CLARKSON-MCCARTHY INTERPOLATED INEQUALITIES IN FINSLER NORMS

Clarkson-McCarthy Interpolated Inequalities

Cristian Conde
vol. 10, iss. 1, art. 4, 2009
Instituto de Ciencias
Universidad Nacional de General Sarmiento
J. M. Gutierrez 1150, (1613) Los Polvorines

Buenos Aires, Argentina.
EMail: cconde@ungs.edu.ar
Title Page

Contents

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words.
Abstract:

29 August, 2008
14 January, 2009
R. Bhatia
p-Schatten class, Complex method, Clarkson-McCarthy inequalities.
We apply the complex interpolation method to prove that, given two spaces $B_{p_{0}, a ; s_{0}}^{(n)}, B_{p_{1}, b ; s_{1}}^{(n)}$ of n-tuples of operators in the p-Schatten class of a Hilbert space H, endowed with weighted norms associated to positive and invertible operators a and b of $B(H)$ then, the curve of interpolation $\left(B_{p_{0}, a ; s_{0}}^{(n)}, B_{p_{1}, b ; s_{1}}^{(n)}\right)_{[t]}$ of the pair is given by the space of n-tuples of operators in the p_{t}-Schatten class of H, with the weighted norm associated to the positive invertible element $\gamma_{a, b}(t)=a^{1 / 2}\left(a^{-1 / 2} b a^{-1 / 2}\right)^{t} a^{1 / 2}$.

Page 1 of 21
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-575b

Contents

1 Introduction

2 Geometric Interpolation 6
3 Clarkson-Kissin Type Inequalities $\mathbf{1 2}$12

Clarkson-McCarthy Interpolated Inequalities
Cristian Conde
vol. 10, iss. 1 , art. 4, 2009

Title Page
Contents
44

Page 2 of 21
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction

In [6], J. Clarkson introduced the concept of uniform convexity in Banach spaces and obtained that spaces L_{p} (or l_{p}) are uniformly convex for $p>1$ throughout the following inequalities

$$
2\left(\|f\|_{p}^{p}+\|g\|_{p}^{p}\right) \leq\|f-g\|_{p}^{p}+\|f+g\|_{p}^{p} \leq 2^{p-1}\left(\|f\|_{p}^{p}+\|g\|_{p}^{p}\right),
$$

Let $(B(H),\|\cdot\|)$ denote the algebra of bounded operators acting on a complex and separable Hilbert space $H, G l(H)$ the group of invertible elements of $B(H)$ and $G l(H)^{+}$the set of all positive elements of $G l(H)$.

If $X \in B(H)$ is compact we denote by $\left\{s_{j}(X)\right\}$ the sequence of singular values of X (decreasingly ordered). For $0<p<\infty$, let

$$
\|X\|_{p}=\left(\sum s_{j}(X)^{p}\right)^{\frac{1}{p}},
$$

and the linear space

$$
B_{p}(H)=\left\{X \in B(H):\|X\|_{p}<\infty\right\} .
$$

For $1 \leq p<\infty$, this space is called the p-Schatten class of $B(H)$ (to simplify notation we use B_{p}) and by convention $\|X\|=\|X\|_{\infty}=s_{1}(X)$. A reference for this subject is [9].
C. McCarthy proved in [14], among several other results, the following inequalities for p-Schatten norms of Hilbert space operators:

$$
\begin{align*}
2\left(\|A\|_{p}^{p}+\|B\|_{p}^{p}\right) & \leq\|A-B\|_{p}^{p}+\|A+B\|_{p}^{p} \tag{1.1}\\
& \leq 2^{p-1}\left(\|A\|_{p}^{p}+\|B\|_{p}^{p}\right)
\end{align*}
$$

Clarkson-McCarthy Interpolated Inequalities
Cristian Conde
vol. 10, iss. 1, art. 4, 2009

Title Page
Contents

Page 3 of 21
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\text { for } 2 \leq p<\infty \text {, and }
$$

$$
\begin{align*}
2^{p-1}\left(\|A\|_{p}^{p}+\|B\|_{p}^{p}\right) & \leq\|A-B\|_{p}^{p}+\|A+B\|_{p}^{p} \tag{1.2}\\
& \leq 2\left(\|A\|_{p}^{p}+\|B\|_{p}^{p}\right)
\end{align*}
$$

for $1 \leq p \leq 2$.
These are non-commutative versions of Clarkson's inequalities. These estimates have been found to be very powerful tools in operator theory (in particular they imply the uniform convexity of B_{p} for $1<p<\infty$) and in mathematical physics (see [16]).
M. Klaus has remarked that there is a simple proof of the Clarkson-McCarthy inequalities which results from mimicking the proof that Boas [4] gave of the Clarkson original inequalities via the complex interpolation method.

In a previous work [7], motivated by [1], we studied the effect of the complex interpolation method on $B_{p}^{(n)}$ (this set will be defined below) for $p, s \geq 1$ and $n \in \mathbb{N}$ with a Finsler norm associated with $a \in G l(H)^{+}$:

$$
\|X\|_{p, a ; s}:=\left\|a^{-1 / 2} X a^{-1 / 2}\right\|_{p}^{s}
$$

From now on, for the sake of simplicity, we denote with lower case letters the elements of $G l(H)^{+}$.

