \frac{|f(a) f(b)|}{|f(a)|+|f(b)|} \leq\left(\frac{|f(a)|^{p}+|f(b)|^{p}}{2}\right)^{\frac{1}{p}} \leq(b-a)^{-\frac{1}{p}}\|f\|_{p} \leq\left|f\left(\frac{a+b}{2}\right)\right|
$$

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b
and if $|f|^{p}$ is concave on $[a, b]$, then

$$
\left|f\left(\frac{a+b}{2}\right)\right| \leq(b-a)^{-\frac{1}{p}}\|f\|_{p} \leq\left(\frac{|f(a)|^{p}+|f(b)|^{p}}{2}\right)^{\frac{1}{p}} \leq \widetilde{C}_{p} \frac{|f(a) f(b)|}{|f(a)|+|f(b)|}
$$

Proof. Suppose that $|f|^{p}$ is convex on $[a, b]$ for some $p<0$. From (2.4), using the fact that $p<0$, we obtain

$$
\left(\frac{|f(a)|^{p}+|f(b)|^{p}}{2}\right)^{\frac{1}{p}} \leq(b-a)^{-\frac{1}{p}}\|f\|_{p} \leq\left|f\left(\frac{a+b}{2}\right)\right| .
$$

Again we consider two cases. If $-1<p<0$, then from (1.3) we have

$$
\left(\frac{|f(a)|^{-1}+|f(b)|^{-1}}{2}\right)^{-1} \leq\left(\frac{|f(a)|^{p}+|f(b)|^{p}}{2}\right)^{\frac{1}{p}}
$$

hence

$$
C_{p} \frac{|f(a) f(b)|}{|f(a)|+|f(b)|} \leq\left(\frac{|f(a)|^{p}+|f(b)|^{p}}{2}\right)^{\frac{1}{p}}
$$

where $C_{p}=2$.
In the other case, when $p \leq-1$, from (2.3) we have

$$
\left(|f(a)|^{-1}+|f(b)|^{-1}\right)^{-1} \leq\left(|f(a)|^{p}+|f(b)|^{p}\right)^{\frac{1}{p}}
$$

hence

$$
C_{p} \frac{|f(a) f(b)|}{|f(a)|+|f(b)|} \leq\left(\frac{|f(a)|^{p}+|f(b)|^{p}}{2}\right)^{\frac{1}{p}}
$$

where $C_{p}=2^{-\frac{1}{p}}$.
In the other case, when $|f|^{p}$ is concave on $[a, b]$ for some $p<0$, the proof is similar.

Some Inequalities for p-Norms U.S. Kirmaci, M. Klaričić Bakula, M. E. Özdemir and J. Pečarić vol. 9, iss. 1, art. 27, 2008

Title Page
Contents

Page 10 of 15

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Theorem 2.4. Let $p, q>0$ and let $f, g:[a, b] \rightarrow \mathbb{R}, a<b$, be such that

$$
\begin{equation*}
m(|g(a)|+|g(b)|) \leq|f(a)|+|f(b)| \leq M(|g(a)|+|g(b)|) \tag{2.6}
\end{equation*}
$$

for some $0<m \leq M$.
If $|f|^{p}$ and $|g|^{q}$ are convex on $[a, b]$, then

$$
\begin{equation*}
\|f\|_{p}+\|g\|_{q} \leq\left[\frac{M}{M+1} C_{p}(b-a)^{\frac{1}{p}}+\frac{1}{m+1} C_{q}(b-a)^{\frac{1}{q}}\right] K(f, g), \tag{2.7}
\end{equation*}
$$

where

$$
K(f, g)=|f(a)|+|f(b)|+|g(a)|+|g(b)| .
$$

If $|f|^{p}$ and $|g|^{q}$ are concave on $[a, b]$, then

$$
\begin{equation*}
\|f\|_{p}+\|g\|_{q} \geq\left[\frac{m}{m+1} \widetilde{C}_{p}(b-a)^{\frac{1}{p}}+\frac{1}{M+1} \widetilde{C}_{q}(b-a)^{\frac{1}{q}}\right] K(f, g) . \tag{2.8}
\end{equation*}
$$

