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Numerical series, equiconvergence.

An additional theorem is proved pertaining to the equiconvergence of numerical
series.
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1. Introduction

In the papers?], [3] and [4] we have studied the relations of the following sums:

Sy = i e i,
n=1

Sy 1= i)\n i cZ) q , Sy = i/\n (an - )\k> o ,

n=1 k=n n=1 k=1 ’
5= (> cg> N 5=3"n, <u;1 3 Ak) o

n=1 k=1 n=1 k=n

0o Un41—1 % o Y ﬁ
S4::Z)\n Z CZ) , SZ:_Z)\H( n) 7

n=1 k=vp

where0 < p < ¢, A := {\,} andc := {¢,} are sequences of nonnegative num-
bers,v := {v,,} is a subsequence of natural numbers, ang- {x,,} is a certain
nondecreasing sequence of positive numbers.

In [2] we verified thatS; < oo if and only if there exists a: satisfying the
conditionsS; < oo andS; < oo. Similarly S; < oo if and only if S; < oo and
S5 < 00.

In [3] we showed thab, < oo if and only if there exists @& such thatS; < oo
andS; < oc.

Recently, in fi], we proved that if

oo 1/q n
Hn 1= A;l) Cg—q7 where Cn — (Z cZ) and A7(11) = Z )\lm
k=n, k=1
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then the sums, S, andS; are already equiconvergent.
Furthermore if

n

1/q fe'e)
[ = AP CP=1 where C, := (Z cZ) and AP =) "\
k=n

k=1

then the sums);, S; andS; are equiconvergent.

Comparing the results proved id][and that of P] and [3], we can observe that
in the former one the explicit sequencgs,} are determined, herewith they state
more than the outcomes df][and [3], where only the existence of a sequeRge }
is proved.

Furthermore, in4] the equiconvergence of these concrete sums are guaranteed,
too.

However the equiconvergence il s proved only in connection with the sums
S, andSs, but not forS,. This is a gap or shortcoming at these investigations.

The aim of this note is closing this gap. Unfortunately we cannot give a complete
solution, namely our result to be verified requires an additional assumption on the
sequence\. In particular,\ should be quasi geometrically increasing, that is, we
assume that there exist a natural numbeand X' > 1 such that\,, .y > 2\, and
A, < K)\,41 hold for all n.

Then we can give an explicit sequenegesuch that the sums,, S, and S} are
already equiconvergent. We also show that without some additional requirement on
A the equiconvergence does not hold. See the last part. Thus the following open
problem can be raised/hat is the weakest additional assumption on sequence
which ensures the equiconvergence of these 8ums
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2. Result

Theorem 2.1.1f 0 < p < ¢, ¢ := {¢,} is a sequence of nonnegative numbers;
{vm} is a subsequence of natural numbers, and- {),} is a quasi geometrically
increasing sequence, and foy, < n < v,,41

p_
o0 q 1

q Equivalence of Coefficient
[T A E C, , m=0,1,..., Conditions

k=vm L. Leindler

then the sums;, S, and S¥ are equiconvergent. vol. 9, iss. 3, art. 83, 2008
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3. Lemma

In order to verify our theorem, first we shall prove a lemma regarding the equicon-

vergence of two special series.

Lemma3.1.Let0 < a < 1, a := {a,} be a sequence of nonnegative numbers;
{v.,} be a subsequence of natural numbers, ané¢ {«,,} be a quasi geometrically
increasing sequence. Furthermore }gt := > "7, a,, and forv,, <n < v, let

iy 2= ffmAfj:l, m=20,1,....

Then
(3.1) o1 = ian o < OO
n=1
holds if and only if
(3.2) 09 = i Km Aj, < 00.
m=1

Proof of Lemmas.1. Before starting the proofs we note that the following inequality

m

(3.3) Z/ﬂn < K Ky,

n=1

holds for allm, subsequent to the fact thatis a quasi geometrically increasing
sequence (see e.gl,[Lemma 1]). Here and later o denotes a constant that is
independent of the parameters.
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Furthermore we verify a useful inequality.df< a < b, 0 < o < 1 and

b — g
(3.4) L gt
b—a

then
€> a7y = &,

namely ifa = 0 then¢ = &,. Hence we get that
(3.5 aft <prh
Now we show that¥.1) implies (3.2). SinceA,, \, 0, thus, by §8.3),

0
@
> fm AL, Z fim Z
m=1
AQ @
( Un Aun_,_l) Z Rm

/{n

I
M8i

3
Il

7

(3.6)

IN

K

l/n+1)

n=1

Using the relations3 4) and (.5 we obtain that

Vnt1—1 Vnt1—1
A —AS = ( > ak> gl < ( > ak> At

k=vy k=v,

This and 8.6) yield that

Vnt1—1 oo VUn41—1

Z/ion‘ <KZ/<nA°‘ ! Z ay = KZ Z ay fig-

k=vp n=1 k=v,
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Herewith the implication¥.1) = (3.2) is proved.
The proof of 8.2) = (3.1) is very easy. Namely

o) o0 Vm+41—

> tnpn =) Z QA fon
n=uviq m=1 n=vm
) Um+1—1
= Zlim A ! Z G
= n=vm

IN

S

thatis, 3.2) = (3.1) is verified.
Thus the proof is complete.
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4. Proof of Theorem?2.1

We shall use the result of Lemnial with o = §, a, = ¢ andk,, = \,. Then
A, =7, chandfory, <n < v,

pP—aq

00 a
— — § q
(41) Hn = Hy,, = )\m Cr . Equivalence of Coefficient
k=vy, Conditions
L. Leindler

Theno, = 5y, thus by Lemmas. 1, S; < oo implies thato, < oo, that is, . G e o 5 AT

2
q

00 Um+1—1 g 00 00
(4-2) Sy = Z Am ( Z %) < Z Am (Z CZ) = 03. Title Page
m=1 m=1

N=vpm n=vm

Contents
Moreover, by {.1),
y 4 ) 44 144
o o i~k ﬁ o0 (o @] L
q q 4 | 3
Sr = A ! = A Al =o9
4 Z " (Z b Z " Z k ’ Page 9 of 12
n=1 k=vn n=1 k=vn
Go Back

thusS; < oo implies that bothS, < co andS; < oo hold.
Conversely, ifS; < oo, then it suffices to show that, = S} < oo also holds. Full Screen
Applying the inequality

Close

(Z ak) = Z g, O<as<l a 20, journal of inequalities

in pure and applied
mathematics
issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:leindler@math.u-szeged.hu
http://jipam.vu.edu.au

and (3.9), we obtain that

o0 oo 0o Vny1—1 q
02 = AmAVIY A > ( > cZ)
m=1 m=1 n=m k=vp
0o Vnt+1—1 % n
L2 9) 2
n=1 \ k=uvy m=1
00 Un4+1—1 q
< KZ)\n ( Z cZ)
n=1 k=vn,
= KS4 < Q.

This, (4.2) and, by Lemma3.1, the implicationo, < o0 = 01 = 51 < ®©
complete the proof of Theoref L

Proof of the necessity of some additional assumption.ooetp =1, g =2, A\, =
logn, v, =nand

. m=3 if n=2m

"0 otherwise.

Then

oo

S, = Z log 2™ <~

m3

m=2
but.S; < oo andS; < oo cannot be fulfilled simultaneously. Namely, then with a
nondecreasing sequenge, } the conditions

[oe)
S| = Zm_6l,b2m < 00
m=1
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and

yield a trivial contradiction. O
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