INTEGRABILITY CONDITIONS PERTAINING TO ORLICZ SPACE

L. LEINDLER

University of Szeged, Bolyai Institute
Aradi vértanúk tere 1,
6720 Szeged, Hungary
EMail: leindler@math.u-szeged.hu

04 September, 2006

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words.
Abstract:

Acknowledgements:

01 June, 2007
S.S. Dragomir

42A32, 46E30.
Trigonometric series, Integrability, Orlicz space.
Recently S. Tikhonov proved two theorems on the integrability of sine and cosine series with coefficients from the $R_{0}^{+} B V S$ class. These results are extended such that the $R_{0}^{+} B V S$ class is replaced by the $M R B V S$ class.

The author was partially supported by the Hungarian National Foundation for Scientific Research under Grant \# T042462.

Integrability Conditions
L. Leindler
vol. 8, iss. 2, art. 38, 2007

Title Page

Contents

Full Screen

Close
journal of inequalities in pure and applied mathematics

Contents

1 Introduction 3
2 New Result 5
3 Notions and Notations 6
4 Lemmas 8
5 Proof of Theorem $2.1 \quad 11$
Integrability Conditions
L. Leindler
vol. 8, iss. 2, art. 38, 2007

Title Page	
Contents	
$\mathbf{4 4}$	
$\mathbf{4}$	
Page 2 of 14	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction

There are many known and classical theorems pertaining to the integrability of formal sine and cosine series

$$
\begin{equation*}
g(x):=\sum_{n=1}^{\infty} \lambda_{n} \sin n x \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f(x):=\sum_{n=1}^{\infty} \lambda_{n} \cos n x . \tag{1.2}
\end{equation*}
$$

We do not recall such theorems because a nice short survey of these results with references can be found in a recent paper of S. Tikhonov [3], where he proved two theorems providing sufficient conditions of belonging of $f(x)$ and $g(x)$ to Orlicz spaces. In his theorems the sequence of the coefficients λ_{n} belongs to the class of sequences of rest bounded variation. For notions and notations, please, consult the third section.

In the present paper we shall verify analogous results assuming only that the sequence $\lambda:=\left\{\lambda_{n}\right\}$ is a sequence of mean rest bounded variation. We emphasize that the latter sequences may have many zero terms, while the previous ones have no zero term.

Tikhonov's theorems read as follows:
Theorem 1.1. Let $\Phi(x) \in \Delta(p, 0)(0 \leq p)$. If $\left\{\lambda_{n}\right\} \in R_{0}^{+} B V S$, and the sequence $\left\{\gamma_{n}\right\}$ is such that $\left\{\gamma_{n} n^{-1+\varepsilon}\right\}$ is almost decreasing for some $\varepsilon>0$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\gamma_{n}}{n^{2}} \Phi\left(n \lambda_{n}\right)<\infty \Rightarrow \psi(x) \in L(\Phi, \gamma) \tag{1.3}
\end{equation*}
$$

Integrability Conditions

L. Leindler
vol. 8, iss. 2, art. 38, 2007

Title Page
Contents

Page 3 of 14

Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
where a function $\psi(x)$ is either a sine or cosine series.
Theorem 1.2. Let $\Phi(x) \in \Delta(p, q)(0 \leq q \leq p)$. If $\left\{\lambda_{n}\right\} \in R_{0}^{+} B V S$, and the sequence $\left\{\gamma_{n}\right\}$ is such that $\left\{\gamma_{n} n^{-(1+q)+\varepsilon}\right\}$ is almost decreasing for some $\varepsilon>0$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\gamma_{n}}{n^{2+q}} \Phi\left(n^{2} \lambda_{n}\right)<\infty \Rightarrow g(x) \in L(\Phi, \gamma) \tag{1.4}
\end{equation*}
$$

