ON EQUIVALENCE OF COEFFICIENT CONDITIONS. II

L. LEINDLER
Bolyai Institute
University of Szeged
ARADI VÉrtanúk tere 1
H-6720 Szeged, Hungary
leindler@math.u-szeged.hu

Received 28 August, 2008; accepted 16 September, 2008
Communicated by H. Bor

AbSTRACT. An additional theorem is proved pertaining to the equiconvergence of numerical series.

Key words and phrases: Numerical series, equiconvergence.
2000 Mathematics Subject Classification. 26D15, 40D15.

1. Introduction

In the papers [2], [3] and [4] we have studied the relations of the following sums:

$$
S_{1}:=\sum_{n=1}^{\infty} c_{n}^{q} \mu_{n}
$$

$$
\begin{array}{ll}
S_{2}:=\sum_{n=1}^{\infty} \lambda_{n}\left(\sum_{k=n}^{\infty} c_{k}^{q}\right)^{\frac{p}{q}}, & S_{2}^{*}:=\sum_{n=1}^{\infty} \lambda_{n}\left(\mu_{n}^{-1} \sum_{k=1}^{n} \lambda_{k}\right)^{\frac{p}{q-p}}, \\
S_{3}:=\sum_{n=1}^{\infty} \lambda_{n}\left(\sum_{k=1}^{n} c_{k}^{q}\right)^{\frac{p}{q}}, & S_{3}^{*}:=\sum_{n=1}^{\infty} \lambda_{n}\left(\mu_{n}^{-1} \sum_{k=n}^{\infty} \lambda_{k}\right)^{\frac{p}{q-p}}, \\
S_{4}:=\sum_{n=1}^{\infty} \lambda_{n}\left(\sum_{k=\nu_{n}}^{\nu_{n+1}-1} c_{k}^{q}\right)^{\frac{p}{q}}, & S_{4}^{*}:=\sum_{n=1}^{\infty} \lambda_{n}\left(\frac{\lambda_{n}}{\mu_{\nu_{n}}}\right)^{\frac{p}{q-p}},
\end{array}
$$

where $0<p<q, \lambda:=\left\{\lambda_{n}\right\}$ and $\mathbf{c}:=\left\{c_{n}\right\}$ are sequences of nonnegative numbers, $\nu:=\left\{\nu_{m}\right\}$ is a subsequence of natural numbers, and $\mu:=\left\{\mu_{n}\right\}$ is a certain nondecreasing sequence of positive numbers.

In [2] we verified that $S_{2}<\infty$ if and only if there exists a μ satisfying the conditions $S_{1}<\infty$ and $S_{2}^{*}<\infty$. Similarly $S_{3}<\infty$ if and only if $S_{1}<\infty$ and $S_{3}^{*}<\infty$.
In [3] we showed that $S_{4}<\infty$ if and only if there exists a μ such that $S_{1}<\infty$ and $S_{4}^{*}<\infty$.

Recently, in [4], we proved that if

$$
\mu_{n}:=\Lambda_{n}^{(1)} C_{n}^{p-q}, \quad \text { where } \quad C_{n}:=\left(\sum_{k=n}^{\infty} c_{k}^{q}\right)^{1 / q} \quad \text { and } \quad \Lambda_{n}^{(1)}:=\sum_{k=1}^{n} \lambda_{k},
$$

then the sums S_{1}, S_{2} and S_{2}^{*} are already equiconvergent.
Furthermore if

$$
\mu_{n}:=\Lambda_{n}^{(2)} \tilde{C}_{n}^{p-q}, \quad \text { where } \quad \tilde{C}_{n}:=\left(\sum_{k=1}^{n} c_{k}^{q}\right)^{1 / q} \quad \text { and } \quad \Lambda_{n}^{(2)}:=\sum_{k=n}^{\infty} \lambda_{k},
$$

then the sums S_{1}, S_{3} and S_{3}^{*} are equiconvergent.
Comparing the results proved in [4] and that of [2] and [3], we can observe that in the former one the explicit sequences $\left\{\mu_{n}\right\}$ are determined, herewith they state more than the outcomes of [2] and [3], where only the existence of a sequence $\left\{\mu_{n}\right\}$ is proved.

