ON THE ERDÖS-DEBRUNNER INEQUALITY

VANIA MASCIONI
Department of Mathematical Sciences
Ball State University
Muncie, IN 47306-0490, USA
vdm@cs.bsu.edu
URL: http://www.cs.bsu.edu/homepages/vdm/
Received 28 September, 2006; accepted 20 March, 2007
Communicated by S.S. Dragomir

Abstract

We confirm two recent conjectures of W. Janous and thereby state the best possible form of the Erdös-Debrunner inequality for triangles.

Key words and phrases: Erdös-Debrunner inequality, Area of triangles, Generalized means.
2000 Mathematics Subject Classification Primary: 51M16, Secondary: 26D05.
Fix a triangle $A B C$ and, on each of the sides $B C, C A, A B$ fix arbitrary interior points D, E, F. Label the areas of the resulting triangles $D E F, A E F, B D F, C E D$ as $F_{0}, F_{1}, F_{2}, F_{3} . F_{0}$ is thus the area of the central triangle, while the other three are the areas of the "corner" triangles. The Erdös-Debrunner inequality states that at least one of the corner triangles has no greater area than the central triangle:

$$
\begin{equation*}
\min \left\{F_{1}, F_{2}, F_{3}\right\} \leq F_{0} . \tag{1}
\end{equation*}
$$

Walther Janous [1] generalized (1), proving that

$$
\begin{equation*}
M_{-1}\left(F_{1}, F_{2}, F_{3}\right) \leq F_{0} \tag{2}
\end{equation*}
$$

where $M_{-1}\left(F_{1}, F_{2}, F_{3}\right)$ denotes the harmonic mean of the areas F_{1}, F_{2}, F_{3} (for notation and properties of general power means, see the standard reference [2]). Moreover, Janous [1] also proves that if an inequality of the form

$$
\begin{equation*}
M_{p}\left(F_{1}, F_{2}, F_{3}\right) \leq F_{0} \tag{3}
\end{equation*}
$$

should generally hold (with $p \geq-1$) then we must necessarily have

$$
-1 \leq p \leq-\frac{\ln (3 / 2)}{\ln (2)}
$$

Prompted by these results, Janous formulates the following conjecture
Conjecture 1 (Janous [1]). The best possible value of p for which (3) generally holds is $p=$ $-\frac{\ln (3 / 2)}{\ln (2)}$.

[^0]In this note we will confirm this conjecture, and thereby state the best possible form of the Erdös-Debrunner inequality as a theorem:
Theorem 2. It is always true that

$$
M_{p}\left(F_{1}, F_{2}, F_{3}\right) \leq F_{0}
$$

with $p=-\frac{\ln (3 / 2)}{\ln (2)}$, and this value of p is best possible, in the sense that with any greater p there are examples that contradict the inequality.

In [1] Janous develops a useful notation to simplify the Erdös-Debrunner problem, and we will adopt it as our starting point. First, he selects $t, u, v>0$ so that the sides $B C, C A, A B$ are divided by the points D, E, F in the ratios $t: 1-t, u: 1-u, v: 1-v$. Then, defining

$$
x=\frac{t}{1-u}, \quad y=\frac{u}{1-v}, \quad \frac{v}{1-t},
$$

and setting $q:=-p$, Janous shows that the inequality (3) for $p<0$ is equivalent to

$$
\begin{equation*}
f(x, y, z) \geq 3 \tag{4}
\end{equation*}
$$

where f is defined by

$$
\begin{equation*}
f(x, y, z):=\left(\frac{1}{z}+x-1\right)^{q}+\left(\frac{1}{x}+y-1\right)^{q}+\left(\frac{1}{y}+z-1\right)^{q} . \tag{5}
\end{equation*}
$$

Here we require that

$$
\begin{equation*}
x, y, z>0, \quad \frac{1}{z}+x-1 \geq 0 \quad \frac{1}{x}+y-1 \geq 0 \quad \frac{1}{y}+z-1 \geq 0 . \tag{6}
\end{equation*}
$$

This new x, y, z notation and the related conditions, and the fact that we are only interested in exponents q with $\ln (3 / 2) / \ln (2) \leq q<1$, is all we need to know. In reference to the function f, Janous formulates a second "minor" conjecture:
Conjecture 3 (Janous [1]). Under conditions (6) and for any $q>0$, the minimum of $f(x, y, z)$ is attained at points satisfying $x y z=1$.