Integrability Conditions

L. Leindler
vol. 8, iss. 2, art. 38, 2007

Title Page
Contents

Page 4 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. New Result

Now, we formulate our result in a terse form.
Theorem 2.1. Theorems 1.1 and 1.2 can be improved when the condition $\left\{\lambda_{n}\right\} \in$ $R_{0}^{+} B V S$ is replaced by the assumption $\left\{\lambda_{n}\right\} \in M R B V S$. Furthermore the conditions of (1.3) and (1.4) may be modified as follows:

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\gamma_{n}}{n^{2}} \Phi\left(\sum_{\nu=n}^{2 n-1} \lambda_{\nu}\right)<\infty \Rightarrow \psi(x) \in L(\Phi, \gamma), \tag{2.1}
\end{equation*}
$$

Integrability Conditions

L. Leindler
vol. 8, iss. 2, art. 38, 2007

Title Page
Contents

Page 5 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

3. Notions and Notations

A null-sequence $\mathbf{c}:=\left\{c_{n}\right\}\left(c_{n} \rightarrow 0\right)$ of positive numbers satisfying the inequalities

$$
\sum_{n=m}^{\infty}\left|\Delta c_{n}\right| \leq K(\mathbf{c}) c_{m}, \quad\left(\Delta c_{n}:=c_{n}-c_{n+1}\right), m=1,2, \ldots
$$

with a constant $K(\mathbf{c})>0$ is said to be a sequence of rest bounded variation, in brief, $\mathbf{c} \in R_{0}^{+} B V S$.

A null-sequence \mathbf{c} of nonnegative numbers possessing the property

$$
\sum_{n=2 m}^{\infty}\left|\Delta c_{n}\right| \leq K(\mathbf{c}) m^{-1} \sum_{\nu=m}^{2 m-1} c_{\nu}
$$

is called a sequence of mean rest bounded variation, in symbols, $\mathbf{c} \in M R B V S$.
It is clear that the class $M R B V S$ includes the class $R_{0}^{+} B V S$.
The author is grateful to the referee for calling his attention to an inaccurancy in the previous definition of the class $M R B V S$ and to some typos.

A sequence γ of positive terms will be called almost increasing (decreasing) if

$$
K(\gamma) \gamma_{n} \geq \gamma_{m} \quad\left(\gamma_{n} \leq K(\gamma) \gamma_{m}\right)
$$

holds for any $n \geq m$.
Denote by $\Delta(p, q)(0 \leq q \leq p)$ the set of all nonnegative functions $\Phi(x)$ defined on $[0, \infty)$ such that $\Phi(0)=0$ and $\Phi(x) / x^{p}$ is nonincreasing and $\Phi(x) / x^{q}$ is nondecreasing.

In this paper a sequence $\gamma:=\left\{\gamma_{n}\right\}$ is associated to a function $\gamma(x)$ being defined in the following way: $\gamma\left(\frac{\pi}{n}\right):=\gamma_{n}, n \in \mathbb{N}$ and $K_{1}(\gamma) \gamma_{n+1} \leq \gamma(x) \leq K_{2}(\gamma) \gamma_{n}$ holds for all $x \in\left(\frac{\pi}{n+1}, \frac{\pi}{n}\right)$.

Integrability Conditions

L. Leindler
vol. 8, iss. 2, art. 38, 2007

Title Page
Contents
J

$$
5-2+2=2+2
$$

Page 6 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

A locally integrable almost everywhere positive function $\gamma(x):[0, \pi] \rightarrow[0, \infty)$ is said to be a weight function.

Let $\Phi(t)$ be a nondecreasing continuous function defined on $[0, \infty)$ such that $\Phi(0)=0$ and $\lim _{t \rightarrow \infty} \Phi(t)=+\infty$. For a weight function $\gamma(x)$ the weighted Orlicz space $L(\Phi, \gamma)$ is defined by

$$
L(\Phi, \gamma):=\left\{h: \int_{0}^{\pi} \gamma(x) \Phi(\varepsilon|h(x)|) d x<\infty \text { for some } \varepsilon>0\right\}
$$

Later on $D_{k}(x)$ and $\tilde{D}_{k}(x)$ shall denote the Dirichlet and the conjugate Dirichlet kernels. It is known that, if $x>0,\left|D_{k}(x)\right|=O\left(x^{-1}\right)$ and $\left|\tilde{D}_{k}(x)\right|=O\left(x^{-1}\right)$ hold.

