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ABSTRACT. Elsewhere we developed rules for the monotonicity pattern of the fati@f two
functions on an interval of the real line based on the monotonicity pattern of theffdtibof

the derivatives. These rules are applicable even more broadly than the I'Hospital rules for limits,
since we do not require that bofhandg, or either of them, tend t0 or co at an endpoint of the
interval.

Here these rules are used to obtain monotonicity patterns of the ratios of the pairwise dis-
tances between the vertices of the Lambert and Saccheri quadrilaterals in the Poincaré model of
hyperbolic geometry. Some of the results may seem surprising. Apparently, the methods will
work for other ratios of distances in hyperbolic geometry and other Riemann geometries.

The presentation is mainly self-contained.

Key words and phrased:'Hospital type rules for monotonicity, Hyperbolic geometry, Poincaré model, Lambert quadrilater-
als, Saccheri quadrilaterals, Riemann geometry, Differential geometry.
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1. U'H OSPITAL-TYPE RULES FOR MONOTONICITY

Let —o < a < b < oo. Let f andg be differentiable functions defined on the interval
(a,b), and letr := f/g. It is assumed throughout thatand¢’ do not take on the zero value
and do not change their respective signs(esb). In [16], general “rules” for monotonicity
patterns, resembling the usual 'Hospital rules for limits, were given. In particular, according
to [16, Proposition 1.9], the dependence of the monotonicity patternafi (a, b)) on that of
p = f'/¢ (and also on the sign afy’) is given by Tablé¢ 1]1, where, for instanee},  means
that there is some € (a, b) such that- *\ (that is,r is decreasing) ofu, ¢c) andr " on(c,b).

Now suppose that one also knows whether” or  \ in a right neighborhood ai and in a
left neighborhood ob; then Tabl¢ 1]1 uniquely determines the monotonicity pattern of
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Table 1.1: Basic rules for monotonicity

Clearly, these I'Hospital-type rules for monotonicity patterns are helpful wherever the 'Hospital
rules for limits are so, and even beyond that, because the monotonicity rules do not require that
both f andg (or either of them) tend to 0 ex at any point.

The proof of these rules is very easy if one additionally assumes that the derivétwved
¢’ are continuous and has only finitely many roots itia, b) (which will be the case if, for
instancey is not a constant anfl andg are real-analytic functions da, b]): Indeed, suppose
that the assumptions ~ andgg’ > 0 of the first line of Tablg 1]1 hold. Then it suffices to
show thatr’(x) may change sign only from- to + asx increases fronu to b. To obtain a
contradiction, suppose the contrary, so that there is some:rafot’ in (a, b) such that in some
right neighborhoodu, t) of the rootu one has’ < 0 and hence < r(u). Consider now the
key identity

(1.1) gr'=(p-r)gg,
which is easy to check. Then the conditio&:) = 0 andr’ < 0 on (u, t) imply, respectively,
thatp(u) = r(u) andp < r on (u,t). It follows thatp < r < r(u) = p(u) on (u,t), which
contradicts the conditiop ,”. The other three lines of Table 1.1 can be treated similarly. A
proof without using the additional conditions (that the derivatifeandg’ are continuous and
r’ has only finitely many roots) was given in [16].

Based on Tablg 1.1, one can generally infer the monotonicity patterrgiven that ofp,
however complicated the latter is. In particular, one has TabJe 1.2.

! T

p | g9
NG| >0 or or N or N, or N, N
N | >0 o or N orN S or N,
/N <O or or N orN S or N,
N <O o or N or N, or N N

Table 1.2: Derived rules for monotonicity

In the special case when boftandg vanish at an endpoint of the interval, b), 'Hospital-
type rules for monotonicity and their applications can be found, in different forms and with
different proofs, in[[9, 11, 14,/8] 2] 3} 1,/4,/5,/15]) 16, (17, 18].