To prove Theorem 2 we would only need to consider the smallest possible q. However, we will start with a proof of this conjecture for the relevant interval of exponents $\ln (3 / 2) / \ln (2) \leq$ $q<1$.

Lemma 4. Under the conditions (6) and if $\ln (3 / 2) / \ln (2) \leq q<1$, the function $f(x, y, z)$ can only attain a minimum at (x, y, z) when $x y z=1$.

Proof. The inequalities in (6) define a region in \mathbb{R}^{3}, and we first want to consider points on its boundary. That is, we first assume that one of the last three inequalities is actually an identity; without loss of generality, we assume that

$$
\frac{1}{y}+z-1=0 .
$$

Thus, since $z=(y-1) / y$ and since $z>0$, we conclude that $y>1$. The function f defined in (5) simplifies to

$$
g(x, y):=\left(\frac{1}{y-1}+x\right)^{q}+\left(\frac{1}{x}+y-1\right)^{q} .
$$

After the change of variables $s=x^{q}, t=\frac{1}{(y-1)^{q}}, p=1 / q$ this takes the more symmetric form

$$
\begin{equation*}
g(s, t):=\left(s^{p}+t^{p}\right)^{1 / p}+\left(\frac{1}{s^{p}}+\frac{1}{t^{p}}\right)^{1 / p} \tag{7}
\end{equation*}
$$

Using the definition of general power means, we can rewrite g as

$$
g(s, t)=2^{1 / p}\left(M_{p}(s, t)+\frac{1}{M_{-p}(s, t)}\right) .
$$

Thus, estimating both summands within parentheses via the geometric mean $M_{0}(s, t)$, we get

$$
g(s, t) \geq 2^{1 / p}\left(M_{0}(s, t)+\frac{1}{M_{0}(s, t)}\right) \geq 2^{1+1 / p}=2^{1+q}
$$

because of the well-known inequality $a+1 / a \geq 2$. We can now see, working backwards through the previous steps, that the minimum 2^{1+q} can only be attained if $s=t$, which in turn means that $x=1 /(y-1)$. Therefore,

$$
x y z=\frac{1}{y-1} y \frac{y-1}{y}=1
$$

as claimed. Further, we notice that 2^{1+q} is greater than or equal to 3 , where equality holds when $q=\ln (3 / 2) / \ln (2)$.

Next, we will look for the extrema of f under the set of strict conditions

$$
\begin{equation*}
x, y, z>0, \quad \frac{1}{z}+x-1>0 \quad \frac{1}{x}+y-1>0 \quad \frac{1}{y}+z-1>0, \tag{8}
\end{equation*}
$$

which together define an open region in \mathbb{R}^{3}. The extrema in this region must occur where the gradient of f vanishes. We compute the partial derivative with respect to x, and obtain

$$
\frac{\partial f}{\partial x}=q\left(\frac{1}{z}+x-1\right)^{q-1}-q\left(\frac{1}{x}+y-1\right)^{q-1} \frac{1}{x^{2}} .
$$

The condition $\frac{\partial f}{\partial x}=0$ can be rewritten as (remembering that $\left.\ln (3 / 2) / \ln (2) \leq q<1\right)$

$$
\begin{equation*}
\left(\frac{1}{x}+y-1\right)^{q}=\left(\frac{1}{z}+x-1\right)^{q} \frac{1}{x^{2 q /(1-q)}} . \tag{9}
\end{equation*}
$$

By permuting the variables x, y, z cyclically, we obtain from (9) the corresponding equations equivalent to $\frac{\partial f}{\partial y}=0$ and $\frac{\partial f}{\partial z}=0$, that is,

$$
\begin{equation*}
\left(\frac{1}{y}+z-1\right)^{q}=\left(\frac{1}{x}+y-1\right)^{q} \frac{1}{y^{2 q /(1-q)}} \tag{10}
\end{equation*}
$$

and

$$
\left(\frac{1}{z}+x-1\right)^{q}=\left(\frac{1}{y}+z-1\right)^{q} \frac{1}{z^{2 q /(1-q)}} .
$$

It should be now clear that the product of the three equations (9), (10), (11) implies $x y z=1$ in this case, too. The lemma is thus proved.