As a by-product, we obtain Clarkson type inequalities using the Klaus idea with the linear operator $T_{n}: B_{p}^{(n)} \longrightarrow B_{p}^{(n)}$ given by

$$
T_{n}(\bar{X})=\left(T_{n}\left(X_{1}, \ldots, X_{n}\right)=\left(\sum_{j=1}^{n} X_{j}, \sum_{j=1}^{n} \theta_{j}^{1} X_{j}, \ldots, \sum_{j=1}^{n} \theta_{j}^{n-1} X_{j}\right)\right.
$$

where $\theta_{1}, \ldots, \theta_{n}$ are the n roots of unity.
Recently, Kissin in [12], motivated by [3], obtained analogues of the ClarksonMcCarthy inequalities for n-tuples of operators from Schatten ideals. In this work

Clarkson-McCarthy Interpolated Inequalities
Cristian Conde
vol. 10, iss. 1, art. 4, 2009

Title Page
Contents

Page 4 of 21
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b
the author considers H^{n}, the orthogonal sum of n copies of the Hilbert space H, and each operator $R \in B\left(H^{n}\right)$ can be represented as an $n \times n$ block-matrix operator $R=\left(R_{j k}\right)$ with $R_{j k} \in B(H)$, and the linear operator $T_{R}: B_{p}^{(n)} \rightarrow B_{p}^{(n)}$ is defined by $T_{R}(\bar{A})=R \bar{A}$. Finally we remark that the works [3] and [11] are generalizations of [10].

In these notes we obtain inequalities for the linear operator T_{R} in the Finsler norm $\|\cdot\|_{p, a ; s}$ as by-products of the complex interpolation method and Kissin's inequalities.

Clarkson-McCarthy Interpolated Inequalities
Cristian Conde
vol. 10, iss. 1, art. 4, 2009

Title Page
Contents

$\mathbf{4 4}$	
$\mathbf{4}$	
Page 5 of 21	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Geometric Interpolation

We follow the notation used in [2] and we refer the reader to [13] and [5] for details on the complex interpolation method. For completeness, we recall the classical Calderón-Lions theorem.

Theorem 2.1. Let \mathcal{X} and \mathcal{Y} be two compatible couples. Assume that T is a linear
operator from \mathcal{X}_{j} to \mathcal{Y}_{j} bounded by $M_{j}, j=0,1$. Then for $t \in[0,1]$

$$
\|T\|_{\mathcal{X}_{[t]} \rightarrow \mathcal{Y}_{[t]}} \leq M_{0}^{1-t} M_{1}^{t}
$$

Clarkson-McCarthy Interpolated Inequalities
Cristian Conde
vol. 10, iss. 1 , art. 4, 2009
Here and subsequently, let $1 \leq p<\infty, n \in \mathbb{N}, s \geq 1, a \in G l(H)^{+}$and

$$
B_{p}^{(n)}=\left\{\bar{A}=\left(A_{1}, \ldots, A_{n}\right)^{t}: A_{i} \in B_{p}\right\},
$$

(where with t we denote the transpose of the n-tuple) endowed with the norm

$$
\|\bar{A}\|_{p, a ; s}=\left(\left\|A_{1}\right\|_{p, a}^{s}+\cdots+\left\|A_{n}\right\|_{p, a}^{s}\right)^{1 / s}
$$

and \mathbb{C}^{n} endowed with the norm

$$
\left|\left(a_{0}, \ldots, a_{n-1}\right)\right|_{s}=\left(\left|a_{0}\right|^{s}+\cdots+\left|a_{n-1}\right|^{s}\right)^{1 / s}
$$

From now on, we denote with $B_{p, a ; s}^{(n)}$ the space $B_{p}^{(n)}$ endowed with the norm $\|(\cdot, \ldots, \cdot)\|_{p, a ; s}$.
From Calderón-Lions interpolation theory we get that for $p_{0}, p_{1}, s_{0}, s_{1} \in[1, \infty)$

$$
\begin{equation*}
\left(B_{p_{0}, 1 ; s_{0}}^{(n)}, B_{p_{1}, 1 ; s_{1}}^{(n)}\right)_{[t]}=B_{p_{t}, 1 ; s_{t}}^{(n)}, \tag{2.1}
\end{equation*}
$$

where

$$
\frac{1}{p_{t}}=\frac{1-t}{p_{0}}+\frac{t}{p_{1}} \quad \text { and } \quad \frac{1}{s_{t}}=\frac{1-t}{s_{0}}+\frac{t}{s_{1}} .
$$

Contents

Page 6 of 21
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Note that for $p=2$, (1.1) and (1.2) both reduce to the parallelogram law

$$
2\left(\|A\|_{2}^{2}+\|B\|_{2}^{2}\right)=\|A-B\|_{2}^{2}+\|A+B\|_{2}^{2},
$$

while for the cases $p=1, \infty$ these inequalities follow from the triangle inequality for B_{1} and $B(H)$ respectively. Then the inequalities (1.1) and (1.2) can be proved (for $n=2$ via Theorem 2.1) by interpolation between the previous elementary cases with the linear operator $T_{2}: B_{p, 1 ; p}^{(2)} \longrightarrow B_{p, 1 ; p}^{(2)}, T_{2}(\bar{A})=\left(A_{1}+A_{2}, A_{1}-A_{2}\right)^{t}$ as observed by Klaus.

In this section, we generalize (2.1) for the Finsler norms $\|(\cdot, \ldots, \cdot)\|_{p, a ; s}$. In [7], we have obtained this extension for the particular case when $p_{0}=p_{1}=p$ and $s_{0}=s_{1}=s$. For sake of completeness, we recall this result

Theorem 2.2 ([7, Th. 3.1]). Let $a, b \in G l(H)^{+}, 1 \leq p, s<\infty, n \in \mathbb{N}$ and $t \in(0,1)$. Then

$$
\left(B_{p, a ; s}^{(n)}, B_{p, b ; s}^{(n)}\right)_{[t]}=B_{p, \gamma_{a, b}(t) ; s}^{(n)},
$$

where $\gamma_{a, b}(t)=a^{1 / 2}\left(a^{-1 / 2} b a^{-1 / 2}\right)^{t} a^{1 / 2}$.
Remark 1. Note that when a and b commute the curve is given by $\gamma_{a, b}(t)=a^{1-t} b^{t}$. The previous corollary tells us that the interpolating space, $B_{p, \gamma_{a, b}(t) ; s}$ can be regarded as a weighted p-Schatten space with weight $a^{1-t} b^{t}$ (see [2, Th. 5.5.3]).