Thespecial-caseule can be stated as follows: Suppose fHatt) = g(a+) = 0or f(b—) =
g(b—) = 0; suppose also thatis increasing or decreasing on the entire intefvab); then,
respectivelyy is increasing or decreasing ¢m, b). When the conditiorf (a+) = g(a+) = 0
or f(b—) = g(b—) = 0 does hold, the special-case rule may be more convenient, because then
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one does not have to investigate the monotonicity pattern of ratiear the endpoints of the
interval (a, b).

The special-case rule is easy to prove. For instance, supposgdhat= g(a+) = 0. Then
g andg’ must have the same sign om, b). By the mean-value theorem, for everyc (a,b)
there is somé& € (a, x) such that(z) = p(¢). Now the rule follows by identity (1]1).

This latter proof is essentially borrowed from [2, Lemma 2.2]. Another very simple proof of
the special-case rule was given(in|[15]; that proof remains valid under somewhat more general
conditions onf andg. A unified treatment of the monotonicity rules, applicable whether or not
f andg vanish at an endpoint @f;, b), can be found in [16].

(L'Hospital’s rule for the limitr(b—) (say) wheng(b—) = oo does not have a “special-
case” analogue for monotonicity, even if one also lfiéls—) = oco. For example, consider
f(z) =x—1—e"andg(x) =z forz > 0. Thenr / on (0, ), even though ~\, on (0, o)
and f(co—) = g(co—) = c0.)

In view of what has been said here, it should not be surprising that a very wide variety of
applications of these I'Hospital-type rules for monotonicity patterns were given: in areas of
analytic inequalities [1%, 16, 19| 5], approximation theory [17], differential geometry [8, 9, 11],
information theory([15, 16], (quasi)conformal mappings'[1, 2,13, 4], statistics and probability
[14,[16,17| 18], etc.

Clearly, the stated rules for monotonicity could be helpful wiieor ¢’ can be expressed sim-
pler thanf or g, respectively. Such functionsandg are essentially the same as the functions
that could be taken to play the rolewin the integration-by-parts formulpu dv = wv— [ v du;
this class of functions includes polynomial, logarithmic, inverse trigonometric and inverse
hyperbolic functions, and as well as non-elementary “anti-derivative” functions of the form
z— [T h(u)duorz — fxb h(u) du.

(“Discrete” analogues, fof andg defined or¥, of the I'Hospital-type rules for monotonicity,
are available as well [20].)

In the present paper, we use the stated rules for monotonicity to obtain monotonicity prop-
erties of the Lambert and Saccheri quadrilaterals in hyperbolic geometry. This case represents
a perfect match between the two areas. Indeed, the distances in hyperbolic geometry are ex-
pressed in terms of inverse hyperbolic functions, whose derivatives are algebraic. One can
expect these rules to work for other Riemann geometries as well, since the geodesic distances
there are line integrals, too.

2. MONOTONICITY PROPERTIES OF THE LAMBERT AND SACCHERI
QUADRILATERALS

2.1. Background.

2.1.1. Hyperbolic plane.The Lambert and Saccheri quadrilaterals are quadrilaterals in the
Poincaré hyperbolic plang?.

The significance of the Poincaré model is that, by the Riemann mapping theorem, any simply
connected analytic Riemann surface is conformally equivaleft?aC, or C U {cc} [[7, The-
orem 9.1]. Moreover, any analytic Riemann surface is conformally equivalent to the quotient
surfaceR /G, whereR is H?, C, or C U {oco}, andG is a group of Mébius transformations act-
ing discontinuously on (the covering surfade]7, Proposition 9.2.3]. However, this comment
will not be used further in this paper.

To make this section mainly self-contained, let us fix the terminology and basic facts con-
cerning the Poincaré model of hyperbolic plane geometry. The set of points in this model is the
upper half-plane

H?:={z€C: Imz > 0}.
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This set is endowed with the differential metric element

||

~ Imz’

so that the length of any rectifiable curvefift is obtained as the line integral ¢f. Forz € R
andr € R\ {0}, let us refer to the semicircles

ds :

[t —r,x+7]:={z€ H*: |z — 2| = |r|},
centered at point and of radiugr|, and the vertical rays
[z,00] := {z € H?: Rez =z}

as thel'lines” . It will be seen in a moment that these “lines” are precisely the geodesics in this
geometry, so that the geodesics are orthogonal to the real axis.