Proof of Theorem 2. Using Lemma 4, finding the minimum of f becomes a two-variable problem after setting $z=1 / x y$. Accordingly, we consider a new function

$$
h(x, y):=(x y+x-1)^{q}+\left(\frac{1}{x}+y-1\right)^{q}+\left(\frac{1}{y}+\frac{1}{x y}-1\right)^{q},
$$

and henceforth we will also fix q to be $\ln (3 / 2) / \ln (2)$, recalling Janous' proof that the inequality is invalid for $q<\ln (3 / 2) / \ln (2)$. Our ultimate target is to show that with $q=\ln (3 / 2) / \ln (2)$ and under conditions (6) the minimum of h is 3 (see (4) and replace z with $1 / x y$ in (6)).
Now, if any of the last three inequalities in (6) is an identity, the proof of Lemma 4 already shows that the minimum of h is 2^{q+1}, and this number is identical to 3 given the choice $q=$
$\ln (3 / 2) / \ln (2)$. We thus want to examine possible extrema of h under the more restrictive conditions

$$
\begin{equation*}
x, y>0, \quad x y+x-1>0 \quad \frac{1}{x}+y-1>0 \quad \frac{1}{y}+\frac{1}{x y}-1>0 \tag{12}
\end{equation*}
$$

which result from (8) after replacing z with $1 / x y$. Rewriting (12) as

$$
\begin{equation*}
x, y>0, \quad y+1>\frac{1}{x} \quad \frac{1}{x}+y>1 \quad 1+\frac{1}{x}>y \tag{13}
\end{equation*}
$$

it follows that $1 / x, y$ and 1 must be the lengths of the three sides of a triangle. After the change of variables $s=1 / x, t=y, h$ can be written as

$$
\begin{equation*}
h(s, t)=\left(\frac{1+t-s}{s}\right)^{q}+(s+t-1)^{q}+\left(\frac{1+s-t}{t}\right)^{q} \tag{14}
\end{equation*}
$$

where the quantities $s, t, 1$ are the sides of a (non-degenerate) triangle.
If we now look at

$$
\begin{equation*}
H(a, b, c):=\left(\frac{b+c-a}{a}\right)^{q}+\left(\frac{c+a-b}{b}\right)^{q}+\left(\frac{a+b-c}{c}\right)^{q} \tag{15}
\end{equation*}
$$

where a, b, c are the sides of a triangle, and realize that the function H is invariant under a common scaling of a, b, c, we see that the problem of minimizing $h(s, t)$ in (14) is equivalent to minimizing $H(a, b, c)$ in (15). Let us now use elementary trigonometric relations to rewrite H as a function of the angles α, β, γ (defined as the angles opposite the sides of length a, b, c). The result is

$$
\begin{aligned}
& H(\alpha, \beta, \gamma)=2^{q}\left[\left(\frac{\sin (\beta / 2) \sin (\gamma / 2)}{\sin (\alpha / 2)}\right)^{q}+\left(\frac{\sin (\gamma / 2) \sin (\alpha / 2)}{\sin (\beta / 2)}\right)^{q}\right. \\
& \left.+\left(\frac{\sin (\alpha / 2) \sin (\beta / 2)}{\sin (\gamma / 2)}\right)^{q}\right]
\end{aligned}
$$

Since we are dealing with (positive) angles satisfying $\alpha+\beta+\gamma=\pi$, we have $\sin (\gamma / 2)=$ $\cos ((\alpha+\beta) / 2)$, and so a further dose of trigonometry transforms H into a function of the two variables α, β which we nevertheless call $H(\alpha, \beta)$, since the value is the same:

$$
\begin{aligned}
H(\alpha, \beta)=2^{q}\left(\sin (\alpha / 2)^{2 q}+\sin (\beta / 2)^{2 q}\right)(\cot (\alpha / 2) & \cot (\beta / 2)-1)^{q} \\
& +\frac{1}{(\cot (\alpha / 2) \cot (\beta / 2)-1)^{q}}
\end{aligned}
$$

Next, using the identity $\sin ^{2}(\xi)=1 /\left(1+\cot ^{2}(\xi)\right)$ we can express H as a function of $\cot (\alpha / 2)$ and $\cot (\beta / 2)$. After one more change of variables, namely $u=\cot (\alpha / 2))$ and $v=\cot (\beta / 2)$, we obtain our final expression for H :

$$
\begin{equation*}
H(u, v)=2^{q}\left[\left(\frac{1}{\left(1+u^{2}\right)^{q}}+\frac{1}{\left(1+v^{2}\right)^{q}}\right)(u v-1)^{q}+\frac{1}{(u v-1)^{q}}\right] \tag{16}
\end{equation*}
$$

