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ABSTRACT. We confirm two recent conjectures of W. Janous and thereby state the best possible
form of the Erdös-Debrunner inequality for triangles.
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Fix a triangleABC and, on each of the sidesBC, CA, AB fix arbitrary interior pointsD, E,
F . Label the areas of the resulting trianglesDEF , AEF , BDF , CED asF0, F1, F2, F3. F0 is
thus the area of the central triangle, while the other three are the areas of the “corner” triangles.
The Erdös-Debrunner inequality states that at least one of the corner triangles has no greater
area than the central triangle:

(1) min{F1, F2, F3} ≤ F0.

Walther Janous [1] generalized (1), proving that

(2) M−1(F1, F2, F3) ≤ F0,

whereM−1(F1, F2, F3) denotes the harmonic mean of the areasF1, F2, F3 (for notation and
properties of general power means, see the standard reference [2]). Moreover, Janous [1] also
proves that if an inequality of the form

(3) Mp(F1, F2, F3) ≤ F0

should generally hold (withp ≥ −1) then we must necessarily have

−1 ≤ p ≤ − ln(3/2)

ln(2)
.

Prompted by these results, Janous formulates the following conjecture

Conjecture 1 (Janous [1]). The best possible value ofp for which (3) generally holds isp =

− ln(3/2)
ln(2)

.
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In this note we will confirm this conjecture, and thereby state the best possible form of the
Erdös-Debrunner inequality as a theorem:

Theorem 2. It is always true that

Mp(F1, F2, F3) ≤ F0

with p = − ln(3/2)
ln(2)

, and this value ofp is best possible, in the sense that with any greaterp there
are examples that contradict the inequality.

In [1] Janous develops a useful notation to simplify the Erdös-Debrunner problem, and we
will adopt it as our starting point. First, he selectst, u, v > 0 so that the sidesBC, CA, AB are
divided by the pointsD, E, F in the ratiost : 1− t, u : 1− u, v : 1− v. Then, defining

x =
t

1− u
, y =

u

1− v
,

v

1− t
,

and settingq := −p, Janous shows that the inequality (3) forp < 0 is equivalent to

(4) f(x, y, z) ≥ 3,

wheref is defined by

(5) f(x, y, z) :=

(
1

z
+ x− 1

)q

+

(
1

x
+ y − 1

)q

+

(
1

y
+ z − 1

)q

.

Here we require that

(6) x, y, z > 0,
1

z
+ x− 1 ≥ 0

1

x
+ y − 1 ≥ 0

1

y
+ z − 1 ≥ 0.

This newx, y, z notation and the related conditions, and the fact that we are only interested in
exponentsq with ln(3/2)/ ln(2) ≤ q < 1, is all we need to know. In reference to the function
f , Janous formulates a second “minor” conjecture:

Conjecture 3 (Janous [1]). Under conditions(6) and for anyq > 0, the minimum off(x, y, z)
is attained at points satisfyingxyz = 1.

To prove Theorem 2 we would only need to consider the smallest possibleq. However, we
will start with a proof of this conjecture for the relevant interval of exponentsln(3/2)/ ln(2) ≤
q < 1.

Lemma 4. Under the conditions(6) and if ln(3/2)/ ln(2) ≤ q < 1, the functionf(x, y, z) can
only attain a minimum at(x, y, z) whenxyz = 1.

Proof. The inequalities in (6) define a region inR3, and we first want to consider points on its
boundary. That is, we first assume that one of the last three inequalities is actually an identity;
without loss of generality, we assume that

1

y
+ z − 1 = 0.

Thus, sincez = (y − 1)/y and sincez > 0, we conclude thaty > 1. The functionf defined in
(5) simplifies to

g(x, y) :=

(
1

y − 1
+ x

)q

+

(
1

x
+ y − 1

)q

.

After the change of variabless = xq, t = 1
(y−1)q , p = 1/q this takes the more symmetric form

(7) g(s, t) := (sp + tp)1/p +

(
1

sp
+

1

tp

)1/p

.
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Using the definition of general power means, we can rewriteg as

g(s, t) = 21/p

(
Mp(s, t) +

1

M−p(s, t)

)
.

