Journal of Inequalities in Pure and

 Applied Mathematics http://jipam.vu.edu.au/Volume 6, Issue 1, Article 5, 2005

TWO ITERATIVE SCHEMES FOR AN H-SYSTEM

PABLO AMSTER AND MARÍA CRISTINA MARIANI
FCEyN - Departamento de Matemática Universidad de Buenos Aires Ciudad Universitaria, Pabellón I (1428) Buenos Aires, Argentina CONICET
pamster@dm.uba.ar
Department of Mathematical Sciences New Mexico State University Las Cruces

NM 88003-0001, USA
mmariani@nmsu.edu
Received 1 November, 2004; accepted 15 December, 2004
Communicated by L. Debnath

Abstract. Two iterative schemes for the solution of an H -system with Dirichlet boundary data for a revolution surface are studied: a Newton imbedding type procedure, which yields the local quadratic convergence of the iteration and a more simple scheme based on the method of upper and lower solutions.

Key words and phrases: H-systems, Newton Imbedding, Upper and Lower solutions, Iterative methods.
2000 Mathematics Subject Classification. 34B15, 35J25.

1. Introduction

The prescribed mean curvature equation with Dirichlet condition for a vector function X : $\bar{\Omega} \longrightarrow \mathbb{R}^{3}$ is given by the following nonlinear system of partial differential equations:

$$
\begin{cases}\triangle X=2 H(X) X_{u} \wedge X_{v} & \text { in } \quad \Omega \tag{1.1}\\ X=X_{0} & \text { on } \quad \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{2}$ is a bounded domain, \wedge denotes the exterior product in $\mathbb{R}^{3}, H: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ is a given continuous function and X_{0} is the boundary data.

The parametric Plateau and Dirichlet problems have been studied by different authors (see [3, 4], [7] - [9]). Nonparametric and more general quasilinear equations are considered in [1, 2, 6].

[^0]We shall consider the particular case of a revolution surface

$$
X(u, v)=(f(u) \cos v, f(u) \sin v, g(u))
$$

with $f, g \in C^{2}(\bar{I})$ such that $f>0$ and $g^{\prime}>0$ over the interval $I \subset \mathbb{R}$. Without loss of generality we may assume that $I=(0, L)$, and problem (1.1) becomes

$$
\begin{cases}f^{\prime \prime}-f=-2 H(f, g) f g^{\prime} & \text { in } I \tag{1.2}\\ g^{\prime \prime}=2 H(f, g) f f^{\prime} & \text { in } I \\ f(0)=\alpha_{0} & f(L)=\alpha_{L} \\ g(0)=\beta_{0} & g(L)=\beta_{L}\end{cases}
$$

where $H: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ is a given continuous function, and $\alpha_{0}, \alpha_{L}>0, \beta_{0}<\beta_{L}$ are fixed real numbers.

It is easy to see that any solution of (1.2) verifies the equality

$$
\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}=f^{2}+c
$$

Hence, the isothermal condition

$$
\left|X_{u}\right|-\left|X_{v}\right|=X_{u} X_{v}=0
$$

holds if and only if $c=0$. In this case, H is the mean curvature of the surface parameterized by X (see [8]).

We shall study problem (1.2) for a surface with connected boundary, namely

$$
\begin{cases}f^{\prime \prime}-f=-2 H(f, g) f g^{\prime} & \text { in } I \tag{1.3}\\ g^{\prime \prime}=2 H(f, g) f f^{\prime} & \text { in } I \\ f(L)=\alpha_{L}, & g(L)=\beta_{L} \\ f(0)=g^{\prime}(0)=0 . & \end{cases}
$$