where u and v are only required to be positive and such that $u v>1$. We are now able to minimize (16) with traditional methods. Any critical point in the open domain specified must satisfy the conditions $\frac{\partial H}{\partial u}=\frac{\partial H}{\partial v}=0$. To spare the reader the rather unpleasant complete calculation of these partial derivatives, let us just state that, for some function $M(u, v)$ (whose details are not needed here), we have

$$
\frac{1}{q^{q}(u v-1)^{q}} \frac{\partial H}{\partial u}=-2 u \frac{1}{\left(1+u^{2}\right)^{\ln (3) / \ln (2)}}+v M(u, v)
$$

and

$$
\frac{1}{q 2^{q}(u v-1)^{q}} \frac{\partial H}{\partial v}=-2 v \frac{1}{\left(1+v^{2}\right)^{\ln (3) / \ln (2)}}+u M(u, v)
$$

If both partial derivatives are zero, we can solve the resulting equations for $M(u, v)$, eliminate $M(u, v)$, and obtain

$$
\begin{equation*}
\frac{u}{v} \frac{1}{\left(1+u^{2}\right)^{\ln (3) / \ln (2)}}=\frac{v}{u} \frac{1}{\left(1+v^{2}\right)^{\ln (3) / \ln (2)}} \tag{17}
\end{equation*}
$$

Introducing the function

$$
\phi(z):=\frac{z}{(1+z)^{\ln (3) / \ln (2)}}
$$

condition (17) simplifies to

$$
\phi\left(u^{2}\right)=\phi\left(v^{2}\right)
$$

We first consider the case where $u \neq v$. The function ϕ is easily seen to be strictly increasing for $z \in[0, \ln (2) / \ln (3 / 2)]$ and strictly decreasing for $z>\ln (2) / \ln (3 / 2)$. $u \neq v$ implies that $u^{2}<1 / q<v^{2}$. Since we assume that $u v>1$, we also have $1 / v^{2}<u^{2}$ (and thus $\left.\phi\left(1 / v^{2}\right)<\phi\left(u^{2}\right)\right)$. Now, elementary algebra shows that

$$
\phi\left(1 / v^{2}\right)=\phi\left(v^{2}\right) v^{2(\ln (3) / \ln (2)-1)}
$$

Since $v^{2}>1 / q>1$, this implies that

$$
\phi\left(1 / v^{2}\right)>\phi\left(v^{2}\right)=\phi\left(u^{2}\right)
$$

which is a contradiction. Therefore, the case $u \neq v$ is impossible, and we are left with the analysis of the "isosceles" case $u=v$. Indeed, backtracking through our last change of variables, $u=v$ means that $\alpha=\beta$, and thus $a=b$ in the original expression 15 for $H(a, b, c)$. Thus, we should consider the function $h(s, t)$ from (14), for the case when $s=t$ (and $2 s>1$, to preserve the triangle condition). Our last task is thus to minimize

$$
\begin{equation*}
h(s, s)=2 \frac{1}{s^{q}}+(2 s-1)^{q} \tag{18}
\end{equation*}
$$

for $s \in(1 / 2, \infty)$. An analysis of the derivative of $h(s, s)$ shows that it has exactly two zeros for $s>1 / 2$, and since the function initially increases (with infinite derivative at $s=1 / 2$), the second critical point, at $s=1$, must be a minimum, which corresponds to the equilateral case. When $s=1, h(1,1)=3$. This and $h(1 / 2,1 / 2)=3$ complete the proof.

Remark 5. Based on our proof, the following corollary can be stated, which is a consequence of $H(a, b, c) \geq 3$ and the general power means inequality:

Corollary 6. Let $p \geq \ln (3 / 2) / \ln (2)$ be an arbitrary real number. Then for all triangles with sides a, b and c and semi-perimeter s the inequality

$$
\left(\frac{s-a}{a}\right)^{p}+\left(\frac{s-b}{b}\right)^{p}+\left(\frac{s-c}{c}\right)^{p} \geq \frac{3}{2^{p}}
$$

is valid.

REFERENCES

[1] W. JANOUS, A short note on the Erdös-Debrunner inequality, Elemente der Mathematik, 61 (2006) 32-35.
[2] D.S. MITRINOVIĆ, Analytic Inequalities, Springer-Verlag, 1970.

[^0]: The author would like to thank Claire Hill, Mark Tuckerman and the referee for several helpful comments and improvements. 245-06

