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ABSTRACT. A new weighted geometric inequality is established by Klamkin’s polar moment
of inertia inequality and the inversion transformation, some interesting applications of this result
are given, and some conjectures which verified by computer are also mentioned.
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1. INTRODUCTION

In 1975, M.S. Klamkin|[[1] established the following inequality: L&BC' be an arbitrary
triangle of sides:, b, ¢, and letP be an arbitrary point in a space, the distance® dfom the
verticesA, B, C areR;, Ry, R3. If z,y, z are real numbers, then

(1.1) (x+y+2) (@R +yR; + 2R3) > yza® + zab® + 2y,

with equality if and only ifP lies in the plane oNABC andz : y : z = gApBC : Sapca

Sapras (Sappc denote the algebra area, etc.)

Inequality [1.1) is called the polar moment of the inertia inequality. It is one of the most
important inequalities for the triangle, and there exist many consequences and applications for
it, see [1] —[5]. In this paper, we will apply Klamkin's inequality (L.1) and the inversion
transformation to deduce a new weighted geometric inequality, then we discuss applications of
our results. In addition, we also pose some conjectures.

2. MAIN RESULT
In order to prove our new results, we firstly give the following lemma.

Lemma 2.1. Let ABC be an arbitrary triangle, and leP be an arbitrary point on the plane of
the triangleABC'. If the following inequality:

(21) f(aab7 C, Rh R27R3) Z 0
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holds, then we have the dual inequality:
(22) f((ZRl,bRQ,CRg,RQRg,RgRleRQ) Z 0

Indeed, the above conclusion can be deduced by using inversion transformation, see [6] or

31, [7].

Now, we state and prove main result.

Theorem 2.2. Letx, y, z be positive real numbers. Then for any triangi&C' and arbitrary
point P in the plane ofA ABC, the following inequality holds:
2 2 2 )
2.3) &+&+&ZaRl+bR2+CR37
T Y z VYzZ + zr + a2y
with equality if and only A ABC' is acute-angledP coincides with its orthocenter and.: y :
z=-cot A:cotB:cotC.

Proof. If P coincides with one of the vertices &fABC', for exampleP = A, thenPA =
0,PB = ¢,PC = b, and [2.8) becomes a trivial inequality. In this case, equality in (2.3)
obviously cannot occur.
Next, assume tha? does not coincide with the vertices.
If z,y, z are positive real numbers, then by the polar moment of inertia inequality (1.1) we
have
2 2 2
(xR} + yR3 + 2R3) (yiz+i+i) LA

zr xy) «x Y z

On the other hand, from the Cauchy-Schwarz inequality we get
a? ¥ A (a+b+c)?

=t >
T Y z r+yt+z

?

with equality ifand only ifz : y : 2 =a : b : c.
Combining these two above inequalities, for any positive real numbers, the following
inequality holds:
11 1 (a+b+ c)?
2.4 2 2 Hl—+—4+— | >—>— .
(2.4) (xR1+yR2+ZR3)<yz+Zx+xy> PR
and equality holdsifand only if : 4y : z =a : b : candP is the incenter oNABC.
Now, applying the inversion transformation in the lemma to inequality (2.4), we obtain
11 1 (aRy + bRy + cRj)?
2 2 2
—— 4+ =] >
[ZL’(RQR;;) + y(R3R1) + Z(Rle) } ( + + ) T+ Y e

yz  zx a2y

)

or equivalently

(2.5)

yz 2T xy

(R2R3)* " (RsRy)? n (R1R)* S <GR1 + bR, +CR3)2
- rT+y+z '

wherez, y, z are positive numbers.
Forr — zR},y — yR3, 2 — 2R3, we have:

aRy + bRy + cR3 \ °
tR? + yR3 + 2R3

(2.6) i+i+i>(

Yz zx Ty

Take againc — 1,y — 1,z — 1, we getthe inequalitS) of the theorem.
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Note the conclusion in[7]: If equality it (.1) occurs only whers the incenter oNABC,
then equality in[(2]2) occurs only whehABC' is acute-angled an# is its orthocenter. Ac-
cording to this and the condition for which equality holds[in {2.4), we know that equality in
(2.3) holds if and only ifAABC'is acute-angled? is its orthocenter and