In particular, if H depends only on the radius f, from the equality

$$
g^{\prime \prime}=2 H(f) f f^{\prime}, \quad g^{\prime}(0)=0, \quad g(L)=\beta_{L}
$$

problem 1.3 easily reduces to a single equation; indeed, if $\widetilde{H}(t)=\int_{0}^{t} s H(s) d s$, the following integral formula holds for g :

$$
g(t)=\beta_{L}-2 \int_{t}^{L} \widetilde{H}(f(s)) d s
$$

Thus, problem (1.3) is equivalent to the equation

$$
\begin{cases}f^{\prime \prime}-f=-4 H(f) f \widetilde{H}(f)=-2\left(\widetilde{H}^{2}\right)^{\prime}(f) & \text { in } I \tag{1.4}\\ f=\alpha & \text { on } \partial I\end{cases}
$$

with $\alpha(t):=\frac{\alpha_{L}}{L} t$. We remark that if $\alpha_{L}=0$ then $g^{\prime}(L)=2 \widetilde{H}(0)=0$, which corresponds to a surface without boundary.
The paper is organized as follows. In Section 2, a Newton imbedding type procedure for problem (1.4) is considered, which yields the local quadratic convergence of the iteration. In Section 3 we construct a more simple convergent scheme based on the existence of an ordered pair of a lower and an upper solution.

2. A Newton Imbedding Type Procedure

Throughout this section we shall assume the following condition:

$$
\begin{equation*}
\left(\tilde{H}^{2}\right)^{\prime \prime}(x) \leq \frac{1+\frac{\pi}{L}\left(\frac{\pi}{L}-\delta_{0}\right)}{2} \quad \text { for }-k \leq x \leq k+\alpha_{L} \tag{2.1}
\end{equation*}
$$

where $\delta_{0}<\frac{\pi}{L}$ and k satisfies:

$$
k \delta_{0}>L^{1 / 2}\left\|2\left(\widetilde{H}^{2}\right)^{\prime}(\alpha)-\alpha\right\|_{L^{2}}
$$

Remark 2.1. A straightforward application of Leray-Schauder degree theory proves that if condition (2.1) holds then there exists at least one solution of (1.4), which is unique in the set

$$
\mathcal{K}=\left\{u \in H^{2}(I):-k \leq u \leq k+\alpha_{L}\right\} .
$$

Remark 2.2. As $\left(\widetilde{H}^{2}\right)^{\prime \prime}(0)=0$ and $\left\|2\left(\widetilde{H}^{2}\right)^{\prime}(\alpha)-\alpha\right\|_{L^{2}} \rightarrow 0$ for $\alpha_{L} \rightarrow 0$, we deduce that for any H there exists a positive number α^{*} such that (2.1) holds when $\alpha_{L}<\alpha^{*}$.

In order to solve equation (1.4) in an iterative manner, we shall embed it in a family of problems

$$
\left\{\begin{array}{l}
f^{\prime \prime}+\lambda\left[2\left(\widetilde{H}^{2}\right)^{\prime}(f)-f\right]=0 \\
f(0)=0, \quad f(L)=\alpha_{L}
\end{array}\right.
$$

A simple computation shows that if S_{λ} is the semilinear operator given by

$$
S_{\lambda}(f)=f^{\prime \prime}+\lambda\left[2\left(\widetilde{H}^{2}\right)^{\prime}(f)-f\right]
$$

then the following estimate holds for any $f, g \in \mathcal{K}$ such that $f=g$ on ∂I :

$$
\begin{equation*}
\left\|f^{\prime}-g^{\prime}\right\|_{L^{2}} \leq \frac{1}{\delta_{0}}\left\|S_{\lambda}(f)-S_{\lambda}(g)\right\|_{L^{2}} \tag{2.2}
\end{equation*}
$$

Hence, if f^{λ} is the (unique) solution of 1.4_{λ} in \mathcal{K}, we have that

$$
\left\|\left(f^{\lambda}-\alpha\right)^{\prime}\right\|_{L^{2}} \leq \frac{1}{\delta_{0}}\left\|S_{\lambda}(\alpha)\right\|_{L^{2}} \leq \frac{1}{\delta_{0}}\left\|2\left(\widetilde{H}^{2}\right)^{\prime}(\alpha)-\alpha\right\|_{L^{2}}
$$

