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ABSTRACT. In this paper, we study the weakly convergent sequence coefficient and obtain its
estimates for some parameters in Banach spaces, which give some sufficient conditions for a
Banach space to have normal structure.
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1. INTRODUCTION

A Banach spacg said to havéweak) normal structurprovided for every (weakly compact)
closed bounded convex subgebf X with diam(C') > 0, contains a nondiametral point, i.e.,
there existsyy, € C such thatsup{|lz — 2¢|| : © € C} < diam(C). It is clear that normal
structure and weak normal structure coincides wheis reflexive.

The weakly convergent sequence coefficiéit'S(X '), a measure of weak normal structure,
was introduced by Bynum in [3] as the following.

Definition 1.1. The weakly convergent sequence coefficienkok defined by
diam, ({z,})
To({Zn})

wherediam, ({x,}) = limsup,_, . {||zn, — zwm| : n,m > k} is the asymptotic diameter éf:,, }
andr,({z,}) = inf{limsup,,_, . ||z, — y|| : v € co({z,}) is the asymptotic radius dfz, }.

One of the equivalent forms 6¥ C'S(X) is

(1.2) WCS(X) = inf { : {x,} is a weakly convergent sequer}ce

WCS(X) = 1nf{ lim |z, —2nl| 2z, — 0, ||z, =1 and lim @, — 2 eXIStS} :
n,m,n#m n,m,n#m
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Obviously,1 < WCS(X) < 2, and it is well known that?V C'S(X) > 1 implies thatX has a
weak normal structure.

The constanf?(a, X'), which is a generalized Garcia-Falset coefficient [10], was introduced
by Dominguez[[[7] as: For a given real numher 0,

(1.2) R(a, X) = sup {hmianeran},

where the supremum is taken over alle X with ||z|| < « and all weakly null sequences
{z,} € Bx such that

(1.3) lim ||@, — 2, <1

n,m,n#m
We shall assume throughout this paper thgtandSy to denote the unit ball and unit sphere

of X, respectivelyx,, = x stands for weak convergence of sequeficg in X to a pointz in
X.

2. MAIN RESULTS

TheJames constangr thenonsquare constantvas introduced by Gao and Lau in [8] as
J(X) = sup{[lz +yl| Alle =yl : 2,y € Sx}
= sup{[lz +yl| Az =yl : 2,y € Bx}.
A relation between the constaf(1, X') and the James constantX ) can be found in[6, 12]:
R(1,X) < J(X).

We now state an inequality between the James congt@xi) and the weakly convergent
sequence coefficient C'S(X).
Theorem 2.1.Let X be a Banach space with the James constdiif ). Then
J(X)+1
(J(X))*
Proof. If J(X) = 2, it suffices to note thatl’C'S(X) > 1. Thus our estimate is a trivial one.

If J(X) < 2, thenX is reflexive. Let{z,} be a weakly null sequence Bx. Assume that
d = limy, sy nstm ||2n — 2, || €XiSts and consider a normalized functional sequéng;¢ such that
x!(z,) = 1. Note that the reflexivity o guarantees, by passing through the subsequence, that

there existsr* € X* such thatr* = z*. Let0 < e < 1 and chooseV large enough so that
|z*(xN)| < €/2 and

(2.1) WCS(X) >

d—e<|lzy —zp|| <d+e
for all m > N. Note that
Ty — Ty N
d+e d+e
Then by the definition of?2(1, X'), we can choos@/ > N large enough such that

<1

<1 and

lim
n,m,n#m

TN+ Ty
d+e€
and|z%, (xp)| < €. Hence

|2 (en)] < [y = 27)(en)] + 2" ()] < e

<R(1,X)+e< J(X)+e, (23 — o) (xn)] < €/2,

Puta = J(X), N
N T pm

(d+e€)(a+e)

IN — Tpm
r= """ and =
d+e Y
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It follows that||z|| < 1, ||y|| < 1, and also that

1
|z +yll = m“(a—l— 1+ e)ay — (o — 1+ e)ayl|
1 i .
2 m«a +14e)ay(rn) — (= 1+ e)ay(zun))
a+1—ce€
2 A+ Iate
1

|z — vyl = m“(a—kl—i—e)@w — (a— 1+e)xNH
1

S a+1—c¢ '
“(d+e)(a+e)
Thus, from the definition of the James constant,

at+l—e JX)+1—¢
T2 @ deva T @roUm e

Lettinge — 0, we get
J(X)+1
(J(X))*
Since the sequende:,, } is arbitrary, we get the inequality (2.1). O

d>

As an application of Theorem 2.1, we can obtain a sufficient conditioXfts have normal
structure in terms of the James constant.

Corollary 2.2 ([4, Theorem 2.1]) Let X be a Banach space with(X) < (1 + v/5)/2. Then
X has normal structure.

Themodulus of smoothnefH] of X is the functionpy (7) defined by

px(T) = Sup{”m—{—TyH —; |z =7yl —1l:z,y¢€ SX}.