Forz € Randr € R\ {0}, let., . denote the reflection df? in the semicircldz —r, z + 1],
so that, forz € H?,

7“2

bor(2) =2+ =

It is easy to see that this transformation is inverse to itself and preséf¥es well as the
metric elementls, and hence also the (absolute value of the) angles. Indeed;=f ¢, ,(z)
for z € H?, thenlmw = r? Im z/|z — z|*> anddw = —r*dz/(z — z)?, so thatlmw > 0 and
|dw|/Imw = |dz|/Im z.

Let G be the group of transformations @f* generated by all such reflections. Thén
preserves the metric elemedit. Note thatG' contains all the homotheties — 1, \(2) :=
x 4+ Mz — x), horizontal parallel translations — o,(z) := z + z, and reflections: —
Ly oo(2) = 20—Z inthe vertical raygz, oo], wherexr € Rand)\ > 0; indeedy), , = Ly /5Ol 1y
ly,co = ba4r2r O lo—r2r © latgr 27, andaw = lg/2,00 © L0,00-

It is easy to see that the geodesic connecting two paingad z; on the same vertical ray
[z,00] (z € R) is the segment of that ray with the endpointsand z,, so that the geodesic
distanced(z;, z2) between such; andz; is |In(y; /y2)|, wherey, := Imz;, 7 = 1,2. Now
it is seen that grou’ acts transitively on the set of all ordered pdits, z,) of points on the
vertical ray [z, oo] with a fixed value of the distancé(z;, zo) — in the sense that, for any
two pairs(z, z2) and (wy, wy) of points on[z, co] with d(z1, z2) = d(wy, w,), there is some
transformatiory in G such thay(z;) = w;, j = 1,2; indeed, it suffices to taketo be a single
reflection.,, or a single homothety, , for somer > 0 or A > 0.

Next, the reflection, ., o, maps the semicirclgr — r, = + ] onto the vertical rajz — r, oo,
and hence vice versa, for alle R andr € R\ {0}. Moreover, any two distinct points if/*
lie on exactly one “line”.

It follows now that indeed the “lines” are precisely the geodesics, and groagts transi-
tively on the set of all ordered paifs;, 2,) of points in 2 with any fixed value of the geodesic
distancel(z, z;). Another corollary here is the formula for the geodesic distance between any
two pointsz; andz, of H?:

2
(2.1) d(z1, z2) = arcch <1 + M) ,

2Im z; Im 2z

wherearcchz := In (z + V22 — 1) for z > 1; cf. [6, Theorem 7.2.1(ii)]. One can now also
easily derive Pythagoras’ theorem,

(2.2) chc=cha chb,

for a right-angled (geodesic) triangleBC' with side ¢ opposite to the right-angle vertex
and two other sides andb; indeed, such a triangle 5-congruent, for somé € (0,1) and

J. Inequal. Pure and Appl. Math6(4) Art. 99, 2005 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

LAMBERT’S AND SACCHER!'S QUADRILATERALS 5

6 € (0,7/2), to the triangle with vertice§', = i, A, = ki, andB, = ¢%; cf. [6, Theorem
7.11.1]. (Yet another corollary, not to be used in this paper, igthathe group of all isometries
of H2.)

2.1.2. Lambert’'s and Saccheri’'s quadrilateral®s Lambert quadrilateral is a quadrilateral in
the Poincaré hyperbolic plane with angte®, 7/2, 7 /2, andy, for someyp; a Saccheri quadri-
lateral is a quadrilateral (also in the hyperbolic plane) with angj&s 7 /2, ¢ and, for some
1 [6, Section 7.17]. See Figufe 2.1.

