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ABSTRACT. LetH be the class of functionsf(z) of the formf(z) = z +
∑∞

n=2 anzn, which
are analytic in the unit diskU = {z : |z| < 1}. In this paper, the authors introduce a sub-
classM (α, λ, ρ) of H and study its some properties. The subordination relationships, inclusion
relationships, coefficient estimates, the integral operator and covering theorem are proven here
for each of the function classes. Furthermore, some interesting Fekete-Szegö inequalities are
obtained. Some of the results, presented in this paper, generalize the corresponding results of
earlier authors.
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1. I NTRODUCTION

LetH denote the class of functionsf of the form

(1.1) f(z) = z +
∞∑

n=2

anz
n,

which are analytic in the open unit diskU = {z : |z| < 1}, and letS denote the class of all
functions inH which are univalent in the diskU . Suppose also thatS∗,K andα−K denote the
familiar subclasses ofH consisting of functions which are, respectively, starlike inU , convex
in U andα− convex inU . Thus we have

S∗ =

{
f : f ∈ H andR

{
zf ′(z)

f(z)

}
> 0, z ∈ U

}
,

K =

{
f : f ∈ H andR

{
1 +

zf ′′(z)

f ′(z)

}
> 0, z ∈ U

}
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and

α−K =

{
f : f ∈ H andR

{
α

[
1 +

zf ′′(z)

f ′(z)

]
+ (1− α)

zf ′(z)

f(z)

}
> 0, z ∈ U

}
.

Let f(z) andF (z) be analytic inU . Then we say that the functionf(z) is subordinate toF (z)
in U , if there exists an analytic functionω(z) in U such that|ω(z)| ≤ |z| andf(z) = F (ω(z)),
denotedf ≺ F or f(z) ≺ F (z). If F (z) is univalent inU , then the subordination is equivalent
to f(0) = F (0) andf(U) ⊂ F (U) (see [18]).

Assuming thatα > 0, λ ≥ 0, ρ < 1, a functionp(z) = 1 + p1z + p2z
2 + · · · is said to be in

the classPρ if and only if p(z) is analytic in the unit diskU andRp(z) > ρ, z ∈ U . A function
f(z) ∈ H is said to be in the classB(λ, α, ρ) if and only if it satisfies

(1.2) R(1− λ)

[(
f(z)

z

)α

+ λ
zf

′
(z)

f(z)

(
f(z)

z

)α]
> ρ, z ∈ U ,

where we choose the branch of the power
(

f(z)
z

)α

such that
(

f(z)
z

)α∣∣∣
z=0

= 1. It is obvious that

the subclassB(1, α, 0) is the subclass of Bazilevič functions, which is the subclass of univalent
functionsS, we setB(α, ρ) ≡ B(1, α, ρ). The function classB(λ, α, ρ) was introduced and
studied by Liu [10]. Some special cases of the function classB(λ, α, ρ) had been studied by
Bazilevǐc [1], Chichra [2], Ding, Ling and Bao [3], Liu [9] and Singh [19], respectively.

Liu [11] introduced the following classB(λ, α, A,B, g(z)) of analytic functions, and studied
its some properties.

B(λ, α, A,B, g(z))

=

{
f ∈ H :

(
1− λ

zg′(z)

g(z)

) (
f(z)

g(z)

)α

+ λ
zf

′
(z)

f(z)

(
f(z)

g(z)

)α

≺ 1 + Az

1 + Bz

}
,

whereα > 0, λ ≥ 0,−1 ≤ B < A ≤ 1, g(z) ∈ S∗.
Fekete and Szegö [4] showed that forf ∈ S given by (1.1),

|a3 − µa2
2| ≤


3− 4u, if µ ≤ 0,

1 + 2e−2/(1−µ), if 0 ≤ µ < 1,

4− 3µ, if µ ≥ 1.

As a result, many authors studied similar problems for some subclasses ofH or S (see [6, 7,
8, 13, 14, 15, 20]), which is popularly referred to as the Fekete-Szegö inequality or the Fekete-
Szegö problem. Li and Liu [12] obtained the Fekete-Szegö inequality for the function class
B(λ, α, ρ).