Thus, setting $k_{0}=\frac{L^{1 / 2}}{\delta_{0}}\left\|2\left(\tilde{H}^{2}\right)^{\prime}(\alpha)-\alpha\right\|_{L^{2}}$ we obtain:

$$
-k_{0} \leq f^{\lambda} \leq k_{0}+\alpha_{L}
$$

We first present a sketch of the method: given $\lambda<1$, and assuming that $f^{\lambda} \in \mathcal{K}$ is known, we shall prove the existence of a positive ε and a recursive sequence $\left\{f_{n}\right\}$ which converges quadratically to the unique solution of $\left(1.4_{\lambda}+\varepsilon\right)$ in \mathcal{K}. As ε can be chosen independently of f^{λ} and λ, starting at $f^{0}=\alpha$, we deduce the existence of a sequence

$$
0=\lambda_{0}<\lambda_{1}<\cdots<\lambda_{N}=1
$$

where $f^{\lambda_{k}} \in \mathcal{K}$ is obtained iteratively from $f^{\lambda_{k-1}}$.
Let $\lambda<1$, and $f^{\lambda} \in \mathcal{K}$ be a solution of 1.4_{λ}. Define the constants:

$$
\begin{gathered}
R=\frac{k-k_{0}}{L^{1 / 2}} \\
k_{1}=\left\|f^{\lambda}-2\left(\tilde{H}^{2}\right)^{\prime}\left(f^{\lambda}\right)\right\|_{2}
\end{gathered}
$$

$$
k_{2}=\sup _{-k \leq \xi \leq k+\alpha_{L}}\left|\left(\widetilde{H}^{2}\right)^{\prime \prime \prime}(\xi)\right|
$$

and define a sequence $\left\{f_{n}\right\}$ in the following way:

- $f_{0}:=f^{\lambda}$.
- f_{n+1} the unique element of $H^{2}(I)$ that solves the linear problem

$$
\left\{\begin{array}{l}
f_{n+1}^{\prime \prime}=(\lambda+\varepsilon)\left[\left(1-2\left(\widetilde{H}^{2}\right)^{\prime \prime}\left(f_{n}\right)\right)\left(f_{n+1}-f_{n}\right)+f_{n}-2\left(\widetilde{H}^{2}\right)^{\prime}\left(f_{n}\right)\right] \\
f_{n+1}(0)=0, \quad f_{n+1}(L)=\alpha_{L}
\end{array}\right.
$$

We shall prove that if ε is small enough, then $\left\{f_{n}\right\}$ is well defined. More precisely:
Theorem 2.3. Assume that (2.1) holds, and that H is twice continuously differentiable on $\left[-k, k+\alpha_{L}\right]$. Then $\left\{f_{n}\right\}$ is well defined and converges quadratically for the H^{1}-norm to the unique solution of $\left(1.4_{\lambda}+\varepsilon\right)$ in \mathcal{K} for any $\varepsilon \leq 1-\lambda$ satisfying:

$$
\varepsilon\left(1+\frac{R L^{3 / 2} k_{2}}{\pi \delta_{0}}\right)<\frac{\delta_{0} R}{k_{1}}
$$

Proof. As $f_{0} \in \mathcal{K}, f_{1}$ is well defined, and by an estimate analogous to (2.2) we obtain:

$$
\begin{aligned}
\left\|f_{1}^{\prime}-f_{0}^{\prime}\right\|_{L^{2}} & \leq \frac{1}{\delta_{0}}\left\|\left(f_{1}-f_{0}\right)^{\prime \prime}-(\lambda+\varepsilon)\left(1-2\left(\widetilde{H}^{2}\right)^{\prime \prime}\left(f_{0}\right)\right)\left(f_{1}-f_{0}\right)\right\|_{L^{2}} \\
& =\frac{\varepsilon}{\delta_{0}}\left\|f_{0}-2\left(\widetilde{H}^{2}\right)^{\prime}\left(f_{0}\right)\right\|_{L^{2}} \\
& =\frac{\varepsilon}{\delta_{0}} k_{1} \leq R .
\end{aligned}
$$