We shall also use the notation $L \ll R$ if there exists a positive constant K such that $L \leq K R$.

Integrability Conditions

L. Leindler
vol. 8, iss. 2, art. 38, 2007

Title Page
Contents

Page 7 of 14

Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

4. Lemmas

Lemma 4.1 ([1]). If $a_{n} \geq 0, \rho_{n}>0$, and if $p \geq 1$, then

$$
\sum_{n=1}^{\infty} \rho_{n}\left(\sum_{\nu=1}^{n} a_{\nu}\right)^{p} \ll \sum_{n=1}^{\infty} \rho_{n}^{1-p} a_{n}^{p}\left(\sum_{\nu=n}^{\infty} \rho_{\nu}\right)^{p}
$$

Lemma 4.2 ([2]). Let $\Phi \in \Delta(p, q)(0 \leq q \leq p)$ and $t_{j} \geq 0, j=1,2, \ldots, n, n \in \mathbb{N}$. Then

1. $Q^{p} \Phi(t) \leq \Phi(Q t) \leq Q^{q} \Phi(t), \quad 0 \leq Q \leq 1, t \geq 0$,
2. $\Phi\left(\sum_{j=1}^{n} t_{j}\right) \leq\left(\sum_{j=1}^{n} \Phi^{1 / p^{*}}\left(t_{j}\right)\right)^{p^{*}}, \quad p^{*}:=\max (1, p)$.

Lemma 4.3. Let $\Phi \in \Delta(p, q)(0 \leq q \leq p)$. If $\rho_{n}>0, a_{n} \geq 0$, and if

$$
\begin{equation*}
\sum_{\nu=2^{m}}^{2^{m+1}-1} a_{\nu} \ll \sum_{\nu=1}^{2^{m}-1} a_{\nu} \tag{4.1}
\end{equation*}
$$

Page 8 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics

Proof. Denote by $A_{n}:=n^{-1} \sum_{\nu=n}^{2 n-1} a_{\nu}$. Let ξ be an integer such that $2^{\xi} \leq k<2^{\xi+1}$. Then

$$
\begin{equation*}
\sum_{\nu=1}^{k} a_{\nu} \leq \sum_{m=0}^{\xi} \sum_{\nu=2^{m}}^{2^{m+1}-1} a_{\nu}=\sum_{m=0}^{\xi} 2^{m} A_{2^{m}} \tag{4.2}
\end{equation*}
$$

Utilizing the properties of Φ, furthermore (4.1), (4.2) and Lemma 4.2, we obtain that

$$
\begin{aligned}
\Phi\left(\sum_{\nu=1}^{k} a_{\nu}\right) & \ll \Phi\left(\sum_{m=0}^{\xi} 2^{m} A_{2^{m}}\right) \\
& \ll \Phi\left(\sum_{m=0}^{\xi-1} 2^{m} A_{2^{m}}\right) \\
& \ll\left(\sum_{m=0}^{\xi-1} \Phi^{1 / p^{*}}\left(2^{m} A_{2^{m}}\right)\right)^{p^{*}} \ll\left(\sum_{\nu=1}^{k} \nu^{-1} \Phi^{1 / p^{*}}\left(\nu A_{\nu}\right)\right)^{p^{*}}
\end{aligned}
$$