BBy B

(2.7) = —=—.
ra yb cz

WhenP is the orthocenter of the acute triangld3C', we haveR; : Ry : R3 = cos A : cos B :
cos C. Hence, in this case, from (2.7) we have y : z = cot A : cot B : cot C'. Thus, there
is equality in [2.8) if and only ifAABC' is acute-angledP coincides with its orthocenter and
x/cot A =y/cot B = z/cotC. This completes the proof of the theorem. O

Remark 1. If P does not coincide with the vertices, then inequality|(2.4) is equivalent to the
following result in [8]:

Ry R3 Rs Ry RiR, [ xyz
2.8 > 2,/ ———
( ) * Rl +y R2 tz R3 - x—l—y+z8’

wheres is the semi-perimeter ch ABC, z,y, z are positive real numbers. 1n/[8], (2.8) was
proved without using the polar moment of inertia inequality.

3. APPLICATIONS OF THE THEOREM

Besides the above notations, as usual Hetndr denote the radii of the circumcircle and
incircle of triangleABC, respectivelyA denote the area,, r;,, r. denote the radii of the ex-
circles. In addition, when poin® lies in the interior of triangleA BC, let r{, r5, r3 denote the
distances of” to the sidesBC,C A, AB.

According to the theorem and the well-known inequality for any péimm the plane

(31) aR1 + bRQ + CR3 Z 4A,
we get
Corollary 3.1. For any pointP in the plane and arbitrary positive numbersy, z, the following
inequality holds:
2 2 2 AN
(3.2) il + el + s > :
T Y Z VYz + zr +xy

with equality if and only ifr : y : 2 = cot A : cot B : cot C' and P is the orthocenter of the
acute angled trianglel BC.

Remark 2. Clearly, [3.2) is equivalent with
TYZz A
rT+y+=z

The above inequality was first given inl [9] by Xue-Zhi Yang. The author [10] obtained the
following generalization:

2 2 2
a’ b d TYz
3.4 — - — >4, ————AN
( ) x(aR1> —I—y(bR2> +Z<CR3> = Tty+z ,

whered', V', ¢ denote the sides ek A’ B'C’, A’ denotes its area.

(3.3) rRI +yR5+ 2R3 > 4

If, Iin @3 weputz = Ly =1 2 =1 andnote that + = + & = 71, then we get the
result:
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Corollary 3.2. For arbitrary point P in the plane ofA ABC, the following inequality holds:
aR? + OR3 + cR3

aRy + bRy + cRs —
Equality holds if and only if the triangld BC' is equilateral andP is its center.

Remark 3. The conditions for equality that the following inequalities of Corollajie$ 3.4} 3.8
have are the same as the statement of Cordllary 3.2.

(3.5) 2Rr.

In the theorem, for = &L ¢y = f2 »
a b’

%, after reductions we obtain

Corollary 3.3. If P is an arbitrary point which does not coincide with the verticeg\oi BC,

then

(3.6) Ry Ry N R3Ry n R Ry > 1
be ca ab

Equality holds if and only iN ABC' is acute-angled and is its orthocenter.

Inequality [3.6) was first proved by T. Hayashi (se€ [11] or [3]), who gave its two generaliza-
tions in [12].
Indeed, assume does not coincide with the vertices, put> &y — £ > — s jn ),

then we get a weighted generalized form of Hayashi inequality:

RoRs N RsR, . RiRy _ (_aRi+ bRy +cRy 2
xaRy +ybRy + 2cR3 )

(3.7)

yzbc zrea — xyab
Forz =1 y=1,2z=1: wehave

(38) (R2R3 + R3R1 + Rle)(Rl + R2 + R3)2 Z (CLRl + bRg + CR3)2.

Applying the inversion transformation of the lemma to the above inequality, then dividing both
sides byR, R, R3, we get the following result.

Corollary 3.4. If P is an arbitrary point which does not coincide with the verticeg\oi BC,
then

1 1 1
3.9 RoRs + RsRy + R1Ry)? > 452,
(3.9) (RaRs + R3R1 + Ri1R») <R2R3+R3R1+R1R2>_ S

It is not difficult to see that the above inequality is stronger than the following result which
the author obtained many years ago:

R2R3 \/R3R1 \/RlRQ
3.10 > 14/2 )
(3.10) \/ 7 + o + 7 2 V/3s

Now, let P be an interior point of the trianglé BC'. Then we have the well known inequali-
ties (seel[13]):

aRy > brs + cry, DRy > crq + ars, cR3 > ary + bry.