Recently, Patel [17] introduced the following subclassMp(λ, µ, A,B) of p−valent Bazilevǐc
functions, and studied some of its properties.

An analytic functionf(z) = zp +
∑∞

n=p+1 anz
n is said to be in the classMp(λ, µ, A,B) if

and only if there exists ap−valent starlike functiong(z) = zp +
∑∞

n=p+1 bnz
n such that

zf ′(z)

f(z)

(
f(z)

g(z)

)µ

+ λ

[
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
+ µ

(
zf ′(z)

f(z)
− zg′(z)

g(z)

)]
≺ p

1 + Az

1 + Bz
,

whereµ ≥ 0, λ > 0,−1 ≤ B < A ≤ 1.
In the present paper, we introduce the following subclass of analytic functions, and obtain

some interesting results.
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Definition 1.1. Assume thatα ≥ 0, λ ≥ 0, 0 ≤ ρ < 1, f ∈ H. We say thatf(z) ∈ M (α, λ, ρ)
if and only if f(z) satisfies the following inequality:

R
{

zf ′(z)

f(z)

(
f(z)

z

)α

+ λ

[
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
+ α

(
zf ′(z)

f(z)
− 1

)]}
> ρ, z ∈ U .

It is evident thatM (α, 0, ρ) = B(α, ρ)(α ≥ 0) andM (0, α, 0) = α−K(α ≥ 0).

2. PRELIMINARIES

To derive our main results, we shall require the following lemmas.

Lemma 2.1([16]). If −1 ≤ B < A ≤ 1, β > 0 and the complex numberγ satisfiesR(λ) ≥
−β(1−A)

1−B
, then the differential equation

q(z) +
zq′(z)

βq(z) + γ
=

1 + Az

1 + Bz
, z ∈ U ,

has a univalent solution inU given by

(2.1) q(z) =


zβ+γ(1 + Bz)β(A−B)/B

β
∫ z

0
tβ+γ−1(1 + Bt)β(A−B)/Bdt

− γ
β
, B 6= 0,

zβ+γ exp(βAz)

β
∫ z

0
tβ+γ−1 exp(βAt)dt

− γ
β
, B = 0.

If φ(z) = 1 + c1z + c2z
2 + · · · is analytic inU and satisfies

(2.2) φ(z) +
zφ′(z)

βφ(z) + γ
≺ 1 + Az

1 + Bz
, (z ∈ U),

then

φ(z) ≺ q(z) ≺ 1 + Az

1 + Bz
, (z ∈ U),

andq(z) is the best dominant of (2.2).

Lemma 2.2([11]). Suppose thatF (z) is analytic and convex inU , and0 ≤ λ ≤ 1, f(z) ∈ H,
g(z) ∈ H. If f(z) ≺ F (z) andg(z) ≺ F (z). Then

λf(z) + (1− λ)g(z) ≺ F (z).

Lemma 2.3([18]). Letp(z) = 1 +
∑∞

n=1 pnz
n ∈ P0. Then∣∣∣∣p2 −

1

2
p2

1

∣∣∣∣ ≤ 2− 1

2
|p2

1|

and|pn| ≤ 2 for all n ∈ N+.

Lemma 2.4([1]). Letα ≥ 0, f ∈ H and for|z| < R ≤ 1,

R
[
zf ′(z)

f(z)

(
f(z)

z

)α]
> 0,

thenf(z) is univalent in|z| < R.
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3. M AIN RESULTS AND THEIR PROOFS

Theorem 3.1.Letα ≥ 0 andλ > 0. If f(z) ∈ M (α, λ, ρ). Then

(3.1)
zf ′(z)

f(z)

(
f(z)

z

)α

≺ q(z) ≺ 1 + (1− 2ρ)z

1− z
, (z ∈ U),

where

q(z) =
λz1/λ(1− z)−2(1−ρ)/λ∫ z

0
t(1−λ)/λ(1− t)−2(1−ρ)/λdt

,

andq(z) is the best dominant of (3.1).