Hence, by Lemma 4.1, we have

$$
\begin{aligned}
\sum_{k=1}^{\infty} \rho_{k} \Phi\left(\sum_{\nu=1}^{k} a_{\nu}\right) & \ll \sum_{k=1}^{\infty} \rho_{k}\left(\sum_{\nu=1}^{k} \nu^{-1} \Phi^{1 / p^{*}}\left(\nu A_{\nu}\right)\right)^{p^{*}} \\
& \ll \sum_{k=1}^{\infty} \rho_{k}^{1-p^{*}}\left(k^{-1} \Phi^{1 / p^{*}}\left(k A_{k}\right)\right)^{p^{*}}\left(\sum_{\nu=k}^{\infty} \rho_{\nu}\right)^{p^{*}} \\
& \ll \sum_{k=1}^{\infty} \rho_{k} \Phi\left(k A_{k}\right)\left(\left(k \rho_{k}\right)^{-1} \sum_{\nu=k}^{\infty} \rho_{\nu}\right)^{p^{*}}
\end{aligned}
$$

Integrability Conditions

L. Leindler
vol. 8, iss. 2, art. 38, 2007

Title Page
Contents

Page 9 of 14
Go Back

Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
Herewith the proof is complete.

Lemma 4.4. If $\lambda:=\left\{\lambda_{n}\right\} \in M R B V S$ and $\Lambda_{n}:=n^{-1} \sum_{\nu=n}^{2 n-1} \lambda_{\nu}$, then

$$
\Lambda_{k} \ll \Lambda_{\ell}
$$

holds for all $k \geq 2 \ell$.
Proof. It is clear that if $m \geq 2 \ell$, then

$$
\ell^{-1} \sum_{\nu=\ell}^{2 \ell-1} \lambda_{\nu} \gg \sum_{\nu=2 \ell}^{\infty}\left|\Delta \lambda_{\nu}\right| \geq \sum_{\nu=m}^{\infty}\left|\Delta \lambda_{\nu}\right| \geq \lambda_{m}
$$

Integrability Conditions

L. Leindler
vol. 8, iss. 2, art. 38, 2007
whence

$$
\Lambda_{\ell}=\ell^{-1} \sum_{\nu=\ell}^{2 \ell-1} \lambda_{\nu} \gg k^{-1} \sum_{m=k}^{2 k-1} \lambda_{m}=\Lambda_{k}
$$

obviously follows.

Title Page
Contents

Page 10 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

5. Proof of Theorem 2.1

Proof of Theorem 2.1. Let $x \in\left(\frac{\pi}{n+1}, \frac{\pi}{n}\right)$. Using Abel's rearrangement, the known estimate of $D_{k}(x)$ and the fact that $\lambda \in M R B V S$, we obtain that

$$
\begin{aligned}
|f(x)| & \leq \sum_{k=1}^{n} \lambda_{k}+\left|\sum_{k=n+1}^{\infty} \lambda_{k} \cos k x\right| \\
& \leq \sum_{k=1}^{n} \lambda_{k}+\sum_{k=n}^{\infty}\left|\Delta \lambda_{k} D_{k}(x)\right|+\lambda_{n}\left|D_{n}(x)\right| \\
& \ll \sum_{k=1}^{n} \lambda_{k}+\sum_{k \geq n / 2}^{n} \lambda_{k}+n \lambda_{n} .
\end{aligned}
$$

Integrability Conditions

L. Leindler
vol. 8, iss. 2, art. 38, 2007

Title Page
Contents
Hence, $\lambda \in M R B V S$, and we obtain that

$$
|f(x)| \ll \sum_{k=1}^{n} \lambda_{k}
$$

Page 11 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
where $\psi(x)$ is either $f(x)$ or $g(x)$.
By Lemma 4.4, the condition (4.1) with λ_{ν} in place of a_{ν} is satisfied, thus we can apply Lemma 4.3, consequently (5.1) and some elementary calculations give that

$$
\begin{aligned}
\int_{0}^{\pi} \gamma(x) \Phi(|\psi(x)|) d x & \ll \sum_{n=1}^{\infty} \Phi\left(\sum_{k=1}^{n} \lambda_{k}\right) \int_{\pi /(n+1)}^{\pi / n} \gamma(x) d x \\
& \ll \sum_{n=1}^{\infty} \gamma_{n} n^{-2} \Phi\left(\sum_{k=1}^{n} \lambda_{k}\right) \\
& \ll \sum_{k=1}^{\infty} \Phi\left(\sum_{\nu=k}^{2 k-1} \lambda_{\nu}\right) \gamma_{k} k^{-2}\left(k \gamma_{k}^{-1} \sum_{\nu=k}^{\infty} \gamma_{\nu} \nu^{-2}\right)^{p^{*}}
\end{aligned}
$$