For a Saccheri quadrilateral, let us refer to (the length of) its side adjacent to the right angles
as thebase its opposite side as thep, and to either of the other two (congruent to each other)
sides simply as thseide

A Lambert quadrilateral has two sides each adjacent to two of the three right angles. Let us
arbitrarily choose one of these two sides and refer to it ab#ise and to the other one of the
two as the(short) side The side opposite to the base will again be referred to awfhend
the fourth side as thieng side It will be seen in the next subsection that indeed the long side
is always longer than the short one.

Dsg AS._ : B C
Y\; \ \ V \ \J .Y.V

Figure 2.1: Lambert's 4;, BC D) and Saccheri's{sBC Dg) quadrilaterals;A;, B, Ay, Dy, BC,andCDy, are
respectively the base, short side, long side, and top of the Lambert quadrilater®; AsDs = BC, andC Dg
are respectively the base, side, and top of the Saccheri quadrilateral; the angles at vdric& Ay, and Dy,
arer/2.

It follows from the discussion in Subsubsection 2.1.1 that the géoapts transitively on the
set of all Saccheri quadrilaterals with any given values of the base and the side, as well as on the
set of all Lambert quadrilaterals with any given values of the base and the short side. That s, all
Saccheri quadrilaterals with any given values of the base and the side@regruentto each
other, and so, they have the same geodesic distances between any two of their corresponding
vertices. The same holds for all Lambert quadrilaterals with any given values of the base and
the short side.

2.2. Main Results.

2.2.1. Lambert quadrilaterals.In view of the conclusions of Subsectipn 2.1, any Lambert
quadrilateral ig57-congruent, for some

ke (0,1) and 0 € (0,7/2),
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to the particular Lambert quadrilaterdBC' D with vertices
A=kFki, B=1i C =¢€% D =FkeY where ¢ = arccos(ch(lnk:)cos&)
(see Figuré 2]2), so that, Hy (R.1),

2
AB:lnl, BC = arcche, C’Dzarcchl+k .
(2.3) ' ’
' 2 1 2 1 2
AD = arcch ﬁ, AC = arcch M7 BD = arcch M,
q 2k q
(2.4) where ¢:=+/(1+k2)2—c2(1—k2)?2 and c:=1/sin.

(One can verify, usind (212) and (2.3), that indeéd = /B = ZC = 7/2.) Then one may
refer to AB as the base, of length(1/k), and toBC' as the short side, of lengtrcch c. Note
that, for the pointD to exist in 72, one must haveh(In k) cos § < 1, which is equivalent to

1+ k2
1— k2%

Let us fix (the length of) the baséB (so thatk € (0,1) is fixed) and letc increase from
1 to ¢, so that the short sidBC' = arcch ¢ increases front to arcch ¢,. The goal here is
to determine the monotonicity patterns @) = 15 completely representative pairwise ratios
r = CD/AD, CD/BD,..., BC/AB of the () = 6 (geodesic) distances between the four
verticesA, B, C, D. For each pair of such distances, it is enough to consider only one of the two
mutually reciprocal ratios; indeed, for example, the monotonicity pattern of the@d?ioA D
determines that oA D/CD. All the ratiosr will be expressed as functions af (We do not
distinguish in terminology or notation between a segment of a geodesic and its length.)

l<ec<e, where ¢, :=

Figure 2.2: A Lambert quadrilateralZA = /B = ZC = 7/2

Theorem 2.1. The monotonicity patterns of the 15 representative rati@$ are given by Ta-

ble[2.1, wheré:, := v/2 — 1.
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. Pattern for eact in r(14) | r(ca—) Comments
0,1) (0, k][ (k) 1)
CD/AC NS 1 o0
CD/AD NN\ 1
dee(1,¢) r(c) =1
CD/BC | \.,/ o0 >0 (<:> <k:> i/(ﬂ) |
CD/BD | ./ ! 1
CD/AB| / 1 o0
AC/AD | o 0
AC/BC | N © | >1
AC/BD | 1 0
AC/AB | 1 > 1
BD/AD || \, 00 1
BD/BC | \./ 0 | oo ilfs(f’ll) reethed
BD/AB | / 1 50
AD/BC| >1 | o
ADJ/AB |/ 0 o0
/2T P RO TS| S B = 1

Table 2.1: Monotonicity patterns for the ratios in the Lambert quadrilateral

One simple corollary here is that, of the two side€{andAD) of the Lambert quadrilateral,
BC'is indeed always the shorter one (this is obvious from Figuie 2.2 as well). Also, of the two
diagonals AC and B D) of the quadrilateralAC' is always the shorter one.