Furthermore, in [4] the equiconvergence of these concrete sums are guaranteed, too.
However the equiconvergence in [4] is proved only in connection with the sums S_{2} and S_{3}, but not for S_{4}. This is a gap or shortcoming at these investigations.

The aim of this note is closing this gap. Unfortunately we cannot give a complete solution, namely our result to be verified requires an additional assumption on the sequence λ. In particular, λ should be quasi geometrically increasing, that is, we assume that there exist a natural number N and $K \geq 1$ such that $\lambda_{n+N} \geq 2 \lambda_{n}$ and $\lambda_{n} \leq K \lambda_{n+1}$ hold for all n.

Then we can give an explicit sequence μ such that the sums S_{1}, S_{4} and S_{4}^{*} are already equiconvergent. We also show that without some additional requirement on λ the equiconvergence does not hold. See the last part. Thus the following open problem can be raised: What is the weakest additional assumption on sequence λ which ensures the equiconvergence of these sums?

2. Result

Theorem 2.1. If $0<p<q, \mathbf{c}:=\left\{c_{n}\right\}$ is a sequence of nonnegative numbers, $\nu:=\left\{\nu_{m}\right\}$ is a subsequence of natural numbers, and $\lambda:=\left\{\lambda_{n}\right\}$ is a quasi geometrically increasing sequence, and for $\nu_{m} \leq n<\nu_{m+1}$

$$
\mu_{n}:=\lambda_{m}\left(\sum_{k=\nu_{m}}^{\infty} c_{k}^{q}\right)^{\frac{p}{q}-1}, \quad m=0,1, \ldots
$$

then the sums S_{1}, S_{4} and S_{4}^{*} are equiconvergent.

3. Lemma

In order to verify our theorem, first we shall prove a lemma regarding the equiconvergence of two special series.

Lemma 3.1. Let $0<\alpha<1$, a $:=\left\{a_{n}\right\}$ be a sequence of nonnegative numbers, $\nu:=\left\{\nu_{m}\right\}$ be a subsequence of natural numbers, and $\kappa:=\left\{\kappa_{m}\right\}$ be a quasi geometrically increasing sequence. Furthermore let $A_{k}:=\sum_{n=k}^{\infty} a_{n}$, and for $\nu_{m} \leq n<\nu_{m+1}$ let

$$
\mu_{n}:=\kappa_{m} A_{\nu_{m}}^{\alpha-1}, \quad m=0,1, \ldots
$$

Then

$$
\begin{equation*}
\sigma_{1}:=\sum_{n=1}^{\infty} a_{n} \mu_{n}<\infty \tag{3.1}
\end{equation*}
$$

holds if and only if

$$
\begin{equation*}
\sigma_{2}:=\sum_{m=1}^{\infty} \kappa_{m} A_{\nu_{m}}^{\alpha}<\infty . \tag{3.2}
\end{equation*}
$$

Proof of Lemma 3.1. Before starting the proofs we note that the following inequality

$$
\begin{equation*}
\sum_{n=1}^{m} \kappa_{n} \leq K \kappa_{m} \tag{3.3}
\end{equation*}
$$

holds for all m, subsequent to the fact that κ is a quasi geometrically increasing sequence (see e.g. [1, Lemma 1]). Here and later on K denotes a constant that is independent of the parameters.