Proof. By applying the method of the proof of Theorem 3.1 in [17] mutatis mutandis, we can
prove this theorem. �

With the aid of Lemma 2.4, from Theorem 3.1, we have the following inclusion relation.

Corollary 3.2. Letα ≥ 0, 0 ≤ ρ < 1 andλ ≥ 0, then

M (α, λ, ρ) ⊂ M (α, 0, ρ) ⊂ M (α, 0, 0) ⊂ S.

Theorem 3.3.Letα ≥ 0 andλ2 > λ1 ≥ 0, 1 > ρ2 ≥ ρ1 ≥ 0, then

M (α, λ2, ρ2) ⊂ M (α, λ1, ρ1).

Proof. Suppose thatf(z) ∈ M (α, λ2, ρ2). Then, by the definition ofM (α, λ2, ρ2), we have

(3.2) R
{

zf ′(z)

f(z)

(
f(z)

z

)α

+ λ2

[
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
+ α

(
zf ′(z)

f(z)
− 1

)]}
> ρ2 (z ∈ U).

Sinceα ≥ 0 andλ2 > λ1 ≥ 0, by Theorem 3.1, we obtain

(3.3) R
{

zf ′(z)

f(z)

(
f(z)

z

)α}
> ρ2 (z ∈ U).

Settingλ = λ1

λ2
, so that0 ≤ λ < 1, we find from (3.2) and (3.3) that

R
{

zf ′(z)

f(z)

(
f(z)

z

)α

+ λ1

[
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
+ α

(
zf ′(z)

f(z)
− 1

)]}
= λR

{
zf ′(z)

f(z)

(
f(z)

z

)α

+ λ2[1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
+ α

(
zf ′(z)

f(z)
− 1

)}
+ (1− λ)Rzf ′(z)

f(z)

(
f(z)

z

)α

> ρ2 ≥ ρ1 (z ∈ U),

that is,f(z) ∈ M (α, λ1, ρ1). Hence, we haveM (α, λ2, ρ2) ⊂ M (α, λ1, ρ1), and the proof of
Theorem 3.3 is complete. �

Remark 3.4. Theorem 3.3 obviously provides a refinement of Corollary 3.2. Settingα =
0, ρ2 = ρ1 = 0 in Theorem 3.3, we get Theorem 9.4 of [5].

With the aid of Lemma 2.2, by using the method of our proof of Theorem 3.3, we can prove
the following inclusion relation.

Theorem 3.5.Letµ ≥ 0, −1 ≤ B < A ≤ 1 andλ2 > λ1 ≥ 0, then

Mp(λ2, µ, A, B) ⊂Mp(λ1, µ, A, B).
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By applying the method of the proof of Theorem 3.13, Theorem 3.6 and Theorem 3.11 in
[17] mutatis mutandis, we can prove the following three results.

Theorem 3.6.Letα ≥ 0, λ > 0 andγ > 0. If f(z) ∈ H satisfies

γ

[
zf ′(z)

f(z)

(
f(z)

z

)α]
+ λ

[
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
+ α

(
zf ′(z)

f(z)
− 1

)]
6= it, (z ∈ U),

wheret is a real number satisfying|t| >
√

λ(λ + 2γ), then

R
{

zf ′(z)

f(z)

(
f(z)

z

)α}
> 0, (z ∈ U).

Theorem 3.7.Suppose thatα > 0 and0 ≤ ρ < 1. If f(z) ∈ H satisfies

Re

{
zf ′(z)

f(z)

(
f(z)

z

)α}
> ρ, (z ∈ U),

thenf(z) ∈ M (α, λ, ρ) for |z| < R(λ, ρ), whereλ > 0, and

R(λ, ρ) =


(1+λ−ρ)−

√
(1+λ−ρ)2−(1−2ρ)

1−2ρ
, ρ 6= 1

2
,

1
1+2λ

, ρ = 1
2
.