Thus, estimating both summands within parentheses via the geometric meanM0(s, t), we get

g(s, t) ≥ 21/p

(
M0(s, t) +

1

M0(s, t)

)
≥ 21+1/p = 21+q,

because of the well-known inequalitya + 1/a ≥ 2. We can now see, working backwards
through the previous steps, that the minimum21+q can only be attained ifs = t, which in turn
means thatx = 1/(y − 1). Therefore,

xyz =
1

y − 1
y
y − 1

y
= 1

as claimed. Further, we notice that21+q is greater than or equal to 3, where equality holds when
q = ln(3/2)/ ln(2).

Next, we will look for the extrema off under the set of strict conditions

(8) x, y, z > 0,
1

z
+ x− 1 > 0

1

x
+ y − 1 > 0

1

y
+ z − 1 > 0,

which together define anopenregion inR3. The extrema in this region must occur where the
gradient off vanishes. We compute the partial derivative with respect tox, and obtain

∂f

∂x
= q

(
1

z
+ x− 1

)q−1

− q

(
1

x
+ y − 1

)q−1
1

x2
.

The condition∂f
∂x

= 0 can be rewritten as (remembering thatln(3/2)/ ln(2) ≤ q < 1)

(9)

(
1

x
+ y − 1

)q

=

(
1

z
+ x− 1

)q
1

x2q/(1−q)
.

By permuting the variablesx, y, z cyclically, we obtain from (9) the corresponding equations
equivalent to∂f

∂y
= 0 and ∂f

∂z
= 0, that is,

(10)

(
1

y
+ z − 1

)q

=

(
1

x
+ y − 1

)q
1

y2q/(1−q)

and

(11)

(
1

z
+ x− 1

)q

=

(
1

y
+ z − 1

)q
1

z2q/(1−q)
.

It should be now clear that the product of the three equations (9), (10), (11) impliesxyz = 1 in
this case, too. The lemma is thus proved. �

Proof of Theorem 2.Using Lemma 4, finding the minimum off becomes a two-variable prob-
lem after settingz = 1/xy. Accordingly, we consider a new function

h(x, y) := (xy + x− 1)q +

(
1

x
+ y − 1

)q

+

(
1

y
+

1

xy
− 1

)q

,

and henceforth we will also fixq to beln(3/2)/ ln(2), recalling Janous’ proof that the inequality
is invalid for q < ln(3/2)/ ln(2). Our ultimate target is to show that withq = ln(3/2)/ ln(2)
and under conditions (6) the minimum ofh is 3 (see (4) and replacez with 1/xy in (6)).

Now, if any of the last three inequalities in (6) is an identity, the proof of Lemma 4 already
shows that the minimum ofh is 2q+1, and this number is identical to3 given the choiceq =
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ln(3/2)/ ln(2). We thus want to examine possible extrema ofh under the more restrictive
conditions

(12) x, y > 0, xy + x− 1 > 0
1

x
+ y − 1 > 0

1

y
+

1

xy
− 1 > 0

which result from (8) after replacingz with 1/xy. Rewriting (12) as

(13) x, y > 0, y + 1 >
1

x

1

x
+ y > 1 1 +

1

x
> y

it follows that1/x, y and1 must be the lengths of the three sides of a triangle. After the change
of variabless = 1/x, t = y, h can be written as

(14) h(s, t) =

(
1 + t− s

s

)q

+ (s + t− 1)q +

(
1 + s− t

t

)q

,

where the quantitiess, t, 1 are the sides of a (non-degenerate) triangle.
If we now look at

(15) H(a, b, c) :=

(
b + c− a

a

)q

+

(
c + a− b

b

)q

+

(
a + b− c

c

)q

,

wherea, b, c are the sides of a triangle, and realize that the functionH is invariant under a
common scaling ofa, b, c, we see that the problem of minimizingh(s, t) in (14) is equivalent
to minimizingH(a, b, c) in (15). Let us now use elementary trigonometric relations to rewrite
H as a function of the anglesα, β, γ (defined as the angles opposite the sides of lengtha, b, c).
The result is

H(α, β, γ) = 2q

[(
sin(β/2) sin(γ/2)

sin(α/2)

)q

+

(
sin(γ/2) sin(α/2)

sin(β/2)

)q

+

(
sin(α/2) sin(β/2)

sin(γ/2)

)q]
.