We shall assume as inductive hypothesis that f_{k} is well defined for $k=1, \ldots, n$, and that $\left\|f_{k}^{\prime}-f_{0}^{\prime}\right\|_{L^{2}} \leq R$. Thus, $f_{n} \in \mathcal{K}$ and f_{n+1} is well defined. Moreover, for $k=1, \ldots, n$ we have that

$$
\begin{aligned}
\left(f_{k+1}-f_{k}\right)^{\prime \prime}-(\lambda+\varepsilon)\left(1-2\left(\widetilde{H}^{2}\right)^{\prime \prime}\left(f_{k}\right)\right) & \left(f_{k+1}-f_{k}\right) \\
& =-(\lambda+\varepsilon)\left(\widetilde{H}^{2}\right)^{\prime \prime \prime}\left(\xi_{k}\right)\left(f_{k}-f_{k-1}\right)^{2}
\end{aligned}
$$

for some mean value $\xi_{k}(x)$, and hence

$$
\left\|\left(f_{k+1}-f_{k}\right)^{\prime}\right\|_{L^{2}} \leq \frac{k_{2}}{\delta_{0}}\left\|\left(f_{k}-f_{k-1}\right)^{2}\right\|_{L^{2}} \leq \frac{k_{2} L^{3 / 2}}{\delta_{0} \pi}\left\|\left(f_{k}-f_{k-1}\right)^{\prime}\right\|_{L^{2}}^{2}
$$

By induction,

$$
\left\|\left(f_{k+1}-f_{k}\right)^{\prime}\right\|_{L^{2}} \leq\left(\frac{k_{2} L^{3 / 2}}{\delta_{0} \pi}\left\|\left(f_{1}-f_{0}\right)^{\prime}\right\|_{L^{2}}\right)^{2^{k}-1}\left\|\left(f_{1}-f_{0}\right)^{\prime}\right\|_{L^{2}} \leq A^{2^{k}-1}\left\|\left(f_{1}-f_{0}\right)^{\prime}\right\|_{L^{2}}
$$

where

$$
A=\frac{\varepsilon k_{1} k_{2} L^{3 / 2}}{\delta_{0}^{2} \pi}<1
$$

Hence,

$$
\left\|\left(f_{n+1}-f_{0}\right)^{\prime}\right\|_{L^{2}} \leq \sum_{k=0}^{n}\left\|\left(f_{k+1}-f_{k}\right)^{\prime}\right\|_{L^{2}} \leq \frac{1}{1-A}\left\|\left(f_{1}-f_{0}\right)^{\prime}\right\|_{L^{2}} \leq \frac{\varepsilon k_{1}}{\delta_{0}(1-A)}
$$

By hypothesis, we conclude that $\left\|\left(f_{n+1}-f_{0}\right)^{\prime}\right\|_{L^{2}} \leq R$. Thus, f_{n} is well defined for every n, and the inequality

$$
\left\|\left(f_{n+1}-f_{n}\right)^{\prime}\right\|_{L^{2}} \leq A^{2^{n}-1}\left\|\left(f_{1}-f_{0}\right)^{\prime}\right\|_{L^{2}}
$$

holds, proving that $\left\{f_{n}\right\}$ is a Cauchy sequence in $H^{1}(I)$. Furthermore, if $f=\lim _{n \rightarrow \infty} f_{n}$, it is immediate that $f_{n} \rightarrow f$ in $H^{2}(I)$, and $f \in \mathcal{K}$ solves $1.4_{\lambda}+\varepsilon$).
Remark 2.4. A uniform choice of ε can be obtained if we set

$$
k_{1}=L^{1 / 2} \sup _{-k_{0} \leq x \leq k_{0}+\alpha_{L}}\left|x-2\left(\widetilde{H}^{2}\right)^{\prime}(x)\right| .
$$

3. Upper and Lower Solutions for Problem (1.4)

In this section we define a convergent sequence based on the existence of an upper solution of the problem: namely, a nonnegative function β such that

$$
\begin{equation*}
\beta^{\prime \prime}-\beta \leq-2\left(\widetilde{H}^{2}\right)^{\prime}(\beta), \quad \beta(L) \geq \alpha_{L} \tag{3.1}
\end{equation*}
$$

We remark that it suffices to consider this assumption, since 0 is a lower solution of (1.4).
Theorem 3.1. Assume that $\beta \geq 0$ satisfies (3.1) and that H is continuously differentiable for $0 \leq x \leq\|\beta\|_{\infty}$. Set

$$
C=1-2 \min _{0 \leq x \leq\|\beta\|_{\infty}}\left(\widetilde{H}^{2}\right)^{\prime \prime}(x)
$$

and define the sequences $\left\{f_{n}^{ \pm}\right\}$given by:

- $f_{0}^{-} \equiv 0 \quad f_{0}^{+}=\beta$
- $\left\{f_{n+1}^{ \pm}\right\}$the unique solution of the linear problem

$$
\left\{\begin{array}{l}
\left(f_{n+1}^{ \pm}\right)^{\prime \prime}-C f_{n+1}^{ \pm}=(1-C) f_{n}^{ \pm}-2\left(\widetilde{H}^{2}\right)^{\prime}\left(f_{n}^{ \pm}\right) \\
f_{n+1}^{ \pm}=\alpha \quad \text { on } \quad \partial I .
\end{array}\right.
$$

Then $\left\{f_{n}^{-}\right\}$(respectively $\left\{f_{n}^{+}\right\}$) is nondecreasing (nonincreasing), and converges pointwise to a solution of (1.2). Moreover, the respective limits $f^{ \pm}$satisfy: $0 \leq f^{-} \leq f^{+} \leq \beta$.

Proof. Let us first note that $C \geq 0$ (in fact, $C \geq 1$), which implies that both sequences are well defined. Furthermore, from the choice of C, it is immediate that the function $\psi(x)=$ $(1-C) x-2\left(\widetilde{H}^{2}\right)^{\prime}(x)$ is nonincreasing for $0 \leq x \leq\|\beta\|_{\infty}$. By definition,

$$
\left(f_{1}^{+}\right)^{\prime \prime}-C f_{1}^{+}=(1-C) \beta-2\left(\widetilde{H}^{2}\right)^{\prime}(\beta) \geq \beta^{\prime \prime}-C \beta
$$

and using the maximum principle it follows that $f_{1}^{+} \leq \beta$. On the other hand,

$$
\left(f_{1}^{+}\right)^{\prime \prime}-C f_{1}^{+}=\psi(\beta) \leq \psi(0)=0
$$

and as $f_{1}^{+} \geq 0$ on ∂I we deduce that $f_{1}^{+} \geq 0$ over I. Assume as inductive hypothesis that

$$
0 \leq f_{n}^{+} \leq f_{n-1}^{+}
$$

Then

$$
\left(f_{n+1}^{+}\right)^{\prime \prime}-C f_{n+1}^{+}=\psi\left(f_{n}^{+}\right) \geq \psi\left(f_{n-1}^{+}\right)=\left(f_{n}^{+}\right)^{\prime \prime}-C f_{n}^{+}
$$

and

$$
\left(f_{n+1}^{+}\right)^{\prime \prime}-C f_{n+1}^{+}=\psi\left(f_{n}^{+}\right) \leq \psi(0)=0
$$

which implies that $0 \leq f_{n+1}^{+} \leq f_{n}^{+}$. Thus, $\left\{f_{n}^{+}\right\}$is nonincreasing and converges pointwise to a function $f^{+} \geq 0$. By standard apriori estimates, we have that

$$
\left\|f_{n+1}^{+}-\alpha\right\|_{H^{2}} \leq c\left\|\left(f_{n+1}^{+}-\alpha\right)^{\prime \prime}-C\left(f_{n+1}^{+}-\alpha\right)\right\|_{L^{2}}=c\left\|\psi\left(f_{n}^{+}\right)-\alpha\right\|_{L^{2}} \leq M
$$

for some constant M. By compactness, $\left\{f_{n}^{+}\right\}$admits a convergent subsequence in $C^{1}(\bar{I})$, proving that $f^{+} \in C^{1}(\bar{I})$. Furthermore,

$$
\left(f_{n+1}^{+}\right)^{\prime}(x)-\left(f_{n+1}^{+}\right)^{\prime}(0)=\int_{0}^{x} C f_{n+1}^{+}+\psi\left(f_{n}^{+}\right)
$$

and by dominated convergence we conclude that

$$
\left(f^{+}\right)^{\prime}(x)-\left(f^{+}\right)^{\prime}(0)=\int_{0}^{x} C f^{+}+\psi\left(f^{+}\right)=\int_{0}^{x} f^{+}-2\left(\widetilde{H}^{2}\right)^{\prime}\left(f^{+}\right)
$$