The boundR(λ, ρ) is the best possible.

For a functionf ∈ H, we define the integral operatorFα,δ as follows:

(3.4) Fα,δ(f) = Fα,δ(f)(z) =

(
α + δ

zδ

∫ z

0

tδ−1f(t)αdt

) 1
α

(z ∈ U),

whereα andδ are real numbers withα > 0, δ > −α.

Theorem 3.8. Let α andδ be real numbers withα > 0, 0 ≤ ρ < 1, δ > max{−α,−αρ} and
let f(z) ∈ H. If∣∣∣∣arg

[
zf ′(z)

f(z)

(
f(z)

z

)α

− ρ

]∣∣∣∣ ≤ π

2
β (0 ≤ ρ < 1; 0 < β ≤ 1),

then ∣∣∣∣arg

[
zF ′

α,δ(f)

Fα,δ(f)

(
Fα,δ(f)

z

)α

− ρ

]∣∣∣∣ ≤ π

2
β,

whereFα,δ(f) is the operator given by (3.4).

Now we derive the Fekete-Szegö inequality for the function classM (α, λ, ρ).

Theorem 3.9.Suppose thatf(z) = z +
∑∞

n=2 anz
n ∈ M (α, λ, ρ). Then

|a2| ≤
2(1− ρ)

(1 + λ)(1 + α)
,

and for eachµ ∈ C, the following bound is sharp

|a3 − µa2
2| ≤

2(1− ρ)

(1 + 2λ)(2 + α)

×max

{
1,

∣∣∣∣1 +
(1− ρ)[2λ(3 + α)− (2 + α)(α− 1 + 2µ + 4µλ)]

(1 + λ)2(1 + α)2

∣∣∣∣} .
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Proof. Sincef(z) ∈ M (α, λ, ρ), by Definition 1.1, there exists a functionp(z) = 1+
∑+∞

k=1 pkz
k ∈

P0, such that

zf ′(z)

f(z)

(
f(z)

z

)α

+ λ

[
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
+ α

(
zf ′(z)

f(z)
− 1

)]
= (1− ρ)p(z) + ρ, z ∈ U .

Equating coefficients, we obtain

a2 =
1− ρ

(1 + λ)(1 + α)
p1,

a3 =
1− ρ

(1 + 2λ)(2 + α)
p2 +

(1− ρ)2
[
λ(3 + α)− (α+2)(α−1)

2

]
(1 + λ)2(1 + α)2(1 + 2λ)(2 + α)

p2
1.

Thus, we have

a3 − µa2
2 =

1− ρ

(1 + 2λ)(2 + α)

(
p2 −

1

2
p2

1

)
+

(1− ρ)2[2λ(3 + α)− (2 + α)(α− 1)− 2µ(1 + 2λ)(2 + α)] + (1− ρ)(1 + λ)2(1 + α)2

2(1 + λ)2(1 + α)2(1 + 2λ)(2 + α)
p2

1.

By Lemma 2.3, we obtain that|a2| = 1−ρ
(1+λ)(1+α)

|p1| ≤ 2(1−ρ)
(1+λ)(1+α)

, and

|a3 − µa2
2| ≤ H(x) = A +

ABx2

4
,

wherex = |p1| ≤ 2,

A =
2(1− ρ)

(1 + 2λ)(2 + α)
, B =

|C| − (1 + λ)2(1 + α)2

(1 + λ)2(1 + α)2
,

and
C = (1 + λ)2(1 + α)2 + (1− ρ)[2λ(3 + α)− (2 + α)(α− 1 + 2µ + 4µλ)].

So, we have

|a3 − µa2
2| ≤

 H(0) = A, |c| ≤ (1 + λ)2(1 + α)2,

H(2) = A|C|
(1+λ)2(1+α)2

, |c| ≥ (1 + λ)2(1 + α)2.