Proof. Suppose that $|f|^{p}$ and $|g|^{q}$ are convex on $[a, b]$ for some fixed $p, q>0$. From Lemma 2.2 we have that

$$
\begin{align*}
& \|f\|_{p}+\|g\|_{q} \\
& \leq\left(\frac{b-a}{2}\right)^{\frac{1}{p}}\left(|f(a)|^{p}+|f(b)|^{p}\right)^{\frac{1}{p}}+\left(\frac{b-a}{2}\right)^{\frac{1}{q}}\left(|g(a)|^{q}+|g(b)|^{q}\right)^{\frac{1}{q}} \\
& \leq C_{p}(b-a)^{\frac{1}{p}}(|f(a)|+|f(b)|)+C_{q}(b-a)^{\frac{1}{q}}(|g(a)|+|g(b)|) \tag{2.9}
\end{align*}
$$

Using (2.6) we can write

$$
|f(a)|+|f(b)| \leq M(|f(a)|+|f(b)|+|g(a)|+|g(b)|)-M(|f(a)|+|f(b)|),
$$

Some Inequalities for p-Norms U.S. Kirmaci, M. Klaričić Bakula, M. E. Özdemir and J. Pečarić vol. 9, iss. 1, art. 27, 2008

Title Page
Contents

Page 11 of 15

Go Back

Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
i.e.,

$$
\begin{align*}
|f(a)|+|f(b)| & \leq \frac{M}{M+1}(|f(a)|+|f(b)|+|g(a)|+|g(b)|) \tag{2.10}\\
& =\frac{M}{M+1} K(f, g)
\end{align*}
$$

and analogously

$$
\begin{equation*}
|g(a)|+|g(b)| \leq \frac{1}{m+1} K(f, g) \tag{2.11}
\end{equation*}
$$

Combining (2.10) and (2.11) with (2.9) we obtain (2.7) .
Suppose now that $|f|^{p}$ and $|g|^{q}$ are concave on $[a, b]$ for some fixed $p, q>0$. From Lemma 2.2 we have that

$$
\|f\|_{p}+\|g\|_{q} \geq \widetilde{C}_{p}(b-a)^{\frac{1}{p}}(|f(a)|+|f(b)|)+\widetilde{C}_{q}(b-a)^{\frac{1}{q}}(|g(a)|+|g(b)|) .
$$

Using again (2.6) we can write

$$
|f(a)|+|f(b)| \geq m(|f(a)|+|f(b)|+|g(a)|+|g(b)|)-m(|f(a)|+|f(b)|),
$$

i.e.,

$$
|f(a)|+|f(b)| \geq \frac{m}{m+1} K(f, g)
$$

and analogously

$$
|g(a)|+|g(b)| \geq \frac{1}{M+1} K(f, g),
$$

from which (2.8) easily follows.
Remark 2. A similar type of condition as in (2.6) was used in [1, Theorem 1.1] where a variant of the reversed Minkowski's integral inequality for $p>1$ was proved.

Some Inequalities for p-Norms U.S. Kirmaci, M. Klaričić Bakula, M. E. Özdemir and J. Pečarić vol. 9, iss. 1, art. 27, 2008

Title Page
Contents

Page 12 of 15

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-5?5b

Theorem 2.5. Let $p, q<0$ and let $f, g:[a, b] \rightarrow \mathbb{R} \backslash\{0\}, a<b$, be such that

$$
m \frac{|g(a) g(b)|}{|g(a)|+|g(b)|} \leq \frac{|f(a) f(b)|}{|f(a)|+|f(b)|} \leq M \frac{|g(a) g(b)|}{|g(a)|+|g(b)|}
$$

for some $0<m \leq M$.
If $|f|^{p}$ and $|g|^{q}$ are concave on $[a, b]$, then

$$
\|f\|_{p}+\|g\|_{q} \leq\left[\frac{M}{M+1} \widetilde{C}_{p}(b-a)^{\frac{1}{p}}+\frac{1}{m+1} \widetilde{C}_{q}(b-a)^{\frac{1}{q}}\right] H(f, g),
$$

where

$$
H(f, g)=\frac{|f(a) f(b)|}{|f(a)|+|f(b)|}+\frac{|g(a) g(b)|}{|g(a)|+|g(b)|} .
$$

If $|f|^{p}$ and $|g|^{q}$ are convex on $[a, b]$, then

$$
\|f\|_{p}+\|g\|_{q} \geq\left[\frac{m}{m+1} C_{p}(b-a)^{\frac{1}{p}}+\frac{1}{M+1} C_{q}(b-a)^{\frac{1}{q}}\right] H(f, g) .
$$