What is perhaps surprising is that the monotonicity patterns of two rafié®,AC' (top-
to-short-diagona) andC' D /AD (top-to-long-sidg, turn out to depend on (the fixed length of)
the baseAB = In(1/k) of the quadrilateral. When the basi3 is smaller tharin(1/k,) =
In(1 + +/2), these two ratios are not monotonic.

Three other ratios —€'D/BC (top-to-short-sid¢, C'D/BD (top-to-long-diagona), and
BD/BC (long-diagonalto-short-sidé — are not monotonic for any given base; however, this
should not be surprising, since for each of these three ratioe has (1+) = r(cx—).

In particular, it follows that of all the 5 ratios of thep to the other lengths, only the trivial
one, the ratia” D /AB of thetopto the fixed base, is monotonic for every given base.

Another small-base peculiarity shows up for two rati6¥)/BC (top-to-short-sid@ and
BC/AB (short-sideto-basg; namely, these ratios take on values to both siddsitbthe base
is small enough — smaller thdn /3 in the case ofC'D/BC and smaller thain(1/k,) =
In(1 ++/2) in the case of3C/AB.

Proof of Theorem 2]1From (2.3), it is clear that the 5 ratios &fC, CD, AD, AC, and BD
to the fixed AB are increasing (irr), and the inequalityBC'/AB > 1 can be rewritten as
ch BC' > ch AB, which is equivalent td: > k.. The monotonicity pattern foAC/AD =
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(AC/BD)(BD/AD) obviously follows from those foAC/BD and BD/AD. It remains to
consider the other 9 of the 15 ratios.
In terms of the expressiap defined by[(2.4), and the expressions

(2.5) ¢ =V (=11 +E2)2+ (1 —k2)2, goi=+c2—1,

(2.6) g3 = V/2(2 = 1)(1+ k1) + (1 - &2)?,

one computes the ratiog, of the derivatives of the distances with respect:to
(CD) _ (1—F) @ (CD) _ (1-F)g (CD) _ (1-k)g

(ACY q? (ADY 2k (BD) (1 +k2)2’
(AC)  (A+F)q  (AC)Y g (BD)  (1+k)q
(BCY ¢ " (BD)Y  (1+Kk2)2q’ (ADY — 2kqy
(AD)  2k(1+k* (CD) (CD) (AC) (BD) (BD) (ADY
(BCYy ¢ ' (BCYy (AC) (BC)’ (BC)  (AD) (BC)"

Of these 9 ratios, it is now clear that 8 ratios (except')’/(BD)’) are increasing (in
c). Hence, by the first line of Table 1.1, each of the corresponding 8 ratjas, distances,
CD/AC, ..., AD/BC (except forAC/BD), has one of these three patterns; ~\, or\ .

(It can be shown thatAC')'/(BD)" is \, or ,//\,, depending on whether the basg?, is large
enough; however, this fact will not be used in this paper.)

Now let us consider each of the 8 “unexceptional” ratios separately, after which the “excep-
tional” ratio, AC'/ BD, will be considered.

(1) r(¢c) = CD/AC: Here itis obvious that(1+) = 1 andr(c,—) = co. This excludes
the pattern- . To discriminate between the possibilities\, andr 7, it suffices
to determine whether there exists some (1, ¢;) such that-(c) = 1 or, equivalently,
chCD = ch AC. Now it is easy to complete the proof of Theorgm|2.1 for the ratio
r(c) = CD/AC.

(2) r(c) = CD/AD: Here itis obvious that(1+) = co. By I'Hospital’s rule for limits,
r(ck—) = p(c—) = 1. This excludes the pattern . Moreover, it is easy to see, as in
the previous case, that there exists seme(1, ¢;) such that(c) = 1iff k& > k..