We observe that the curve $\gamma_{a, b}$ looks formally equal to the geodesic (or shortest curve) between positive definitive matrices ([15]), positive invertible elements of a C^{*}-algebra ([8]) and positive invertible operators that are perturbations of the p Schatten class by multiples of the identity ([7]).

There is a natural action of $G l(H)$ on $B_{p}^{(n)}$, defined by

$$
\begin{equation*}
l: G l(H) \times B_{p}^{(n)} \longrightarrow B_{p}^{(n)}, \quad l_{g}(\bar{A})=\left(g A_{1} g^{*}, \ldots, g A_{n} g^{*}\right)^{t} \tag{2.2}
\end{equation*}
$$

Clarkson-McCarthy Interpolated Inequalities

Cristian Conde
vol. 10, iss. 1, art. 4, 2009

Title Page
Contents

Page 7 of 21
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proposition 2.3 ([7, Prop. 3.1]). The norm in $B_{p, a ; s}^{(n)}$ is invariant for the action of the group of invertible elements. By this we mean that for each $\bar{A} \in B_{p}^{(n)}, a \in G l(H)^{+}$ and $g \in G l(H)$, we have

$$
\|\bar{A}\|_{p, a ; s}=\left\|l_{g}(\bar{A})\right\|_{p, g a g^{*} ; s} .
$$

Now, we state the main result of this paper, the general case $1 \leq p_{0}, p_{1}, s_{0}, s_{1}<$ ∞.

Theorem 2.4. Let $a, b \in G l(H)^{+}, 1 \leq p_{0}, p_{1}, s_{0}, s_{1}<\infty, n \in \mathbb{N}$ and $t \in(0,1)$. Then

$$
\left(B_{p_{0}, a ; s_{0}}^{(n)}, B_{p_{1}, b ; s_{1}}^{(n)}\right)_{[t]}=B_{p_{t}, \gamma_{a, b}(t) ; s_{t}}^{(n)},
$$

where

$$
\frac{1}{p_{t}}=\frac{1-t}{p_{0}}+\frac{t}{p_{1}} \quad \text { and } \quad \frac{1}{s_{t}}=\frac{1-t}{s_{0}}+\frac{t}{s_{1}}
$$

Proof. For the sake of simplicity, we will only consider the case $n=2$ and omit the transpose. The proof below works for n-tuples ($n \geq 3$) with obvious modifications.

By the previous proposition, $\left\|\left(X_{1}, X_{2}\right)\right\|_{[t]}$ is equal to the norm of $a^{-1 / 2}\left(X_{1}, X_{2}\right) a^{-1 / 2}$ interpolated between the norms $\|(\cdot, \cdot)\|_{p_{0}, 1 ; s_{0}}$ and $\|(\cdot, \cdot)\|_{p_{1}, c ; s_{1}}$. Consequently it is sufficient to prove our statement for these two norms.

Let $t \in(0,1)$ and $\left(X_{1}, X_{2}\right) \in B_{p_{t}}^{(2)}$ such that $\left\|\left(X_{1}, X_{2}\right)\right\|_{p_{t}, c^{t} ; s_{t}}=1$, and define

$$
\begin{aligned}
g(z) & =\left(U_{1}\left|c^{\frac{z}{2}} c^{-\frac{t}{2}} X_{1} c^{\frac{-t}{2}} c^{\frac{z}{2}}\right|^{\lambda(z)}, U_{2}\left|c^{\frac{z}{2}} c^{-\frac{t}{2}} X_{2} c^{-\frac{t}{2}} c^{\frac{z}{2}}\right|^{\lambda(z)}\right) \\
& =\left(g_{1}(z), g_{2}(z)\right),
\end{aligned}
$$

where

$$
\lambda(z)=p_{t}\left(\frac{1-z}{p_{0}}+\frac{z}{p_{1}}\right) s_{t}\left(\frac{1-z}{s_{0}}+\frac{z}{s_{1}}\right)
$$

Clarkson-McCarthy Interpolated Inequalities
Cristian Conde
vol. 10, iss. 1 , art. 4, 2009

Title Page
Contents

Page 8 of 21
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and $X_{i}=U_{i}\left|X_{i}\right|$ is the polar decomposition of X_{i} for $i=1,2$.
Then for each $z \in S, g(z) \in B_{p_{0}}^{(2)}+B_{p_{1}}^{(2)}$ and

$$
\begin{aligned}
\|g(i y)\|_{p_{0}, 1 ; s_{0}}^{s_{0}} & =\left(\sum_{k=1}^{2}\left\|U_{k}\left|c^{\frac{i y}{2}} c^{-\frac{t}{2}} X_{k} c^{-\frac{t}{2}} c^{\frac{i y}{2}}\right|^{\lambda(i y)}\right\|_{p_{0}}^{s_{0}}\right) \\
& \leq\left(\sum_{k=1}^{2}\left\|c^{\frac{i y}{2}} c^{-\frac{t}{2}} X_{k} c^{-\frac{t}{2}} c^{\frac{i y}{2}}\right\|_{p_{t}}^{p_{t}}\right) \\
& \leq\left(\sum_{k=1}^{2}\left\|X_{k}\right\|_{p_{t}, c^{t}}^{p_{t}}\right)=1
\end{aligned}
$$

and

$$
\|g(1+i y)\|_{p_{1}, c ; s_{1}}^{s_{1}} \leq\left(\sum_{k=1}^{2}\left\|X_{k}\right\|_{p_{t}, c^{t}}^{p_{t}}\right)=1
$$