Furthermore we verify a useful inequality. If $0 \leq a<b, 0<\alpha<1$ and

$$
\begin{equation*}
\frac{b^{\alpha}-a^{\alpha}}{b-a}=\alpha \xi^{\alpha-1} \tag{3.4}
\end{equation*}
$$

then

$$
\xi \geq \alpha^{1 /(1-\alpha)} b=: \xi_{0}
$$

namely if $a=0$ then $\xi=\xi_{0}$. Hence we get that

$$
\begin{equation*}
\alpha \xi^{\alpha-1} \leq b^{\alpha-1} \tag{3.5}
\end{equation*}
$$

Now we show that (3.1) implies (3.2). Since $A_{n} \searrow 0$, thus, by (3.3),

$$
\begin{aligned}
\sum_{m=1}^{\infty} \kappa_{m} A_{\nu_{m}}^{\alpha} & =\sum_{m=1}^{\infty} \kappa_{m} \sum_{n=m}^{\infty}\left(A_{\nu_{n}}^{\alpha}-A_{\nu_{n+1}}^{\alpha}\right) \\
& =\sum_{n=1}^{\infty}\left(A_{\nu_{n}}^{\alpha}-A_{\nu_{n+1}}^{\alpha}\right) \sum_{m=1}^{n} \kappa_{m} \\
& \leq K \sum_{n=1}^{\infty} \kappa_{n}\left(A_{\nu_{n}}^{\alpha}-A_{\nu_{n+1}}^{\alpha}\right) .
\end{aligned}
$$

Using the relations (3.4) and (3.5) we obtain that

$$
A_{\nu_{n}}^{\alpha}-A_{\nu_{n+1}}^{\alpha}=\left(\sum_{k=\nu_{n}}^{\nu_{n+1}-1} a_{k}\right) \alpha \xi^{\alpha-1} \leq\left(\sum_{k=\nu_{n}}^{\nu_{n+1}-1} a_{k}\right) A_{\nu_{n}}^{\alpha-1} .
$$

This and (3.6) yield that

$$
\sum_{m=1}^{\infty} \kappa_{m} A_{\nu_{m}}^{\alpha} \leq K \sum_{n=1}^{\infty} \kappa_{n} A_{\nu_{n}}^{\alpha-1} \sum_{k=\nu_{n}}^{\nu_{n+1}-1} a_{k}=K \sum_{n=1}^{\infty} \sum_{k=\nu_{n}}^{\nu_{n+1}-1} a_{k} \mu_{k} .
$$

Herewith the implication $(3.1) \Rightarrow(3.2)$ is proved.
The proof of $3.2 \Rightarrow 3.1$ is very easy. Namely

$$
\begin{aligned}
\sum_{n=\nu_{1}}^{\infty} a_{n} \mu_{n} & =\sum_{m=1}^{\infty} \sum_{n=\nu_{m}}^{\nu_{m+1}-1} a_{n} \mu_{n} \\
& =\sum_{m=1}^{\infty} \kappa_{m} A_{\nu_{m}}^{\alpha-1} \sum_{n=\nu_{m}}^{\nu_{m+1}-1} a_{n} \\
& \leq \sum_{m=1}^{\infty} \kappa_{m} A_{\nu_{m}}^{\alpha}
\end{aligned}
$$

that is, $(3.2) \Rightarrow 3.1$ is verified.
Thus the proof is complete.

4. Proof of Theorem 2.1

We shall use the result of Lemma 3.1 with $\alpha=\frac{p}{q}, a_{n}=c_{n}^{q}$ and $\kappa_{m}=\lambda_{m}$. Then $A_{n}=$ $\sum_{k=n}^{\infty} c_{k}^{q}$ and for $\nu_{m} \leq n<\nu_{m+1}$

$$
\begin{equation*}
\mu_{n}=\mu_{\nu_{m}}=\lambda_{m}\left(\sum_{k=\nu_{m}}^{\infty} c_{k}^{q}\right)^{\frac{p-q}{q}} \tag{4.1}
\end{equation*}
$$

Then $\sigma_{1}=S_{1}$, thus by Lemma 3.1, $S_{1}<\infty$ implies that $\sigma_{2}<\infty$, that is,

$$
\begin{equation*}
S_{4}=\sum_{m=1}^{\infty} \lambda_{m}\left(\sum_{n=\nu_{m}}^{\nu_{m+1}-1} c_{n}^{q}\right)^{\frac{p}{q}} \leq \sum_{m=1}^{\infty} \lambda_{m}\left(\sum_{n=\nu_{m}}^{\infty} c_{n}^{q}\right)^{\frac{p}{q}}=\sigma_{2} \tag{4.2}
\end{equation*}
$$