Summing them up, we note that+ b + ¢ = 2s and by the identityir; + bry + cr3 = 2rs, we
easily get

(3.11) aRy + bRy + cR3 > 2s(ry + 19 + 13) — 275,

Multiplying both sides by 2 then adding inequality (3.1) and using- rs,
3(aRy + bRy + cR3) > 4s(ry + 1o +13),

that is

4
(312) CLR1 + bR2 + CR3 >

—S.
L+ 1o+ 173 -3
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According to this and the equivalent forfn (2.5) of inequaljty 2.3), we immediately get the
result:

Corollary 3.5. Let P be an interior point of the trianglel BC'. Then
2 2 2
1
(RoR3) n (R3Ry) n (R1Rs) < 632.

T2T3 3T T1T2 - 9

(3.13)
From inequalities[ (3]8) anfl (3]12) we infer that
16
(R2R3 + RgRl + R1R2)<R1 -+ RQ -+ R3)2 2 582(7"1 -+ T2 -+ 7’3)2,

Noting again thas( Ry Rs+ R3 Ry + R Ry) < (R, + Ry + R3)?, we get the following inequality:

Corollary 3.6. Let P be an interior point of triangled BC, then

Ry + Ry + R3)? 4
(3.14) (Fr + B + Ry) > s,
ry+ 1o+ r3 \/§
Lettingz = r,,y = 1, 2 = 1. in (2.3) and noting that identity,r, + r.r, + 7,7, = s, we
have

2 2 2
1
&‘i‘&"—& 2 g(aR1+bR2+cR3).

Ta Ty Te
This inequality and (3.12) lead us to the following inequality:

(3.15)

Corollary 3.7. Let P be an interior point of the trianglel BC', then
R? R2 R: 4
—1+—2+_3 2 —(T1+’l“2+7“3).
Ta Th Te 3

Adding (3.1) and[(3.711) then dividing both sides by 2, we have
(3.17) aRy + bRy + cR3 > s(ry + 1y + 713+ 7).

From this and[(3.15), we again get the following inequality which is similgr to [3.16):

(3.16)

Corollary 3.8. Let P be an interior point of the trianglel BC'. Then

R R R
_+_+_27"1+7"2+7"3+7°.
Ta Ty Te

When P locates the interior of the triangéBC, let D, E, F' be the feet of the perpendicular
from P to the sideBC, C'A, AB respectively. Take = ary,y = bry, z = cr3 in the equivalent

form (2.8) of inequality[(2]3), then

1 1 N 1 aRi 4+ bRy + cR;  \°
aT1R1 + bT‘QRQ + CT‘3R3

Usingar; + bry + crs = 2A and the well known identity (segl[7]):

(3.19) ar\R? +bryR3 + cr3R3 = 8R2Ap,

(whereA, is the area of the pedal triangleE F'), we get
aberirors(aRy + bRy + cR3)? < 64AR4A§.

Let s,, r, denote the semi-perimeter of the trianglé” F' and the radius of the incircle respec-
tively. Note thatA, = r,s,,aRR, + bRy + cRs = 4Rs,. From the above inequality we obtain
the following inequality which was established by the author in [14]:

(3.18)

berors  carsry  abriry T
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Corollary 3.9. Let P be an interior point of the trianglel BC'. Then

rTors

(3.20)

<2R.

T
Equality holds if and only i is the orthocenter of the trianglé BC'.

It is well known that there are few inequalities relating a triangle and two points. Several

years ago, the author conjectured that the following inequality holds:

RY R} B3

S+ =4+ = >

dl + d2 + d3 = (T1+T2+’I“3),

whered;, ds, ds denote the distances from an interior painto the sides oNABC'.

Inequality [3.211) is very interesting and the author has been trying to prove it. In what follows,
we will prove a stronger result. To do so, we need a corollary of the following conclusion (see
[15]):

Let @ be an interior point o\ ABC, t1, t,, t3 denote the bisector o BQC, ZCQA, ZAQB
respectively and\ A’ B’C’ be an arbitrary triangle. Then

(3.21)

1
(3.22) totssin A’ + tsty sin B + t1tysin O < §A,

with equality if and only IfAA’B'C" ~ AABC, and( is the circumcentre o ABC.
In (3.22), letting A ABC' be equilateral, we immediately get

1
(3.23) tots + tsty + tity < —SA.