(3) r(c) =CD/BC: Herer(1+) = r(cg—) = oo. Hencey \, /. Moreover, it is easy to
see that there exists some (1, ¢;) such that(c) = 1iff k& > 1/+/3.

(4) r(c) =CD/BD: Herer(1+) = 1. By 'Hospital’'s rule for limits,r(cx—) = p(cx—) =
1. Hencey \ .

(5) r(c) = AC/BC: Here, withu := 2k (1 + k?) andv := /1 + 14k* + k%, one has the
following atc = ¢;.—

, 2kvBC*  BC
1-r)ac  Mac

since, in view of[[ZB)BC < AC. Butu? —v* = —(1—k*)* < 0. Hencey’(c;,—) < 0,
so thatr ™\ in a left neighborhood of,.. Thus,r \.

(6) r(¢c) = BD/AD: Herer(l+) = oco. By I'Hospital’s rule for limits, r(c,—) =
p(cx—) = 1. In view of (2.3), here- > 1 on (1, ¢). Hence,r is decreasing ofl, ¢;)
from oo to 1.

(7) r(c) = BD/BC: Herer(l+) = r(cg—) = oco. Hence,r N\, on (1,¢;). Also, in
view of (2.3), one has here> 1 on (1, ¢).

(8) r(c) = AD/BC: Here, by the special-case rule for monotonicity;”. By 'Hospital’s
rule,r(1+) = p(1+) = (1 + k?)/(2k) > 1. Also, it is obvious that(c;,—) = oo.

r

—v < pu—v,
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It remains to consider the 9th ratio,

¥ r(c)=AC/BD: Here, as was stated(c) := (AC)'/(BD)" is non-monotonic ir: for
k in a left neighborhhood of. This makes it more difficult to act as in the cases considered
above, since the roatof the equation’(c) = 0 depends ok. However, what helps here is that
the monotonicity pattern of turns out to be simple, as will be proved in a moment;,. One
can use the following lemma, whose proof is based on the special-case rule for monotonicity
stated in Sectiof] 1.

Lemma2.2.Forz > 1, let

Va2 —1 arcchzx x?—1 2?2 —1
Az) = e , o) = e B(x) == pr

Then for allu andv in (1, o)

) e (20 500

M) S\ o) Blw

Au)

Proof of Lemm& 2]20bviously,\/3 = arcch /. Hence,iézg < ggfg if 1 <o < u. Itremains
to consider the case whérk u < v. Note that

(arcchz) 1
R
is decreasing in > 1. Hence, by the special-case rule for monotonicity,
Az)  arcchz
alr) Va1
is decreasing i > 1. Hence,% < 38 if 1 <u<w. O

Let us now return to the consideration of the ratio) = AC/BD. It suffices to show that
r'(c¢) < 0forall k € (0,1) andc € (1, ¢;). One has the identity
(0 2BD*kvVu? —1vv2 =1 A(v)

mAe (1+ k) AMu) 03 M)

_K7

where
1+ k2 1+k? 1+ k2
u:——c<2+k ), V= cd+#) ) K:—<2+k >2.
VL2 =2 (1 - k)
Therefore and in view of Lemma 2.2, it suffices to show that the expressions

(WY ) g AR (R
P"((aw) K) e ™
)

— (29N _ ko) prup QLR
Q= ((M) K)B() Tus

are negative for alk € (0,1) andc € (1, ¢;). But this can be done in a completely algorithmic
manner, sincé” and( are polynomials it andc, andc,, is a rational function ok [21,[12]10].
With Mathematica, one can use the commaRdduce[P>=0 && 1<c<ck && 0<k<1]
(whereck stands for;.), which outputd=alse , meaning that indee@ < 0 for all £ € (0,1)
andc € (1, ¢;); similarly, for @ in place ofP.