Since we are dealing with (positive) angles satisfyingα + β + γ = π, we havesin(γ/2) =
cos ((α + β)/2), and so a further dose of trigonometry transformsH into a function of the two
variablesα, β which we nevertheless callH(α, β), since the value is the same:

H(α, β) = 2q
(
sin(α/2)2q + sin(β/2)2q

)
(cot(α/2) cot(β/2)− 1)q

+
1

(cot(α/2) cot(β/2)− 1)q .

Next, using the identitysin2(ξ) = 1/(1 + cot2(ξ)) we can expressH as a function ofcot(α/2)
andcot(β/2). After one more change of variables, namelyu = cot(α/2)) andv = cot(β/2),
we obtain our final expression forH:

(16) H(u, v) = 2q

[(
1

(1 + u2)q
+

1

(1 + v2)q

)
(uv − 1)q +

1

(uv − 1)q

]
whereu andv are only required to be positive and such thatuv > 1. We are now able to
minimize (16) with traditional methods. Any critical point in the open domain specified must
satisfy the conditions∂H

∂u
= ∂H

∂v
= 0. To spare the reader the rather unpleasant complete

calculation of these partial derivatives, let us just state that, for some functionM(u, v) (whose
details are not needed here), we have

1

q2q(uv − 1)q

∂H

∂u
= −2u

1

(1 + u2)ln(3)/ ln(2)
+ vM(u, v)
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and
1

q2q(uv − 1)q

∂H

∂v
= −2v

1

(1 + v2)ln(3)/ ln(2)
+ uM(u, v).

If both partial derivatives are zero, we can solve the resulting equations forM(u, v), eliminate
M(u, v), and obtain

(17)
u

v

1

(1 + u2)ln(3)/ ln(2)
=

v

u

1

(1 + v2)ln(3)/ ln(2)
.

Introducing the function

φ(z) :=
z

(1 + z)ln(3)/ ln(2)
,

condition (17) simplifies to
φ(u2) = φ(v2).

We first consider the case whereu 6= v. The functionφ is easily seen to be strictly increasing
for z ∈ [0, ln(2)/ ln(3/2)] and strictly decreasing forz > ln(2)/ ln(3/2). u 6= v implies
that u2 < 1/q < v2. Since we assume thatuv > 1, we also have1/v2 < u2 (and thus
φ(1/v2) < φ(u2)). Now, elementary algebra shows that

φ(1/v2) = φ(v2)v2(ln(3)/ ln(2)−1).

Sincev2 > 1/q > 1, this implies that

φ(1/v2) > φ(v2) = φ(u2),

which is a contradiction. Therefore, the caseu 6= v is impossible, and we are left with the anal-
ysis of the “isosceles” caseu = v. Indeed, backtracking through our last change of variables,
u = v means thatα = β, and thusa = b in the original expression (15) forH(a, b, c). Thus, we
should consider the functionh(s, t) from (14), for the case whens = t (and2s > 1, to preserve
the triangle condition). Our last task is thus to minimize

(18) h(s, s) = 2
1

sq
+ (2s− 1)q

for s ∈ (1/2,∞). An analysis of the derivative ofh(s, s) shows that it has exactly two zeros
for s > 1/2, and since the function initially increases (with infinite derivative ats = 1/2), the
second critical point, ats = 1, must be a minimum, which corresponds to the equilateral case.
Whens = 1, h(1, 1) = 3. This andh(1/2, 1/2) = 3 complete the proof. �

Remark 5. Based on our proof, the following corollary can be stated, which is a consequence
of H(a, b, c) ≥ 3 and the general power means inequality:

Corollary 6. Let p ≥ ln(3/2)/ ln(2) be an arbitrary real number. Then for all triangles with
sidesa, b andc and semi-perimeters the inequality(

s− a

a

)p

+

(
s− b

b

)p

+

(
s− c

c

)p

≥ 3

2p

is valid.
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