Here equality is attained for the function given by

(3.5)
zf ′(z)

f(z)

(
f(z)

z

)α

=



λz1/λ(1− z2)(ρ−1)/λ∫ z

0
t(1−λ)/λ(1− t2)(ρ−1)/λdt

, λ > 0, |c| ≤ (1 + λ)2(1 + α)2,

1 + (1− 2ρ)z2

1− z2
, λ = 0, |c| ≤ (1 + λ)2(1 + α)2

λz1/λ(1− z)2(ρ−1)/λ∫ z

0
t(1−λ)/λ(1− t)2(ρ−1)/λdt

, λ > 0, |c| ≥ (1 + λ)2(1 + α)2,

1 + (1− 2ρ)z

1− z
, λ = 0, |c| ≥ (1 + λ)2(1 + α)2.

�
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Settingλ = 0 in Theorem 3.9, we have the following corollary.

Corollary 3.10. If f(z) ∈ B(α, ρ) given by (1.1), then

|a2| ≤
2(1− ρ)

1 + α
,

and for eachµ ∈ C, the following bound is sharp

|a3 − µa2
2| ≤

2(1− ρ)

2 + α
max

{
1,

∣∣∣∣1 +
(1− ρ)(2 + α)(1− 2µ− α)

(1 + α)2

∣∣∣∣} .

Notice thatM (0, α, 0) ≡ α−K, and from Theorem 3.9, we have the following corollary.

Corollary 3.11. Letα ≥ 0. If f(z) ∈ α−K given by (1.1). Then

|a2| ≤
2

1 + α
,

and for eachµ ∈ C, the following bound is sharp

|a3 − µa2
2| ≤

1

1 + 2α
max

{
1,

∣∣∣∣1 +
6α + 2− 4µ− 8µα

(1 + α)2

∣∣∣∣} .

Theorem 3.12(Covering Theorem). Let α ≥ 0, λ ≥ 0 andf(z) ∈ M (α, λ, ρ), then the unit
diskU is mapped byf(z) on a domain that contains the disk|ω| < r1, where

r1 =
(1 + α)(1 + λ)

2(1 + α)(1 + λ) + 2(1− ρ)
.

Proof. Let ω0 be any complex number such thatf(z) 6= ω0 (z ∈ U), thenω0 6= 0 and (by
Corollary 3.2) the function

ω0f(z)

ω0 − f(z)
= z +

(
a2 +

1

ω0

)
z2 + · · · ,

is univalent inU , so that ∣∣∣∣a2 +
1

ω0

∣∣∣∣ ≤ 2,

Therefore, according to Theorem 3.9, we obtain

|ω0| ≥
(1 + α)(1 + λ)

2(1 + α)(1 + λ) + 2(1− ρ)
= r1.

Thus we have completed the proof of Theorem 3.12. �

Remark 3.13. Settingα = λ = ρ = 0 in Theorem 3.12, we get the well-known1
4
− covering

theorem for the familiar classS∗ of starlike functions.

If 0 ≤ µ ≤ µ1 andµ is a real number, Theorem 3.9 can be improved as follows.

Theorem 3.14.Suppose thatf(z) = z +
∑∞

n=2 anz
n ∈ M (λ, α, ρ) andµ ∈ R. Then

(3.6) |a3 − µa2
2|+ µ|a2|2

≤ 2(1− ρ)

(1 + 2λ)(2 + α)

{
1 +

(1− ρ)[2λ(3 + α)− (2 + α)(α− 1)]

(1 + λ)2(1 + α)2

}
, 0 ≤ µ ≤ µ0,

(3.7) |a3 − µa2
2|+ (µ1 − µ)|a2|2 ≤

2(1− ρ)

(1 + 2λ)(2 + α)
, µ0 ≤ µ ≤ µ1,
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and these inequalities are sharp, where

µ0 =
1

2
+

2λ− α(2 + α)

2(1 + 2λ)(2 + α)
+

(1 + λ)2(1 + α)2

2(1 + 2λ)(2 + α)(1− ρ)
,

µ1 =
1

2
+

2λ− α(2 + α)

2(1 + 2λ)(2 + α)
+

(1 + λ)2(1 + α)2

(1 + 2λ)(2 + α)(1− ρ)
.