Since $g(t)=\left(X_{1}, X_{2}\right)$ and $g=\left(g_{1}, g_{2}\right) \in \mathcal{F}\left(B_{p_{0}, 1 ; s_{0}}^{(2)}, B_{p_{1}, c ; s_{1}}^{(2)}\right)$, we have $\left\|\left(X_{1}, X_{2}\right)\right\|_{[t]} \leq 1$. Thus we have shown that

$$
\left\|\left(X_{1}, X_{2}\right)\right\|_{[t]} \leq\left\|\left(X_{1}, X_{2}\right)\right\|_{p_{t}, c^{t} ; s_{t}}
$$

To prove the converse inequality, let $f=\left(f_{1}, f_{2}\right) \in \mathcal{F}\left(B_{p_{0}, 1 ; s_{0}}^{(2)}, B_{p_{1}, c ; s_{1}}^{(2)}\right) ; f(t)=$ $\left(X_{1}, X_{2}\right)$ and $Y_{1}, Y_{2} \in B_{0,0}(H)$ (the set of finite-rank operators) with $\left\|Y_{k}\right\|_{q_{t}} \leq 1$, where q_{t} is the conjugate exponent for $1<p_{t}<\infty$ (or a compact operator and $q=\infty$ if $p=1$). For $k=1,2$, let

$$
g_{k}(z)=c^{-\frac{z}{2}} Y_{k} c^{-\frac{z}{2}}
$$

Clarkson-McCarthy Interpolated Inequalities
Cristian Conde
vol. 10, iss. 1 , art. 4, 2009

Title Page
Contents

Page 9 of 21
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Consider the function $h: S \rightarrow\left(\mathbb{C}^{2},|(\cdot, \cdot)|_{s_{t}}\right)$,

$$
h(z)=\left(\operatorname{tr}\left(f_{1}(z) g_{1}(z)\right), \operatorname{tr}\left(f_{2}(z) g_{2}(z)\right)\right)
$$

Since $f(z)$ is analytic in $\stackrel{\circ}{S}$ and bounded in S, then h is analytic in $\stackrel{\circ}{S}$ and bounded in S, and

$$
h(t)=\left(\operatorname{tr}\left(c^{-\frac{t}{2}} X_{1} c^{-\frac{t}{2}} Y_{1}\right), \operatorname{tr}\left(c^{-\frac{t}{2}} X_{2} c^{-\frac{t}{2}} Y_{2}\right)\right)=\left(h_{1}(t), h_{2}(t)\right) .
$$

By Hadamard's three line theorem applied to h and the Banach space $\left(\mathbb{C}^{2},|(\cdot, \cdot)|_{s_{t}}\right)$, we have

$$
|h(t)|_{s_{t}} \leq \max \left\{\sup _{y \in \mathbb{R}}|h(i y)|_{s_{t}}, \sup _{y \in \mathbb{R}}|h(1+i y)|_{s_{t}}\right\} .
$$

Clarkson-McCarthy Interpolated Inequalities
Cristian Conde
vol. 10, iss. 1, art. 4, 2009

Title Page
Contents
\square
Page 10 of 21
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
then

$$
\begin{aligned}
\left\|X_{1}\right\|_{p_{t}, c^{t}}^{s_{t}}+\left\|X_{2}\right\|_{p_{t}, c^{t}}^{s_{t}} & =\sup _{\substack{\left\|Y_{1}\right\|_{q_{t}} \leq 1, Y_{1} \in B_{00}(H) \\
\left\|Y_{2}\right\|_{q_{t}} \leq 1, Y_{2} \in B_{00}(H)}}\left\{\left|h_{1}(t)\right|^{s_{t}}+\left|h_{2}(t)\right|^{s_{t}}\right\} \\
& \left.=\sup _{\substack{\left\|Y_{1}\right\|_{q_{t}} \leq 1, Y_{1} \in B_{00}(H) \\
\left\|Y_{0}\right\|_{t}<1 V_{0} \in B_{00}(H)}}|h(t)|_{s_{t}}^{s_{t}} \leq\|f\|_{\mathcal{F}\left(B_{p_{0}, 1, s_{0}}^{(2)}, B_{p_{1}, c ; s_{1}}^{(2)}\right)}^{s_{t}}\right)
\end{aligned}
$$

Since the previous inequality is valid for each $f \in \mathcal{F}\left(B_{p_{0}, 1 ; s_{0}}^{(2)}, B_{p_{1}, c ; s_{1}}^{(2)}\right)$ with $f(t)=\left(X_{1}, X_{2}\right)$, we have

$$
\left\|\left(X_{1}, X_{2}\right)\right\|_{p t, c^{c} ; s_{t}} \leq\left\|\left(X_{1}, X_{2}\right)\right\|_{[t]} .
$$

Clarkson-McCarthy Interpolated Inequalities
Cristian Conde
vol. 10, iss. 1, art. 4, 2009

Title Page
Contents
In the special case that $p_{0}=p_{1}=p$ and $s_{0}=s_{1}=s$ we obtain Theorem 2.2.
\qquad

Page 11 of 21
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

3. Clarkson-Kissin Type Inequalities

Bhatia and Kittaneh [3] proved that if $2 \leq p<\infty$, then

$$
\begin{aligned}
& n^{\frac{2}{p}} \sum_{j=1}^{n}\left\|A_{j}\right\|_{p}^{2} \leq \sum_{j=1}^{n}\left\|B_{j}\right\|_{p}^{2} \leq n^{2-\frac{2}{p}} \sum_{j=1}^{n}\left\|A_{j}\right\|_{p}^{2} . \\
& n \sum_{j=1}^{n}\left\|A_{j}\right\|_{p}^{p} \leq \sum_{j=1}^{n}\left\|B_{j}\right\|_{p}^{p} \leq n^{p-1} \sum_{j=1}^{n}\left\|A_{j}\right\|_{p}^{p} .
\end{aligned}
$$

Clarkson-McCarthy Interpolated Inequalities
Cristian Conde
vol. 10, iss. 1, art. 4, 2009
(for $0<p \leq 2$, these two inequalities are reversed) where $B_{j}=\sum_{k=1}^{n} \theta_{k}^{j} A_{k}$ with $\theta_{1}, \ldots, \theta_{n}$ the n roots of unity.

If we interpolate these inequalities we obtain that

$$
n^{\frac{1}{p}}\left(\sum_{j=1}^{n}\left\|A_{j}\right\|_{p}^{s_{t}}\right)^{\frac{1}{s_{t}}} \leq\left(\sum_{j=1}^{n}\left\|B_{j}\right\|_{p}^{s_{t}}\right)^{\frac{1}{s_{t}}} \leq n^{\left(1-\frac{1}{p}\right)}\left(\sum_{j=1}^{n}\left\|A_{j}\right\|_{p}^{s_{t}}\right)^{\frac{1}{s_{t}}}
$$

where

$$
\frac{1}{s_{t}}=\frac{1-t}{2}+\frac{t}{p} .
$$

Dividing by $n^{s_{t}}$, we obtain

$$
\begin{aligned}
n^{\frac{1}{p}}\left(\frac{1}{n} \sum_{j=1}^{n}\left\|A_{j}\right\|_{p}^{s_{t}}\right)^{\frac{1}{s_{t}}} & \leq\left(\frac{1}{n} \sum_{j=1}^{n}\left\|B_{j}\right\|_{p}^{s_{t}}\right)^{\frac{1}{s_{t}}} \\
& \leq n^{\left(1-\frac{1}{p}\right)}\left(\frac{1}{n} \sum_{j=1}^{n}\left\|A_{j}\right\|_{p}^{s_{t}}\right)^{\frac{1}{s_{t}}} .
\end{aligned}
$$

Contents

Page 12 of 21
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

This inequality can be rephrased as follows, if $\mu \in[2, p]$ then

$$
\begin{aligned}
n^{\frac{1}{p}}\left(\frac{1}{n} \sum_{j=1}^{n}\left\|A_{j}\right\|_{p}^{\mu}\right)^{\frac{1}{\mu}} & \leq\left(\frac{1}{n} \sum_{j=1}^{n}\left\|B_{j}\right\|_{p}^{\mu}\right)^{\frac{1}{\mu}} \\
& \leq n^{\left(1-\frac{1}{p}\right)}\left(\frac{1}{n} \sum_{j=1}^{n}\left\|A_{j}\right\|_{p}^{\mu}\right)^{\frac{1}{\mu}}
\end{aligned}
$$

In each of the following statements $R \in G l\left(H^{n}\right)$ and we denote by T_{R} the linear operator

$$
T_{R}: B_{p}^{(n)} \longrightarrow B_{p}^{(n)} \quad T_{R}(\bar{A})=R \bar{A}=\left(B_{1}, \ldots, B_{n}\right)^{t}
$$

with $B_{j}=\sum_{k=1}^{n} R_{j k} A_{k}$ and $\alpha=\left\|R^{-1}\right\|, \beta=\|R\|$ (we use the same symbol to denote the norm in $B(H)$ and $B\left(H^{n}\right)$).

We observe that if the norm of T_{R} is at most M when

$$
T_{R}:\left(B_{p}^{(n)},\|(\cdot, \ldots, \cdot)\|_{p, 1, s}\right) \rightarrow\left(B_{p}^{(n)},\|(\cdot, \ldots, \cdot)\|_{p, 1, r}\right),
$$

then if we consider the operator T_{R} between the spaces

$$
T_{R}:\left(B_{p}^{(n)},\|(\cdot, \ldots, \cdot)\|_{p, a, s}\right) \rightarrow\left(B_{p}^{(n)},\|(\cdot, \ldots, \cdot)\|_{p, b, r}\right)
$$

its norm is at most $F(a, b) M$ with

$$
F(a, b)= \begin{cases}\min \left\{\left\|b^{-1}\right\|\|a\|,\left\|a^{1 / 2} b^{-1} a^{1 / 2}\right\|\left\|a^{-1}\right\|\|a\|\right\} & \text { if } a \neq b \\ \left\|a^{-1}\right\|\|a\| & \text { if } a=b\end{cases}
$$

Clarkson-McCarthy Interpolated Inequalities
Cristian Conde
vol. 10, iss. 1 , art. 4, 2009

Title Page
Contents

Page 13 of 21
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Remark 2. If $a^{-1 / 2} \in G l(H)$ commutes with $R \in B\left(H^{n}\right)$, that is, if $a^{-1 / 2}$ commutes with $R_{j k}$ for all $1 \leq j, k \leq n$, then F is reduced to

$$
F(a, b)= \begin{cases}\min \left\{\left\|b^{-1}\right\|\|a\|,\left\|a^{1 / 2} b^{-1} a^{1 / 2}\right\|\right\}=\left\|a^{1 / 2} b^{-1} a^{1 / 2}\right\| & \text { if } a \neq b \\ 1 & \text { if } a=b\end{cases}
$$

In [12], Kissin proved the following Clarkson type inequalities for the n-tuples $\bar{A} \in B_{p}^{(n)}$. If $2 \leq p<\infty$ and $\lambda, \mu \in[2, p]$, or if $0<p \leq 2$ and $\lambda, \mu \in[p, 2]$, then

$$
\begin{align*}
n^{-f(p)} \alpha^{-1}\left(\frac{1}{n} \sum_{j=1}^{n}\left\|A_{j}\right\|_{p}^{\mu}\right)^{\frac{1}{\mu}} & \leq\left(\frac{1}{n} \sum_{j=1}^{n}\left\|B_{j}\right\|_{p}^{\lambda}\right)^{\frac{1}{\lambda}} \tag{3.1}\\
& \leq n^{f(p)} \beta\left(\frac{1}{n} \sum_{j=1}^{n}\left\|A_{j}\right\|_{p}^{\mu}\right)^{\frac{1}{\mu}}
\end{align*}
$$

Clarkson-McCarthy Interpolated Inequalities
Cristian Conde
vol. 10, iss. 1, art. 4, 2009

Title Page
Contents

Page 14 of 21
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
where

$$
\tilde{k}=\tilde{k}(p, a, b, t)=F(a, a)^{t-1} F(b, a)^{-t} n^{\frac{1}{\lambda}-\frac{1}{\mu}-\left|\frac{1}{p}-\frac{1}{2}\right|} \alpha^{-1},
$$

and

$$
\tilde{K}=\tilde{K}(p, a, b, t)=F(a, a)^{1-t} F(a, b)^{t} n^{\frac{1}{\lambda}-\frac{1}{\mu}+\left|\frac{1}{p}-\frac{1}{2}\right|_{\beta},}
$$

if $2 \leq p$ and $\lambda, \mu \in[2, p]$ or if $1 \leq p \leq 2$ and $\lambda, \mu \in[p, 2]$.
Proof. We will denote by $\gamma(t)=\gamma_{a, b}(t)$, when no confusion can arise.
Consider the space $B_{p}^{(n)}$ with the norm:

$$
\|\bar{A}\|_{p, a ; s}=\left(\left\|A_{1}\right\|_{p, a}^{s}+\cdots+\left\|A_{n}\right\|_{p, a}^{s}\right)^{1 / s},
$$

where $a \in G l(H)^{+}$.
By (3.1), the norm of T_{R} is at most $F(a, a) n^{\frac{1}{\lambda}-\frac{1}{\mu}+\left|\frac{1}{p}-\frac{1}{2}\right|} \beta$ when

$$
T_{R}:\left(B_{p}^{(n)},\|(\cdot, \ldots, \cdot)\|_{p, a ; \mu}\right) \longrightarrow\left(B_{p}^{(n)},\|(\cdot, \ldots, \cdot)\|_{p, a ; \lambda}\right),
$$

and the norm of T_{R} is at most $F(a, b) n^{\frac{1}{\lambda}-\frac{1}{\mu}+\left|\frac{1}{p}-\frac{1}{2}\right|_{\beta}}$ when

$$
T_{R}:\left(B_{p}^{(n)},\|(\cdot, \ldots, \cdot)\|_{p, a ; \mu}\right) \longrightarrow\left(B_{p}^{(n)},\|(\cdot, \ldots, \cdot)\|_{p, b ; \lambda}\right) .
$$

Therefore, using the complex interpolation, we obtain the following diagram of interpolation for $t \in[0,1]$

Clarkson-McCarthy Interpolated Inequalities
Cristian Conde
vol. 10, iss. 1, art. 4, 2009

Title Page
Contents

Page 15 of 21
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

By Theorem 2.1, T_{R} satisfies

$$
\begin{equation*}
\left\|T_{R}(\bar{A})\right\|_{p, \gamma(t) ; \lambda} \leq\left. F(a, a)^{1-t} F(a, b)^{t} n^{\frac{1}{\lambda}-\frac{1}{\mu}+\left|\frac{1}{p}-\frac{1}{2}\right|}\right|_{\beta \|}\|\bar{A}\|_{p, a ; \mu} . \tag{3.3}
\end{equation*}
$$

Now applying the Complex method to

one obtains

$$
\begin{equation*}
\left\|T_{R^{-1}}(\bar{A})\right\|_{p, a ; \mu} \leq\left. F(a, a)^{1-t} F(b, a)^{t} n^{\frac{1}{\mu}-\frac{1}{\lambda}+\left\lvert\, \frac{1}{p}-\frac{1}{2}\right.}\right|_{\alpha\|\bar{A}\|_{p, \gamma(t) ; \lambda} .} . \tag{3.4}
\end{equation*}
$$

Replacing in (3.4) \bar{A} by $R \bar{A}$ we obtain

$$
\begin{equation*}
\|\bar{A}\|_{p, a ; \mu} \leq F(a, a)^{1-t} F(b, a)^{t} n^{\frac{1}{\mu}-\frac{1}{\lambda}+\left|\frac{1}{p}-\frac{1}{2}\right|_{\alpha}\|R \bar{A}\|_{p, \gamma(t) ; \lambda},} \tag{3.5}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
F(a, a)^{t-1} F(b, a)^{-t} n^{\frac{1}{\lambda}-\frac{1}{\mu}-\left|\frac{1}{p}-\frac{1}{2}\right|} \alpha_{\alpha^{-1}}\|\bar{A}\|_{p, a ; \mu} \leq\left\|T_{R}(\bar{A})\right\|_{p, \gamma(t) ; \lambda} . \tag{3.6}
\end{equation*}
$$

Finally, the inequalities (3.3) and (3.6) complete the proof.
We remark that the previous statement is a generalization of Th. 4.1 in [7] where $T_{n}=T_{R}$ with $R=\left(e^{\left(i \frac{2 \pi(j-1)(k-1)}{n}\right)} 1\right)_{1 \leq j, k \leq n}$ and $a^{-1 / 2}$ commutes with R for all $a \in G l(H)^{+}$.

Clarkson-McCarthy Interpolated Inequalities
Cristian Conde
vol. 10, iss. 1, art. 4, 2009

Title Page
Contents

Page 16 of 21
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

On the other hand, it is well known that if x_{1}, \ldots, x_{n} are non-negative numbers, $s \in \mathbb{R}$ and we denote $\mathcal{M}_{s}(\bar{x})=\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{s}\right)^{1 / s}$ then for $0<s<s^{\prime}, \mathcal{M}_{s}(\bar{x}) \leq$ $\mathcal{M}_{s^{\prime}}(\bar{x})$.

If we denote $\|\bar{B}\|=\left(\left\|B_{1}\right\|_{p}, \ldots,\left\|B_{n}\right\|_{p}\right)$ and we consider $1<p \leq 2$, then it holds for $t \in[0,1]$ and $\frac{1}{s_{t}}=\frac{1-t}{p}+\frac{t}{q}$ that

$$
\mathcal{M}_{s_{t}}(\|\bar{B}\|) \leq \mathcal{M}_{q}(\|\bar{B}\|) \leq r^{\frac{2}{\bar{p}-1}} \beta^{\frac{2}{q}} n^{\frac{-1}{q}}\left(\sum_{j=1}^{n}\left\|A_{j}\right\|_{p}^{p}\right)^{\frac{1}{p}},
$$

or equivalently

$$
\begin{equation*}
\left(\sum_{j=1}^{n}\left\|B_{j}\right\|_{p}^{s_{t}}\right)^{\frac{1}{s_{t}}} \leq r^{\frac{2}{p}-1} \beta^{\frac{2}{q}} n^{\frac{1}{s_{t}}-\frac{1}{q}}\left(\sum_{j=1}^{n}\left\|A_{j}\right\|_{p}^{p}\right)^{\frac{1}{p}} \tag{3.7}
\end{equation*}
$$

Analogously, for $2 \leq p<\infty$ we get

$$
\begin{equation*}
\left(\sum_{j=1}^{n}\left\|A_{j}\right\|_{p}^{p}\right)^{\frac{1}{p}} \leq \rho^{1-\frac{2}{p}} \alpha^{\frac{2}{p}} n^{\frac{1}{q}-\frac{1}{s_{t}}}\left(\sum_{j=1}^{n}\left\|B_{j}\right\|_{p}^{s_{t}}\right)^{\frac{1}{s_{t}}} \tag{3.8}
\end{equation*}
$$

where $\frac{1}{s_{t}}=\frac{1-t}{q}+\frac{t}{p}$.
Now we can use the interpolation method with the inequalities (3.7) and (3.1) (or (3.8) and (3.1)).

If we consider the following diagram of interpolation with $1<p \leq 2$ and $t \in$

Title Page
Contents

Page 17 of 21
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
$[0,1]$,

$$
(B_{p}^{(n)},\|(\cdot, \ldots, \cdot) \underbrace{\stackrel{T_{R}}{T_{R}}}_{\underbrace{}_{p, 1 ; p}) \xrightarrow{T_{R}}\left(B_{p}^{(n)},\|(\cdot, \ldots, \cdot)\|_{p, 1 ; s_{t}}\right)},\|\left(B_{p}^{(n)},\|(\cdot, \ldots, \cdot)\|_{p, 1 ; q}\right) .
$$

By Theorem 2.1 and (3.1), T_{R} satisfies

$$
\begin{equation*}
\left\|T_{R}(\bar{A})\right\|_{p, 1 ; s_{t}} \leq\left(n^{f(p)} \beta\right)^{1-t}\left(r^{\frac{2}{p}-1} \beta^{\frac{2}{q}}\right)^{t}\|\bar{A}\|_{p, 1 ; p} \tag{3.9}
\end{equation*}
$$

Finally, from the inequalities (3.7) and (3.9) we obtain

$$
\left(\sum_{j=1}^{n}\left\|B_{j}\right\|_{p}^{s_{t}}\right)^{\frac{1}{s_{t}}} \leq \min \left\{r^{\frac{2}{p}-1} \beta^{\frac{2}{q}} n^{\frac{1}{s_{t}}-\frac{1}{q}}, n^{f(p)(1-t)} \beta^{1+t\left(\frac{2}{q}-1\right)} r^{\left(\frac{2}{p}-1\right) t}\right\}\left(\sum_{j=1}^{n}\left\|A_{j}\right\|_{p}^{p}\right)^{\frac{1}{p}}
$$

We can summarize the previous facts in the following statement.
Theorem 3.2. Let $\bar{A} \in B_{p}^{(n)}$ and $B=R \bar{A}$, where $R=\left(R_{j k}\right)$ is invertible. Let $r=\max \left\|R_{j k}\right\|, \rho=\max \left\|\left(R^{-1}\right)_{j k}\right\|$ and q be the conjugate exponent of p. Then, for $t \in[0,1]$ we get

$$
\left(\sum_{j=1}^{n}\left\|A_{j}\right\|_{p}^{p}\right)^{\frac{1}{p}} \leq \min \left\{\rho^{1-\frac{2}{p}} \alpha^{\frac{2}{p}} n^{\frac{1}{q}-\frac{1}{s_{t}}}, n^{f(p) t} \alpha^{t+(1-t) \frac{2}{p}} \rho^{\left(1-\frac{2}{p}\right)(1-t)}\right\}\left(\sum_{j=1}^{n}\left\|B_{j}\right\|_{p}^{s_{t}}\right)^{\frac{1}{s} t}
$$

Clarkson-McCarthy Interpolated Inequalities
Cristian Conde
vol. 10, iss. 1 , art. 4, 2009

Title Page

Contents

Page 18 of 21

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
if $2 \leq p$ and $\frac{1}{s_{t}}=\frac{1-t}{q}+\frac{t}{p}$, or

$$
\left(\sum_{j=1}^{n}\left\|B_{j}\right\|_{p}^{s_{t}}\right)^{\frac{1}{s_{t}}} \leq \min \left\{r^{\frac{2}{p}-1} \beta^{\frac{2}{q}} n^{\frac{1}{s_{t}}-\frac{1}{q}}, n^{f(p)(1-t)} \beta^{1+t\left(\frac{2}{q}-1\right)} r^{\left(\frac{2}{p}-1\right) t}\right\}\left(\sum_{j=1}^{n}\left\|A_{j}\right\|_{p}^{p}\right)^{\frac{1}{p}}
$$

$$
\text { if } 1<p \leq 2 \text { and } \frac{1}{s_{t}}=\frac{1-t}{p}+\frac{t}{q} \text {. }
$$

Finally using the Finsler norm $\|(\cdot, \ldots, \cdot)\|_{p, a ; s}$, Calderón's method and the previous inequalities we obtain:
Corollary 3.3. Let $a, b \in G l(H)^{+}, \bar{A} \in B_{p}^{(n)}$ and $B=R \bar{A}$, where $R=\left(R_{j k}\right)$ is invertible. Let $r=\max \left\|R_{j k}\right\|, \rho=\max \left\|\left(R^{-1}\right)_{j k}\right\|$ and q be the conjugate exponent of p. Then, for $t, u \in[0,1]$ we get

$$
\left(\sum_{j=1}^{n}\left\|A_{j}\right\|_{p, a}^{p}\right)^{\frac{1}{p}} \leq F(a, a)^{1-u} F(b, a)^{u} M_{1}\left(\sum_{j=1}^{n}\left\|B_{j}\right\|_{p, \gamma_{a, b}(u)}^{s_{t}}\right)^{\frac{1}{s_{t}}}
$$

if $2 \leq p, \frac{1}{s_{t}}=\frac{1-t}{q}+\frac{t}{p}$ and

$$
M_{1}=M_{1}(R, p, t)=\min \left\{\rho^{1-\frac{2}{p}} \alpha^{\frac{2}{p}} n^{\frac{1}{q}-\frac{1}{s_{t}}}, n^{f(p) t} \alpha^{t+(1-t) \frac{2}{p}} \rho^{\left(1-\frac{2}{p}\right)(1-t)}\right\}
$$

or

$$
\left(\sum_{j=1}^{n}\left\|B_{j}\right\|_{p, \gamma_{a, b}(u)}^{s_{t}}\right)^{\frac{1}{s_{t}}} \leq F(a, a)^{1-u} F(a, b)^{u} M_{2}\left(\sum_{j=1}^{n}\left\|A_{j}\right\|_{p}^{p}\right)^{\frac{1}{p}}
$$

if $1<p \leq 2, \frac{1}{s_{t}}=\frac{1-t}{p}+\frac{t}{q}$ and

$$
M_{2}=M_{2}(R, p, t)=\min \left\{r^{\frac{2}{p}-1} \beta^{\frac{2}{q}} n^{\frac{1}{s_{t}}-\frac{1}{q}}, n^{f(p)(1-t)} \beta^{1+t\left(\frac{2}{q}-1\right)} r^{\left(\frac{2}{p}-1\right) t}\right\}
$$

Clarkson-McCarthy Interpolated Inequalities
Cristian Conde
vol. 10, iss. 1 , art. 4, 2009

Title Page
Contents
\square
Page 19 of 21
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] E. ANDRUCHOW, G. CORACH, M. MILMAN AND D. STOJANOFF, Geodesics and interpolation, Revista de la Unión Matemática Argentina, 40(34) (1997), 83-91.
[2] J. BERGH AND J. LÖFSTRÖM, Interpolation Spaces. An Introduction, Springer-Verlag, New York, 1976.
[3] R. BHATIA AND F. KITTANEH, Clarkson inequalities with several operators, Bull. London Math. Soc., 36(6) (2004), 820-832.
[4] R. BOAS, Some uniformly convex spaces, Bull. Amer. Math. Soc., 46 (1940), 304-311.
[5] A. CALDERÓN, Intermediate spaces and interpolation, the complex method, Studia Math., 24 (1964), 113-190.
[6] J.A. CLARKSON, Uniformly convex spaces, Trans. Amer. Math. Soc., 40 (1936), 396-414.
[7] C. CONDE, Geometric interpolation in p-Schatten class, J. Math. Anal. Appl., 340(2) (2008), 920-931.
[8] G. CORACH, H. PORTA AND L. RECHT, The geometry of the space of selfadjoint invertible elements of a C*-algebra, Integra. Equ. Oper. Theory, 16(3) (1993), 333-359.
[9] I. GOHBERG AND M. KREIN, Introduction to the Theory of Linear Nonselfadjoint Operators, American Mathematical Society, Vol. 18, Providence, R. I.,1969.

Clarkson-McCarthy Interpolated Inequalities
Cristian Conde
vol. 10, iss. 1, art. 4, 2009

Title Page
Contents

$\boldsymbol{4}$	
$\mathbf{4}$	
Page 20 of 21	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b
[10] O. HIRZALLAH and F. KITTANEH, Non-commutative Clarkson inequalities for unitarily invariants norms, Paciic J. Math., 202 (2002), 363-369.
[11] O. HIRZALLAH and F. KITTANEH, Non-commutative Clarkson inequalities for n-tuples of operators, Integr. Equ. Oper. Theory, 60 (2008), 369-379.
[12] E. KISSIN, On Clarkson-McCarthy inequalities for n-tuples of operators, Proc. Amer. Math. Soc., 135(8) (2007), 2483-2495.
[13] S. KREIN, J. PETUNIN AND E. SEMENOV, Interpolation of linear operators. Translations of Mathematical Monographs, Vol. 54, American Mathematical Society, Providence, R. I., 1982.
[14] C. MCCARTHY, c_{p}, Israel J. Math., 5 (1967), 249-271.
[15] G. MOSTOW, Some new decomposition theorems for semi-simple groups, Mem. Amer. Math. Soc., 14 (1955), 31-54.
[16] B. SIMON, Trace Ideals and their Applications. Second edition, Mathematical Surveys and Monographs, 120. American Mathematical Society, Providence, RI, 2005.

Clarkson-McCarthy Interpolated Inequalities
Cristian Conde
vol. 10, iss. 1, art. 4, 2009

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 21 of 21	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