Moreover, by (4.1),

$$
S_{4}^{*}=\sum_{n=1}^{\infty} \lambda_{n}\left\{\left(\sum_{k=\nu_{n}}^{\infty} c_{k}^{q}\right)^{\frac{q-p}{q}}\right\}^{\frac{p}{q-p}}=\sum_{n=1}^{\infty} \lambda_{n}\left(\sum_{k=\nu_{n}}^{\infty} c_{k}^{q}\right)^{\frac{p}{q}}=\sigma_{2},
$$

thus $S_{1}<\infty$ implies that both $S_{4}<\infty$ and $S_{4}^{*}<\infty$ hold.
Conversely, if $S_{4}<\infty$, then it suffices to show that $\sigma_{2}=S_{4}^{*}<\infty$ also holds.
Applying the inequality

$$
\left(\sum a_{k}\right)^{\alpha} \leq \sum a_{k}^{\alpha}, \quad 0<\alpha \leq 1, a_{k} \geq 0
$$

and (3.3), we obtain that

$$
\begin{aligned}
\sigma_{2} & =\sum_{m=1}^{\infty} \lambda_{m} A_{\nu_{m}}^{p / q} \leq \sum_{m=1}^{\infty} \lambda_{m} \sum_{n=m}^{\infty}\left(\sum_{k=\nu_{n}}^{\nu_{n+1}-1} c_{k}^{q}\right)^{\frac{p}{q}} \\
& =\sum_{n=1}^{\infty}\left(\sum_{k=\nu_{n}}^{\nu_{n+1}-1} c_{k}^{q}\right)^{\frac{p}{q}} \sum_{m=1}^{n} \lambda_{m} \\
& \leq K \sum_{n=1}^{\infty} \lambda_{n}\left(\sum_{k=\nu_{n}}^{\nu_{n+1}-1} c_{k}^{q}\right)^{\frac{p}{q}} \\
& =K S_{4}<\infty .
\end{aligned}
$$

This, (4.2) and, by Lemma 3.1, the implication $\sigma_{2}<\infty \Rightarrow \sigma_{1}=S_{1}<\infty$ complete the proof of Theorem 2.1.

Proof of the necessity of some additional assumption on λ. Let $p=1, q=2, \lambda_{n}=\log n, \nu_{n}=$ n and

$$
c_{n}:=\begin{array}{ll}
m^{-3} & \text { if } n=2^{m} \\
0 & \text { otherwise }
\end{array}
$$

Then

$$
S_{4}=\sum_{m=2}^{\infty} \frac{\log 2^{m}}{m^{3}}<\infty
$$

but $S_{1}<\infty$ and $S_{4}^{*}<\infty$ cannot be fulfilled simultaneously. Namely, then with a nondecreasing sequence $\left\{\mu_{n}\right\}$ the conditions

$$
S_{1}=\sum_{m=1}^{\infty} m^{-6} \mu_{2^{m}}<\infty
$$

and

$$
S_{4}^{*}=\sum_{m=2}^{\infty} \frac{\log ^{2} m}{\mu_{m}}<\infty
$$

yield a trivial contradiction.

References

[1] L. LEINDLER, On equivalence of coefficient conditions with applications, Acta Sci. Math. (Szeged), 60 (1995), 495-514.
[2] L. LEINDLER, On equivalence of coefficient conditions and application, Math. Inequal. Appl. (Zagreb), $\mathbf{1}$ (1998), 41-51.
[3] L. LEINDLER, On a new equivalence of coefficient conditions and applications, Math. Inequal. Appl., 10(2) (1999), 195-202.
[4] L. LEINDLER, On equivalence of coefficient conditions, J. Inequal. Pure and Appl. Math., 8(1) (2007), Art. 8. [ONLINE: http://jipam.vu.edu.au/article.php?sid=821].