Proof. From Theorem 3.9, we get

(3.8) |a3 − µa2
2| ≤

2(1− ρ)

(1 + 2λ)(2 + α)
+

2(1− ρ)

(1 + 2λ)(2 + α)

·
[
|(1− ρ)[2λ(3 + α)− (2 + α) [(α− 1) + 2µ(1 + 2λ)]] + (1 + λ)2(1 + α)2|

4(1 + λ)2(1 + α)2
− 1

4

]
|p1|2.

Using (3.8) anda2 = 1−ρ
(1+λ)(1+α)

p1, if 0 ≤ µ ≤ µ0, we obtain

|a3 − µa2
2| ≤

2(1− ρ)

(1 + 2λ)(2 + α)
+

2(1− ρ)

(1 + 2λ)(2 + α)

× (1− ρ)[2λ(3 + α)− (2 + α)(α− 1)− 2µ(1 + 2λ)(2 + α)]

4(1 + λ)2(1 + α)2
|p1|2

=
2(1− ρ)

(1 + 2λ)(2 + α)
+

2(1− ρ)2[2λ(3 + α)− (2 + α)(α− 1)]

4(1 + 2λ)(2 + α)(1 + λ)2(1 + α)2
|p1|2 − µ|a2|2.

Hence

|a3 − µa2
2|+ µ|a2|2

≤ 2(1− ρ)

(1 + 2λ)(2 + α)
+

2(1− ρ)2[2λ(3 + α)− (2 + α)(α− 1)]

4(1 + 2λ)(2 + α)(1 + λ)2(1 + α)2
|p1|2

≤ 2(1− ρ)

(1 + 2λ)(2 + α)

{
1 +

(1− ρ)[2λ(3 + α)− (2 + α)(α− 1)]

(1 + λ)2(1 + α)2

}
, 0 ≤ µ ≤ µ0.

If µ0 ≤ µ ≤ µ1, from (3.8), we obtain

|a3 − µa2
2|

≤ 2(1− ρ)

(1 + 2λ)(2 + α)
+

2(1− ρ)

(1 + 2λ)(2 + α)

× −2(1 + λ)2(1 + α)2 − (1− ρ)[2λ(3 + α)− (2 + α)(α− 1 + 2µ + 4µλ)]

4(1 + λ)2(1 + α)2
|p1|2

=
2(1− ρ)

(1 + 2λ)(2 + α)
− (µ1 − µ)|a2|2.

Therefore

|a3 − µa2
2|+ (µ1 − µ)|a2|2 ≤

2(1− ρ)

(1 + 2λ)(2 + α)
, µ0 ≤ µ ≤ µ1.

Here equality is attained for the function given by (3.5), and the proof of Theorem 3.14 is
complete. �
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BAZILEVI Č FUNCTIONS 9

Theorem 3.15.Letf(z) ∈ H, α ≥ 0, λ ≥ 0 and0 < k ≤ 1. If

(3.9)

∣∣∣∣{zf ′(z)

f(z)

(
f(z)

z

)α

+λ

[
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
+ α

(
zf ′(z)

f(z)
− 1

)]}
− 1

∣∣∣∣ < k, z ∈ U ,

then

|a2| ≤
k

(1 + λ)(1 + α)
,

and for eachµ ∈ C, the following bound is sharp

|a3 − µa2
2|

≤ k

(1 + 2λ)(2 + α)
max

1,
k(1 + 2λ)(2 + α)

∣∣∣1− 2µ− α
1+2λ

+ 2λ
(1+2λ)(2+α)

∣∣∣
2(1 + λ)2(1 + α)2

 .

Proof. By (3.9), there exists a functionp(z) ∈ P0 such that for allz ∈ U

zf ′(z)

f(z)

(
f(z)

z

)α

+ λ

[
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
+ α

(
zf ′(z)

f(z)
− 1

)]
=

2k

1 + p(z)
+ 1− k.