Thus, the result follows. The proof is analogous for $\left\{f_{n}^{-}\right\}$.
As a simple consequence we have:
Corollary 3.2. Assume there exists a number $k \geq \alpha_{L}$ such that

$$
\widetilde{H}(k) H(k) \leq \frac{1}{4}
$$

Then $\beta \equiv k$ is an upper solution, and the schemes defined in the previous theorem converge.
Example 3.1. For $H(x)=r x^{n}$, we have that $\widetilde{H}(x)=\frac{r}{n+2} x^{n+2}$, and the conditions of the previous corollary hold for

$$
\alpha_{L} \leq k \leq\left(\frac{n+2}{4 r^{2}}\right)^{\frac{1}{2 n+2}}
$$

However, it is possible to find a sharper bound for α_{L}, if we consider the parabola

$$
\beta(x)=\alpha_{L}\left[1-\left(\frac{x-L}{L}\right)^{2}\right]
$$

Indeed, in this case we have that β is an upper solution if and only if

$$
-\frac{2 \alpha_{L}}{L^{2}}-\beta \leq-\frac{4 r^{2}}{n+2} \beta^{2 n+3}
$$

or equivalently

$$
\phi(\beta) \leq \frac{2 \alpha_{L}}{L^{2}}
$$

for $\phi(x)=x\left(\frac{4 r^{2}}{n+2} x^{2 n+2}-1\right)$. Note that for $0 \leq x \leq \alpha_{L}$ we have:

$$
\phi(x) \leq \max \left\{0, \phi\left(\alpha_{L}\right)\right\} .
$$

Thus, it suffices to assume that

$$
0<\alpha_{L}^{2 n+2} \leq \frac{n+2}{4 r^{2}}\left(1+\frac{2}{L^{2}}\right)
$$

Remark 3.3. In the previous example, equation (1.4) is superlinear, namely:

$$
f^{\prime \prime}+\frac{4 r^{2}}{n+2} f^{2 n+3}-f=0, \quad f(0)=0, \quad f(L)=\alpha_{L}
$$

It can be proved (see e.g. [5]) that this problem admits infinitely many solutions. More precisely, there exists $k_{0} \in \mathbb{N}$ such that for any $j>k_{0}$ the problem has at least two solutions crossing the line $\alpha(t)=\frac{\alpha_{L}}{L} t$ exactly j times in $(0, L)$.

References

[1] P. AMSTER, M.M. CASSINELLI AND M.C. MARIANI, Solutions to general quasilinear elliptic second order problems, Nonlinear Studies, 7(2) (2000), 283-289.
[2] P. AMSTER, M.M. CASSINELLI AND M.C. MARIANI, Solutions to quasilinear equations by an iterative method, Bulletin of the Belgian Math. Society, 7 (2000), 435-441.
[3] P. AMSTER, M.M. CASSINELLI and D.F RIAL, Existence and uniqueness of H-System's solutions with Dirichlet conditions, Nonlinear Analysis, Theory, Methods, and Applications, 42(4) (2000), 673-677.
[4] H. BREZIS and J.M. CORON, Multiple solutions of H systems and Rellich's conjecture, Comm. Pure Appl. Math., 37 (1984), 149-187.
[5] A. CAPPIETO, J. MAWHIN AND F. ZANOLIN, Boundary value problems for forced superlinear second order ordinary differential equations, Séminaire du Collége de France.
[6] D. GILBARG and N.S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Springer-Verlag (1983).
[7] S. HILDEBRANDT, On the Plateau problem for surfaces of constant mean curvature, Comm. Pure Appl. Math., 23 (1970), 97-114.
[8] M. STRUWE, Plateau's Problem and the Calculus of Variations, Lecture Notes, Princeton Univ. Press (1988).
[9] GUOFANG WANG, The Dirichlet problem for the equation of prescribed mean curvature, Analyse Nonlinéaire, 9 (1992), 643-655.

[^0]: ISSN (electronic): 1443-5756
 (c) 2005 Victoria University. All rights reserved.

 243-04