It is readily seen that for any, y € S,
eyl <llz£ryl[+(1-7) (0<T<1),

which implies that/(X) < px(7) +2 — 7.
In [2], Baronti et al. introduced a constast(.X), which is defined by

_l’_ —
betsl el e 5]

Ay(X)=px(1)+1= sup{

It is worth noting thatd,(X) = A (X™).
We now state an inequality between the modulus of smoothness and the weakly con-
vergent sequence coefficigntC'S(X).

Theorem 2.3. Let X be a Banach space with the modulus of smoothpg$s). Then for any
0<71<1,
px(T) + 2

(2:2) WESE) 2 T Dox) —7 12
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Proof. Let0 < 7 < 1. If px(7) = 7, it suffices to note that

,OX(T)+2 T+ 2

(px (1) + Dipx(1) —7+2)  2(r+1)

Thus our estimate is a trivial one.

If px(7) < 7, thenX is reflexive. Let{x,} be a weakly null sequence #i. Assume that
d = limn,m,n # m||z, — x| exists and consider a normalized functional sequence
such that:* (x,,) = 1. Note that the reflexivity o guarantees that there existsc€ X* such
thatz* 5 2*. Lete > 0 andx,,, 2, x andy selected as in Theor.l. Similarly, we get

alt)+71—¢€
(d+e)(a(r) +¢€)

wherea(r) = px(7) + 2 — 7. Then by the definition opx (7), we obtain

lz 7yl =

alT)+T—€
px(1) = (d—I—(G;(a(T) +€) -l
Lettinge — 0,
a(t)+T1 T)+ 2
prtr) +12 T =
which gives that
d> px(T) +2 '
~ (px (1) + D(px(T) =T +2)
Since the sequende:,, } is arbitrary, we get the inequality (2.2). O

Itis known that ifpx (7) < 7/2 for somer > 0, thenX has normal structure (see [9]). Using
Theorenj 2.3, We can improve this result in the following form:

Corollary 2.4. Let X be a Banach space with
T—24+12 44
2

for somer € (0,1]. ThenX has normal structure. In particular, ifl,(X) < (1 ++/5)/2, then
X and its dualX* have normal structure.

px(T) <

In connection with a famous work of Jordan-von Neumann concerning inner products, the
Jordan-von Neumann constaft;; (X) of X was introduced by Clarkson (cf./[1,/11]) as
|z +yl* + llz — yl*

X) = : X h :
Cny(X) sup{ 202E + 91 x,y € X and not bot zer}s

A relationship betweed (X') andCy;(X) is found in ([11] Theorem 3)J(X) < 1/2Cx;(X).
In [5], Dhompongsa et al. proved the following inequaljty {2.3). We now restate this inequal-
ity without the ultra product technique and the fé&g; (X) = Cny(X*).

Theorem 2.5([5] Theorem 3.8) Let X be a Banach space with the von Neumann-Jordan
constantCy;(X). Then

5 20N3(X)+1
(2.3) (WCS(X))* > 2O (X))
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Proof. If Cx;(X) = 2, it suffices to note thatV’C'S(X) > 1. Thus our estimates is a trivial
one.

If Ony(X) < 2, thenX is reflexive. Let{z, } be a weakly null sequence Hx. Assume that
d = limy, s netm ||z, — || €xists and consider a normalized functional sequegngg such
thatz?* (x,) = 1. Note that the reflexivity ofX’ gurantees that there esists € X* such that

x5 % 2*. Lete > 0 and chooséV large enough so that*(zy)| < ¢/2 and
d—e<l|lzy —zp| <d+e
for all m > N. Note that

Tp — T TN
d+e d+e
Then by the definition oR(1, X'), we can choos@/ > N large enough such that

<1 and

<1

lim
n,m,n#m

< R(1,X) 4+ € < 20n1(X) + ¢, |(z3, — ") (xN)| < €/2,

(I,'N—iL'MH

d+e
and|z%, (xp)| < €. Hence
[ (2n)| < [(2hy — &) (en))] + 27 (en)] < e

Puta = /20x(X), © = &*(zy — xuy), y = xn + . It follows that [|z]| < o(d + ),
Iyl < (o + €)(d + €), and also that

2 +yll = [[(o® + Dy — (o = Da||
> (o + Day (o) — (o = Day(zu)
> a? +1— 3¢,
Iz =yl = [I(a® + Daar — (0 = L)ay]
> (o + Daj(zn) — (@ = Dayy(on)
>a?4+1—3e
Thus, from the definition of the von Neumann-Jordan constant,
2(0% + 1 — 3¢)?
ClX) 2 STy 7 o 3 T
I (@® +1 — 3¢)?
(d+€)? at+(a+e?
Sincee is arbitrary anch = /2Cx;(X), we get
1 ) ~20w(X) +1

a?) &2 20n;(X)’

1
Cni(X) > 2 (1+

which implies that
20n3(X) +1
>
— 2(On(X))?
Since the sequende:,, } is arbitrary, we obtain the inequality (2.3). O

Using Theorem 2|5, we can get a sufficient conditionXoto have normal structure in terms
of the von Neumann-Jordan constant.

Corollary 2.6 ([6, Theorem 3.16]/[13, Theorem 2]).et X be a Banach space withiy;(X) <
(1++/3)/2. ThenX and its dualX* have normal structure.
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