V3

From this and the simple inequality > 3v/3A, we have
1
(3.24) tots + taty + tits < 532.

According to inequality[(2]3) of the theorem and (3.24), we can see that
R R E

3
2 — + =4+ = > - )
(3 5) tl t2 t3 =3 (CZRl + bRQ + CR3)

By using inequality[(3.1]2), we obtain the following stronger version of inequality {3.21).
Corollary 3.10. Let P and @ be two interior points oNABC', then

R2 R2 R?
(3.26) = e (FErork
oty ts

with equality if and only itN ABC' is equilateral andP,  are both its center.
Analogously, from inequality (3.17) and inequalify (3.25) we get:
Corollary 3.11. Let P and @ be two interior points oNABC', then

R?> R? R?
(3.27) A 24 2 >3 4y Frs ).
t |ty 1

with equality if and only iN ABC' is equilateral andP,  are both its center.
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4, SOME CONJECTURES

In this section, we will state some conjectures in relation to our results.
Inequality [3.8) is equivalent to

b 2
4.1) RyRs + RsRy + Ry Ry > (aRl bl CR3> .

Ry + Ry + Rs

With this one and the well known inequality:

(4.2) RyR3 + R3Ry + R Ry > 4(wows + wzwy + wyws)

in mind, we pose the following

Conjecture 4.1. Let P be an arbitrary interior point of the trianglel BC', then

aR1 + bR2 + CR3
4.3
(43) ( Ry + Ry + Rs

Considering Corollary 3]5, the author posed these two conjectures:

2
) > 4(wows + wawy + wiwsy).

Conjecture 4.2. Let P be an arbitrary interior point of the trianglel BC, then
2 2 2

4
(R2R3) n (Rsl1) . (RiRs) > 3@+t ).
WoW3 ws3wy Wi1wW2 3
Conjecture 4.3. Let P be an arbitrary interior point of the trianglel BC, then
RyR3)>  (R3R1)?  (RiRy)?
(23)+(31)+(12)

rar3 r3”r rire

From the inequality of Corollafy 3.6, we surmise that the following stronger inequality holds:

(4.4)

(4.5) > 4(R; + R3 + Rj).

Conjecture 4.4. Let P be an arbitrary interior point of the trianglel BC', then
R2R3 + R3R1 + R1R2 4
>
L+ T+ T3 3\/§
On the other hand, for the acute-angled triangle, we pose the following:

(4.6)

S.

Conjecture 4.5. Let AABC be acute-angled ané an arbitrary point in its interior, then

(Ry + Ry + R3)?
w1 + Wa + W3

4.7) > 6R.

Two years ago, Xue-Zhi Yang proved the following inequality (private communication):
2
(R1 4+ Ry + R3) > 9
T +1To+ T3
which is stronger tharj (3.14). Here, we further put forward the following

(4.8) a? + b + 2.

Conjecture 4.6. Let P be an arbitrary interior point of the trianglel BC', then
2
(R1+ Rs + R3) >0

w1 + Wo + Ws

In [14], the author pointed out the following phenomenon (the so-calledw phenome-
non): If the inequality holds for,, r5, r3 (this inequality can also includg,, R., R3 and other
geometric elements), then after changing-, rs into wy, ws, w3 respectively, the stronger in-
equality often holds or often holds for the acute triangle. Conjeftufe 4.6 was proposed based on
this kind of phenomenon. Analogously, we pose the following four conjectures:

4.9 a? + b% + 2.
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Conjecture 4.7. Let AABC be acute-angled ané an arbitrary point in its interior. Then

(Zf%l + b]%g + Cf%g > 4:5

(4.10) > s,
w1y + wo + w3 3

Conjecture 4.8. Let AABC' be acute-angled an@ an arbitrary point in its interior. Then
(lf%l + bf%g + Cf%3 >
Wy + Wo + w3 + 71 -

Conjecture 4.9. Let P and @ be two interior points of thé&\ABC'. Then

(4.11) 2s.

2 2 2
(4.12) &qt&qt& > 4(wy + wy + w3).
131 a3
Conjecture 4.10. Let P and @ be two interior points of thé\ ABC'. Then
R? R5 R2
(4.13) L 22 23 > 3wy 4wy +ws 7).
tl tg t3

Remark 4. If Conjectures 4]7 and 4.8 are proved, then we can prove that Conjectures 4.9 and
[4.10 are valid for the acute triangheBC.
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