Integrability Conditions

L. Leindler
vol. 8, iss. 2, art. 38, 2007

Title Page
Contents

$$
k \gamma_{k}^{-1} \sum_{\nu=k}^{\infty} \gamma_{\nu} \nu^{-2} \ll 1
$$

therefore (5.2) proves (2.1).
To prove (2.2) we follow a similar procedure as above. Then

$$
\begin{align*}
|g(x)| & \leq \sum_{k=1}^{n} k x \lambda_{k}+\left|\sum_{k=n+1}^{\infty} \lambda_{k} \sin k x\right| \\
& \ll x \sum_{k=1}^{n} k \lambda_{k}+\sum_{k=n}^{\infty}\left|\Delta \lambda_{k} \tilde{D}_{k}(x)\right|+\lambda_{n}\left|\tilde{D}_{n}(x)\right| \\
& \ll n^{-1} \sum_{k=1}^{n} k \lambda_{k}+\sum_{k \geq n / 2}^{n} \lambda_{k}+n \lambda_{n} \ll n^{-1} \sum_{k=1}^{n} k \lambda_{k} . \tag{5.3}
\end{align*}
$$

Page 12 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Using Lemmas 4.2, 4.3, 4.4 and the estimate (5.3), we obtain that

$$
\begin{aligned}
\int_{0}^{\pi} \gamma(x) \Phi(|g(x)|) d x & \ll \sum_{n=1}^{\infty} \Phi\left(n^{-1} \sum_{k=1}^{n} k \lambda_{k}\right) \int_{\pi /(n+1)}^{\pi / n} \gamma(x) d x \\
& \ll \sum_{n=1}^{\infty} \gamma_{n} n^{-2-q} \Phi\left(\sum_{k=1}^{n} k \lambda_{k}\right) \\
\text { (5.4) } & \ll \sum_{k=1}^{\infty} \Phi\left(k \sum_{\nu=k}^{2 k-1} \lambda_{\nu}\right) \gamma_{k} k^{-2-q}\left(k^{1+q} \gamma_{k}^{-1} \sum_{\nu=k}^{\infty} \gamma_{\nu} \nu^{-2-q}\right)^{p^{*}} .
\end{aligned}
$$

Integrability Conditions

L. Leindler
vol. 8, iss. 2, art. 38, 2007

By the assumption on $\left\{\gamma_{n}\right\}$,

$$
k^{1+q} \gamma_{k}^{-1} \sum_{\nu=k}^{\infty} \gamma_{\nu} \nu^{-2-q} \ll 1
$$

and thus (5.4) yields that

$$
\int_{0}^{\pi} \gamma(x) \Phi(|g(x)|) d x \ll \sum_{k=1}^{\infty} \gamma_{k} k^{-2-q} \Phi\left(k \sum_{\nu=k}^{2 k-1} \lambda_{\nu}\right)
$$

Page 13 of 14
Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] L. LEINDLER, Generalization of inequalities of Hardy and Littlewood, Acta Sci. Math. (Szeged), 31 (1970), 279-285.
[2] M. MATELJEVIC AND PAVLOVIC, L^{p}-behavior of power series with positive coefficients and Hardy spaces, Proc. Amer. Math. Soc., 87 (1983), 309-316.
[3] S. TIKHONOV, On belonging of trigonometric series of Orlicz space, J. Inequal. Pure and Appl. Math., 5(2) (2004), Art. 22. [ONLINE: http: / / jipam.vu. edu.au/article.php?sid=395].

Integrability Conditions

L. Leindler
vol. 8, iss. 2, art. 38, 2007

Title Page
Contents

Page 14 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