Proof. Similar to that of Theorem 2.4.
Theorem 2.6. Let $f, g:[a, b] \rightarrow \mathbb{R}, a<b$, be such that $|f|^{p}$ and $|g|^{q}$ are convex on $[a, b]$ for some fixed $p, q>1$, where $\frac{1}{p}+\frac{1}{q}=1$. Then

$$
\begin{aligned}
\left|\int_{a}^{b} f(x) g(x) d x\right| & \leq \frac{b-a}{2}\left(|f(a)|^{p}+|f(b)|^{p}\right)^{\frac{1}{p}}\left(|g(a)|^{q}+|g(b)|^{q}\right)^{\frac{1}{q}} \\
& \leq \frac{b-a}{2}[M(f, g)+N(f, g)]
\end{aligned}
$$

where

$$
M(f, g)=|f(a)||g(a)|+|f(b)||g(b)|, \quad N(f, g)=|f(a)||g(b)|+|f(b)||g(a)| .
$$

Some Inequalities for p-Norms U.S. Kirmaci, M. Klaričić Bakula, M. E. Özdemir and J. Pečarić vol. 9, iss. 1, art. 27, 2008

Title Page
Contents

Page 13 of 15

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof. First note that since $|f|^{p}$ and $|g|^{q}$ are convex on $[a, b]$ we have $f \in L^{p}([a, b])$ and $g \in L^{q}([a, b])$, and since $\frac{1}{p}+\frac{1}{q}=1$ we know that $f g \in L^{1}([a, b])$, that is, $f g$ is integrable on $[a, b]$. Using Hölder's integral inequality (1.1) we obtain

$$
\left|\int_{a}^{b} f(x) g(x) d x\right| \leq \int_{a}^{b}|f(x) g(x)| d x \leq\|f\|_{p}\|g\|_{q}
$$

From Lemma 2.3 we have that

$$
\|f\|_{p} \leq\left(\frac{b-a}{2}\right)^{\frac{1}{p}}\left(|f(a)|^{p}+|f(b)|^{p}\right)^{\frac{1}{p}} \leq\left(\frac{b-a}{2}\right)^{\frac{1}{p}}(|f(a)|+|f(b)|)
$$

and

$$
\|g\|_{q} \leq\left(\frac{b-a}{2}\right)^{\frac{1}{q}}\left(|g(a)|^{q}+|g(b)|^{q}\right)^{\frac{1}{q}} \leq\left(\frac{b-a}{2}\right)^{\frac{1}{q}}(|g(a)|+|g(b)|)
$$

hence

$$
\begin{aligned}
\left|\int_{a}^{b} f(x) g(x) d x\right| & \leq \frac{b-a}{2}\left(|f(a)|^{p}+|f(b)|^{p}\right)^{\frac{1}{p}}\left(|g(a)|^{q}+|g(b)|^{q}\right)^{\frac{1}{q}} \\
& \leq \frac{b-a}{2}(|f(a)|+|f(b)|)(|g(a)|+|g(b)|) \\
& =\frac{b-a}{2}[M(f, g)+N(f, g)] .
\end{aligned}
$$

Some Inequalities for p-Norms U.S. Kirmaci, M. Klaričić Bakula, M. E. Özdemir and J. Pečarić vol. 9, iss. 1, art. 27, 2008

Title Page
Contents

Page 14 of 15

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] L. BOUGOFFA, On Minkowski and Hardy integral inequalities, J. Inequal. in Pure and Appl. Math., 7(2) (2006), Art. 60. [ONLINE: http: / / jipam.vu. edu.au/article.php?sid=677].
[2] G.H. HARDY, J.E. LITTLEWOOD AND G. PÓLYA, Inequalities, Cambridge Mathematical Library (1988).
[3] D.S. MITRINOVIĆ, J.E. PEČARIĆ AND A.M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers (1993).
[4] B.G. PACHPATTE, Inequalities for Differentiable and Integral Equations, Academic Press Inc. (1997).
[5] J.E. PEČARIĆ, F. PROSCHAN AND Y.L. TONG, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press Inc. (1992).

Some Inequalities for p-Norms U.S. Kirmaci, M. Klaričić Bakula,
M. E. Özdemir and J. Pečarić
vol. 9, iss. 1, art. 27, 2008

Title Page
Contents

Page 15 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics

