

# Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 6, Issue 1, Article 5, 2005

## TWO ITERATIVE SCHEMES FOR AN H-SYSTEM

PABLO AMSTER AND MARÍA CRISTINA MARIANI

FCEYN - DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE BUENOS AIRES CIUDAD UNIVERSITARIA, PABELLÓN I (1428) BUENOS AIRES, ARGENTINA CONICET

pamster@dm.uba.ar

DEPARTMENT OF MATHEMATICAL SCIENCES
NEW MEXICO STATE UNIVERSITY LAS CRUCES
NM 88003-0001, USA
mmariani@nmsu.edu

Received 1 November, 2004; accepted 15 December, 2004 Communicated by L. Debnath

ABSTRACT. Two iterative schemes for the solution of an H-system with Dirichlet boundary data for a revolution surface are studied: a Newton imbedding type procedure, which yields the local quadratic convergence of the iteration and a more simple scheme based on the method of upper and lower solutions.

Key words and phrases: H-systems, Newton Imbedding, Upper and Lower solutions, Iterative methods.

2000 Mathematics Subject Classification. 34B15, 35J25.

# 1. Introduction

The prescribed mean curvature equation with Dirichlet condition for a vector function  $X: \overline{\Omega} \longrightarrow \mathbb{R}^3$  is given by the following nonlinear system of partial differential equations:

(1.1) 
$$\begin{cases} \Delta X = 2H(X)X_u \wedge X_v & \text{in} \quad \Omega \\ X = X_0 & \text{on} \quad \partial \Omega \end{cases}$$

where  $\Omega \subset \mathbb{R}^2$  is a bounded domain,  $\wedge$  denotes the exterior product in  $\mathbb{R}^3$ ,  $H: \mathbb{R}^3 \longrightarrow \mathbb{R}$  is a given continuous function and  $X_0$  is the boundary data.

The parametric Plateau and Dirichlet problems have been studied by different authors (see [3, 4], [7] - [9]). Nonparametric and more general quasilinear equations are considered in [1, 2, 6].

ISSN (electronic): 1443-5756

© 2005 Victoria University. All rights reserved.

We shall consider the particular case of a revolution surface

$$X(u,v) = (f(u)\cos v, f(u)\sin v, g(u))$$

with  $f,g \in C^2(\overline{I})$  such that f>0 and g'>0 over the interval  $I\subset \mathbb{R}$ . Without loss of generality we may assume that I=(0,L), and problem (1.1) becomes

(1.2) 
$$\begin{cases} f'' - f = -2H(f,g)fg' & \text{in } I \\ g'' = 2H(f,g)ff' & \text{in } I \\ f(0) = \alpha_0 & f(L) = \alpha_L \\ g(0) = \beta_0 & g(L) = \beta_L \end{cases}$$

where  $H: \mathbb{R}^2 \longrightarrow \mathbb{R}$  is a given continuous function, and  $\alpha_0, \alpha_L > 0$ ,  $\beta_0 < \beta_L$  are fixed real numbers.

It is easy to see that any solution of (1.2) verifies the equality

$$(f')^2 + (g')^2 = f^2 + c.$$

Hence, the isothermal condition

$$|X_u| - |X_v| = X_u X_v = 0$$

holds if and only if c = 0. In this case, H is the mean curvature of the surface parameterized by X (see [8]).

We shall study problem (1.2) for a surface with connected boundary, namely

(1.3) 
$$\begin{cases} f'' - f = -2H(f,g)fg' & \text{in } I \\ g'' = 2H(f,g)ff' & \text{in } I \\ f(L) = \alpha_L, & g(L) = \beta_L \\ f(0) = g'(0) = 0. \end{cases}$$

In particular, if H depends only on the radius f, from the equality

$$g'' = 2H(f)ff',$$
  $g'(0) = 0,$   $g(L) = \beta_L$ 

problem (1.3) easily reduces to a single equation; indeed, if  $\widetilde{H}(t) = \int_0^t sH(s)ds$ , the following integral formula holds for g:

$$g(t) = \beta_L - 2 \int_t^L \widetilde{H}(f(s)) ds.$$

Thus, problem (1.3) is equivalent to the equation

(1.4) 
$$\begin{cases} f'' - f = -4H(f)f\widetilde{H}(f) = -2\left(\widetilde{H}^2\right)'(f) & \text{in } I \\ f = \alpha & \text{on } \partial I \end{cases}$$

with  $\alpha(t) := \frac{\alpha_L}{L}t$ . We remark that if  $\alpha_L = 0$  then  $g'(L) = 2\widetilde{H}(0) = 0$ , which corresponds to a surface without boundary.

The paper is organized as follows. In Section 2, a Newton imbedding type procedure for problem (1.4) is considered, which yields the local quadratic convergence of the iteration. In Section 3 we construct a more simple convergent scheme based on the existence of an ordered pair of a lower and an upper solution.

### 2. A NEWTON IMBEDDING TYPE PROCEDURE

Throughout this section we shall assume the following condition:

where  $\delta_0 < \frac{\pi}{L}$  and k satisfies:

$$k\delta_0 > L^{1/2} \left\| 2 \left( \widetilde{H}^2 \right)'(\alpha) - \alpha \right\|_{L^2}.$$

**Remark 2.1.** A straightforward application of Leray-Schauder degree theory proves that if condition (2.1) holds then there exists at least one solution of (1.4), which is unique in the set

$$\mathcal{K} = \{ u \in H^2(I) : -k \le u \le k + \alpha_L \}.$$

**Remark 2.2.** As  $\left(\widetilde{H}^2\right)''(0) = 0$  and  $\left\|2\left(\widetilde{H}^2\right)'(\alpha) - \alpha\right\|_{L^2} \to 0$  for  $\alpha_L \to 0$ , we deduce that for any H there exists a positive number  $\alpha^*$  such that (2.1) holds when  $\alpha_L < \alpha^*$ .

In order to solve equation (1.4) in an iterative manner, we shall embed it in a family of problems

(1.4<sub>$$\lambda$$</sub>) 
$$\begin{cases} f'' + \lambda \left[ 2 \left( \widetilde{H}^2 \right)'(f) - f \right] = 0 \\ f(0) = 0, \quad f(L) = \alpha_L. \end{cases}$$

A simple computation shows that if  $S_{\lambda}$  is the semilinear operator given by

$$S_{\lambda}(f) = f'' + \lambda \left[ 2 \left( \widetilde{H}^2 \right)'(f) - f \right],$$

then the following estimate holds for any  $f, g \in \mathcal{K}$  such that f = g on  $\partial I$ :

(2.2) 
$$||f' - g'||_{L^2} \le \frac{1}{\delta_0} ||S_{\lambda}(f) - S_{\lambda}(g)||_{L^2}.$$

Hence, if  $f^{\lambda}$  is the (unique) solution of  $(1.4_{\lambda})$  in  $\mathcal{K}$ , we have that

$$\|(f^{\lambda} - \alpha)'\|_{L^{2}} \le \frac{1}{\delta_{0}} \|S_{\lambda}(\alpha)\|_{L^{2}} \le \frac{1}{\delta_{0}} \|2(\widetilde{H}^{2})'(\alpha) - \alpha\|_{L^{2}}.$$

Thus, setting  $k_0 = \frac{L^{1/2}}{\delta_0} \|2\left(\widetilde{H}^2\right)'(\alpha) - \alpha\|_{L^2}$  we obtain:

$$-k_0 \le f^{\lambda} \le k_0 + \alpha_L.$$

We first present a sketch of the method: given  $\lambda < 1$ , and assuming that  $f^{\lambda} \in \mathcal{K}$  is known, we shall prove the existence of a positive  $\varepsilon$  and a recursive sequence  $\{f_n\}$  which converges quadratically to the unique solution of  $(1.4_{\lambda+\varepsilon})$  in  $\mathcal{K}$ . As  $\varepsilon$  can be chosen independently of  $f^{\lambda}$  and  $\lambda$ , starting at  $f^0 = \alpha$ , we deduce the existence of a sequence

$$0 = \lambda_0 < \lambda_1 < \dots < \lambda_N = 1,$$

where  $f^{\lambda_k} \in \mathcal{K}$  is obtained iteratively from  $f^{\lambda_{k-1}}$ .

Let  $\lambda < 1$ , and  $f^{\lambda} \in \mathcal{K}$  be a solution of  $(1.4_{\lambda})$ . Define the constants:

$$R = \frac{k - k_0}{L^{1/2}},$$

$$k_1 = \left\| f^{\lambda} - 2\left(\widetilde{H}^2\right)'(f^{\lambda}) \right\|_2,$$

$$k_2 = \sup_{-k \le \xi \le k + \alpha_L} \left| \left( \widetilde{H}^2 \right)^{"'}(\xi) \right|$$

and define a sequence  $\{f_n\}$  in the following way:

- $f_0 := f^{\lambda}$ .
- $f_{n+1}$  the unique element of  $H^2(I)$  that solves the linear problem

$$\begin{cases} f_{n+1}'' = (\lambda + \varepsilon) \left[ \left( 1 - 2 \left( \widetilde{H}^2 \right)'' (f_n) \right) (f_{n+1} - f_n) + f_n - 2 \left( \widetilde{H}^2 \right)' (f_n) \right] \\ f_{n+1}(0) = 0, \quad f_{n+1}(L) = \alpha_L. \end{cases}$$

We shall prove that if  $\varepsilon$  is small enough, then  $\{f_n\}$  is well defined. More precisely:

**Theorem 2.3.** Assume that (2.1) holds, and that H is twice continuously differentiable on  $[-k, k + \alpha_L]$ . Then  $\{f_n\}$  is well defined and converges quadratically for the  $H^1$ -norm to the unique solution of  $(1.4_{\lambda+\varepsilon})$  in K for any  $\varepsilon \leq 1 - \lambda$  satisfying:

$$\varepsilon \left( 1 + \frac{RL^{3/2}k_2}{\pi \delta_0} \right) < \frac{\delta_0 R}{k_1}.$$

*Proof.* As  $f_0 \in \mathcal{K}$ ,  $f_1$  is well defined, and by an estimate analogous to (2.2) we obtain:

$$||f_{1}' - f_{0}'||_{L^{2}} \leq \frac{1}{\delta_{0}} ||(f_{1} - f_{0})'' - (\lambda + \varepsilon) \left(1 - 2\left(\widetilde{H}^{2}\right)''(f_{0})\right) (f_{1} - f_{0})||_{L^{2}}$$

$$= \frac{\varepsilon}{\delta_{0}} ||f_{0} - 2\left(\widetilde{H}^{2}\right)'(f_{0})||_{L^{2}}$$

$$= \frac{\varepsilon}{\delta_{0}} k_{1} \leq R.$$

We shall assume as inductive hypothesis that  $f_k$  is well defined for  $k=1,\ldots,n$ , and that  $\|f_k'-f_0'\|_{L^2}\leq R$ . Thus,  $f_n\in\mathcal{K}$  and  $f_{n+1}$  is well defined. Moreover, for  $k=1,\ldots,n$  we have that

$$(f_{k+1} - f_k)'' - (\lambda + \varepsilon) \left(1 - 2\left(\widetilde{H}^2\right)''(f_k)\right) (f_{k+1} - f_k)$$
$$= -(\lambda + \varepsilon) \left(\widetilde{H}^2\right)'''(\xi_k) (f_k - f_{k-1})^2$$

for some mean value  $\xi_k(x)$ , and hence

$$\|(f_{k+1} - f_k)'\|_{L^2} \le \frac{k_2}{\delta_0} \|(f_k - f_{k-1})^2\|_{L^2} \le \frac{k_2 L^{3/2}}{\delta_0 \pi} \|(f_k - f_{k-1})'\|_{L^2}^2.$$

By induction,

$$\|(f_{k+1} - f_k)'\|_{L^2} \le \left(\frac{k_2 L^{3/2}}{\delta_0 \pi} \|(f_1 - f_0)'\|_{L^2}\right)^{2^k - 1} \|(f_1 - f_0)'\|_{L^2} \le A^{2^k - 1} \|(f_1 - f_0)'\|_{L^2},$$

where

$$A = \frac{\varepsilon k_1 k_2 L^{3/2}}{\delta_0^2 \pi} < 1.$$

Hence,

$$\|(f_{n+1} - f_0)'\|_{L^2} \le \sum_{k=0}^n \|(f_{k+1} - f_k)'\|_{L^2} \le \frac{1}{1-A} \|(f_1 - f_0)'\|_{L^2} \le \frac{\varepsilon k_1}{\delta_0(1-A)}.$$

By hypothesis, we conclude that  $||(f_{n+1} - f_0)'||_{L^2} \le R$ . Thus,  $f_n$  is well defined for every n, and the inequality

$$||(f_{n+1} - f_n)'||_{L^2} \le A^{2^n - 1} ||(f_1 - f_0)'||_{L^2}$$

holds, proving that  $\{f_n\}$  is a Cauchy sequence in  $H^1(I)$ . Furthermore, if  $f = \lim_{n \to \infty} f_n$ , it is immediate that  $f_n \to f$  in  $H^2(I)$ , and  $f \in \mathcal{K}$  solves  $(1.4_{\lambda+\varepsilon})$ .

# **Remark 2.4.** A uniform choice of $\varepsilon$ can be obtained if we set

$$k_1 = L^{1/2} \sup_{-k_0 \le x \le k_0 + \alpha_L} \left| x - 2 \left( \widetilde{H}^2 \right)'(x) \right|.$$

# 3. UPPER AND LOWER SOLUTIONS FOR PROBLEM (1.4)

In this section we define a convergent sequence based on the existence of an upper solution of the problem: namely, a nonnegative function  $\beta$  such that

(3.1) 
$$\beta'' - \beta \le -2\left(\widetilde{H}^2\right)'(\beta), \qquad \beta(L) \ge \alpha_L.$$

We remark that it suffices to consider this assumption, since 0 is a lower solution of (1.4).

**Theorem 3.1.** Assume that  $\beta \geq 0$  satisfies (3.1) and that H is continuously differentiable for  $0 \leq x \leq \|\beta\|_{\infty}$ . Set

$$C = 1 - 2 \min_{0 \le x \le ||\beta||_{\infty}} \left( \widetilde{H}^2 \right)''(x)$$

and define the sequences  $\{f_n^{\pm}\}$  given by:

- $\bullet \ f_0^- \equiv 0 \qquad f_0^+ = \beta$
- ullet  $\{f_{n+1}^{\pm}\}$  the unique solution of the linear problem

$$\begin{cases} (f_{n+1}^{\pm})'' - Cf_{n+1}^{\pm} = (1 - C)f_n^{\pm} - 2\left(\widetilde{H}^2\right)'(f_n^{\pm}) \\ f_{n+1}^{\pm} = \alpha \quad on \quad \partial I. \end{cases}$$

Then  $\{f_n^-\}$  (respectively  $\{f_n^+\}$ ) is nondecreasing (nonincreasing), and converges pointwise to a solution of (1.2). Moreover, the respective limits  $f^\pm$  satisfy:  $0 \le f^- \le f^+ \le \beta$ .

*Proof.* Let us first note that  $C \geq 0$  (in fact,  $C \geq 1$ ), which implies that both sequences are well defined. Furthermore, from the choice of C, it is immediate that the function  $\psi(x) = (1-C)x - 2\left(\widetilde{H}^2\right)'(x)$  is nonincreasing for  $0 \leq x \leq \|\beta\|_{\infty}$ . By definition,

$$(f_1^+)'' - Cf_1^+ = (1 - C)\beta - 2(\widetilde{H}^2)'(\beta) \ge \beta'' - C\beta$$

and using the maximum principle it follows that  $f_1^+ \leq \beta$ . On the other hand,

$$(f_1^+)'' - Cf_1^+ = \psi(\beta) \le \psi(0) = 0$$

and as  $f_1^+ \geq 0$  on  $\partial I$  we deduce that  $f_1^+ \geq 0$  over I. Assume as inductive hypothesis that

$$0 \le f_n^+ \le f_{n-1}^+$$
.

Then

$$(f_{n+1}^+)'' - Cf_{n+1}^+ = \psi(f_n^+) \ge \psi(f_{n-1}^+) = (f_n^+)'' - Cf_n^+$$

and

$$(f_{n+1}^+)'' - Cf_{n+1}^+ = \psi(f_n^+) \le \psi(0) = 0$$

which implies that  $0 \le f_{n+1}^+ \le f_n^+$ . Thus,  $\{f_n^+\}$  is nonincreasing and converges pointwise to a function  $f^+ \ge 0$ . By standard apriori estimates, we have that

$$||f_{n+1}^+ - \alpha||_{H^2} \le c||(f_{n+1}^+ - \alpha)'' - C(f_{n+1}^+ - \alpha)||_{L^2} = c||\psi(f_n^+) - \alpha||_{L^2} \le M$$

for some constant M. By compactness,  $\{f_n^+\}$  admits a convergent subsequence in  $C^1(\overline{I})$ , proving that  $f^+ \in C^1(\overline{I})$ . Furthermore,

$$(f_{n+1}^+)'(x) - (f_{n+1}^+)'(0) = \int_0^x Cf_{n+1}^+ + \psi(f_n^+),$$

and by dominated convergence we conclude that

$$(f^+)'(x) - (f^+)'(0) = \int_0^x Cf^+ + \psi(f^+) = \int_0^x f^+ - 2\left(\widetilde{H}^2\right)'(f^+).$$

Thus, the result follows. The proof is analogous for  $\{f_n^-\}$ .

As a simple consequence we have:

**Corollary 3.2.** Assume there exists a number  $k \geq \alpha_L$  such that

$$\widetilde{H}(k)H(k) \le \frac{1}{4}.$$

Then  $\beta \equiv k$  is an upper solution, and the schemes defined in the previous theorem converge.

**Example 3.1.** For  $H(x) = rx^n$ , we have that  $\widetilde{H}(x) = \frac{r}{n+2}x^{n+2}$ , and the conditions of the previous corollary hold for

$$\alpha_L \le k \le \left(\frac{n+2}{4r^2}\right)^{\frac{1}{2n+2}}.$$

However, it is possible to find a sharper bound for  $\alpha_L$ , if we consider the parabola

$$\beta(x) = \alpha_L \left[ 1 - \left( \frac{x - L}{L} \right)^2 \right].$$

Indeed, in this case we have that  $\beta$  is an upper solution if and only if

$$-\frac{2\alpha_L}{L^2} - \beta \le -\frac{4r^2}{n+2}\beta^{2n+3}$$

or equivalently

$$\phi(\beta) \le \frac{2\alpha_L}{L^2}$$

for  $\phi(x) = x \left( \frac{4r^2}{n+2} x^{2n+2} - 1 \right)$ . Note that for  $0 \le x \le \alpha_L$  we have:

$$\phi(x) \le \max\{0, \phi(\alpha_L)\}.$$

Thus, it suffices to assume that

$$0 < \alpha_L^{2n+2} \le \frac{n+2}{4r^2} \left( 1 + \frac{2}{L^2} \right).$$

**Remark 3.3.** In the previous example, equation (1.4) is *superlinear*, namely:

$$f'' + \frac{4r^2}{n+2}f^{2n+3} - f = 0,$$
  $f(0) = 0,$   $f(L) = \alpha_L.$ 

It can be proved (see e.g. [5]) that this problem admits infinitely many solutions. More precisely, there exists  $k_0 \in \mathbb{N}$  such that for any  $j > k_0$  the problem has at least two solutions crossing the line  $\alpha(t) = \frac{\alpha_L}{L}t$  exactly j times in (0, L).

#### REFERENCES

- [1] P. AMSTER, M.M. CASSINELLI AND M.C. MARIANI, Solutions to general quasilinear elliptic second order problems, *Nonlinear Studies*, **7**(2) (2000), 283–289.
- [2] P. AMSTER, M.M. CASSINELLI AND M.C. MARIANI, Solutions to quasilinear equations by an iterative method, *Bulletin of the Belgian Math. Society*, **7** (2000), 435–441.
- [3] P. AMSTER, M.M. CASSINELLI AND D.F RIAL, Existence and uniqueness of H-System's solutions with Dirichlet conditions, *Nonlinear Analysis, Theory, Methods, and Applications*, **42**(4) (2000), 673–677.
- [4] H. BREZIS AND J.M. CORON, Multiple solutions of *H* systems and Rellich's conjecture, *Comm. Pure Appl. Math.*, **37** (1984), 149–187.
- [5] A. CAPPIETO, J. MAWHIN AND F. ZANOLIN, Boundary value problems for forced superlinear second order ordinary differential equations, Séminaire du Collége de France.
- [6] D. GILBARG AND N.S. TRUDINGER, *Elliptic Partial Differential Equations of Second Order*, Springer-Verlag (1983).
- [7] S. HILDEBRANDT, On the Plateau problem for surfaces of constant mean curvature, *Comm. Pure Appl. Math.*, **23** (1970), 97–114.
- [8] M. STRUWE, *Plateau's Problem and the Calculus of Variations*, Lecture Notes, Princeton Univ. Press (1988).
- [9] GUOFANG WANG, The Dirichlet problem for the equation of prescribed mean curvature, *Analyse Nonlinéaire*, **9** (1992), 643–655.