Equating the coefficients, we obtain

a2 = − k

2(1 + λ)(1 + α)
p1,

(1 + 2λ)(2 + α)a3 = −k

2

(
p2 −

1

2
p2

1

)
+

k2
[
λ(3 + α)− (2+α)(α−1)

2

]
4(1 + λ)2(1 + α)2

p2
1.

Thus, we have

a3 − µa2
2 = − k

2(1 + 2λ)(2 + α)

(
p2 −

1

2
p2

1

)

+
k2

[
λ(3 + α)− (2+α)(α−1)

2
− µ(1 + 2λ)(2 + α)

]
4(1 + λ)2(1 + α)2(1 + 2λ)(2 + α)

p2
1,

so that, by Lemma 2.3, we get that|a2| = k
2(1+λ)(1+α)

|p1| ≤ k
(1+λ)(1+α)

, and

|a3 − µa2
2| ≤ H(x) = A +

Bx2

4
,

wherex = |p1| ≤ 2,

A =
k

(1 + 2λ)(2 + α)
, B =

k2|C|
[(1 + λ)2(1 + α)2]

− k

[(1 + 2λ)(2 + α)]

and

C =
1− 2µ

2
− α

2(1 + 2λ)
+

λ

(1 + 2λ)(2 + α)
.
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Therefore

|a3 − µa2
2| ≤

 H(0) = A, |c| ≤ (1+λ)2(1+α)2

k(1+2λ)(2+α)
,

H(2) = Ak(1+2λ)(2+α)|C|
(1+λ)2(1+α)2

, |c| ≥ (1+λ)2(1+α)2

k(1+2λ)(2+α)
.

Here equality is attained for the function given by

zf ′(z)

f(z)

(
f(z)

z

)α

=



λz1/λ exp(−kz2)/(2λ)∫ z
0 t(1−λ)/λ exp(−kt2)/(2λ) dt

, λ > 0, |c| ≤ (1+λ)2(1+α)2

k(1+2λ)(2+α)
,

1− kz2, λ = 0, |c| ≤ (1+λ)2(1+α)2

k(1+2λ)(2+α)
,

λz1/λ exp−kz/λ∫ z
0 t(1−λ)/λ exp−kt/λ dt

, λ > 0, |c| ≥ (1+λ)2(1+α)2

k(1+2λ)(2+α)
,

1− kz, λ = 0, |c| ≥ (1+λ)2(1+α)2

k(1+2λ)(2+α)
.

This completes the proof of Theorem 3.15. �

Settingλ = 0, we get the following corollary.

Corollary 3.16. Letf(z) ∈ H, α ≥ 0 and0 < k ≤ 1. If∣∣∣∣zf ′(z)

f(z)

(
f(z)

z

)α

− 1

∣∣∣∣ < k, z ∈ U ,

then

|a2| ≤
k

(1 + α)
,

and for eachµ ∈ C, the following bound is sharp

|a3 − µa2
2| ≤

k

2 + α
max

{
1,

k(2 + α)

2(1 + α)2
|1− 2µ− α|

}
.

Corollary 3.17. Letf(z) ∈ H, α ≥ 0 and0 < k ≤ 1. If∣∣∣∣(1− α)
zf ′(z)

f(z)
+ α

[
1 +

zf ′′(z)

f ′(z)

]
− 1

∣∣∣∣ < k, z ∈ U ,

then

|a2| ≤
k

1 + α
,

and for eachµ ∈ C the following bound is sharp

|a3 − µa2
2| ≤

k

2(1 + 2α)
max

{
1,

k(1 + 2α)
∣∣1− 2µ + α

1+2α

∣∣
(1 + α)2

}
.

Settingα = 1 in Corollary 3.17, we have the following corollary.

Corollary 3.18. Letf(z) ∈ H and0 < k ≤ 1. If∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ < k, z ∈ U ,

then

|a2| ≤
k

2
,

and for eachµ ∈ C the following bound is sharp

|a3 − µa2
2| ≤

k

6
max

{
1,

k|4− 6µ|
4

}
.
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