Theorenj 2.]1 is proved. O
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2.2.2. Saccheri quadrilateralsLet ABC'D be a Saccheri quadrilateral. Here one may assume
that

A=ki, B=i, C=¢€% D=Fke",
where agaird < k£ < 1 and0 < 6 < «/2, so that the angles at verticelsand B are right,

andBC = AD, so thatBD = AC. Let us refer here tolB = In(1/k) as the base and to
BC = AD = arcch ¢ as the side, where again= 1/ sin 6. Herec varies froml to oo.

Figure 2.3: A Saccheri quadrilateralZA = /B = n/2 andZC = £D, whenceAD = BC and AC = BD

Again, let us fix the basd B = In(1/k) (so thatk € (0, 1) is fixed); also, let increase from
1 to oo, so that the sid&8C' = AD = arcch c increases frond to co. Here, taking into account
the equalitiesBC = AD andBD = AC, we have to determine the monotonicity patterns of
(‘2‘) = 6 completely representative pairwise ratios.

Theorem 2.3. The monotonicity patterns of the 6 ratiog:) are given by Tablg 2] 2.

Thus, the diagonallC' = BD always exceeds both the badé# and the sidedD = BC.
Also, the topC' D always exceeds the base.

Recently it was observed by Pambuccian! [13] that the r@tio/ BD = CD/AC of the
top of a Saccheri quadrilateral to its diagonal may be less than or greater than or ejual to
The second line of Table 2.2 provides more information in that respect. In particular, one can
see now that théop-to-diagonalratio can be less thahonly if the baseAB is smaller than
In(2 + v/3). On the other hand, this ratio is always less than

Similarly to the case of the Lambert quadrilateral, the monotonicity patterns of two ra-
tios, CD/AD (top-to-side and CD/BD (top-to-diagona), turn out to depend on the base
AB = In(1/k) of the quadrilateral. When the base is smaller than the thresholdivdlyé...),
these two ratios are not monotonic. However, in contrast with Lambert quadrilaterals, here the
threshold values for these two ratios are different from each other. Yet, for Saccheri quadrilat-
erals as well, it is the small base values that may result in non-monotonic patterns.
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. Pattern for each in r(14) | r(co—) Fos
(0. [0 k] (Rers 1)

CDJAD N [ NS oe |2 [R=3-2V2
CD/BD SN 2 2=V3
CDJAB| L | @
AD/BD | y !
AD/AB |/ g >
ZZ20] I N R

Table 2.2: Monotonicity patterns for the ratios in the Saccheri quadrilateral

Proof of Theorer 2]3In view of (2.1), here one has

201 12
AB:lnl7 14D:BC(:8J1"CChC7 CD:arcchc (1 k) +2k,
b 2k
2.7)
c(1+ k%)
2k

From these expressions, the statements of Theorgm 2.3 concerning the three ratios of the top
(CD), side AD = AC), and diagonal AC = BD) to the fixed baseAB) are obvious. It
remains to consider the other three ratios.

¥ r(c) =CD/AD: This case follows immediately from the case of thp-to-long-side
ratio for the Lambert quadrilateral, which latter is a “half” of a Saccheri one; see Higure 2.1.
Indeed, if the side of a Saccheri quadrilateral equals the long side of a Lambert quadrilateral
and the base of the Saccheri quadrilateral is twice the base of the Lambert quadrilateral, then
the top of the Saccheri quadrilateral is twice the top of the Lambert quadrilateral.

¥ r(c) = CD/BD: Here (recall[(ZB)p(c) = 2(1 — k)q1 /(1 + k%) qu), Wwhereq, :=
V(2 —=1)(1—k)2+ (1+k)2. Hence,p /, and so,r / orr \,orr /. Obviously,
r(1+) = 1. By I'Hospital’s rule,r(co—) = p(oco—) = 2. Moreover, it is easy to see that (
¢ > 17(c) = 1)iff 2—+/3 < k < 1. This proves the second line of Ta2.2.

¥ r(c)=AD/BD: Herep(c) =q/((1+ k%) q2), so thatp . Obviously,r(1+) = 0.

By I'Hospital’s rule,r(co—) = p(oco—) = 1. Also, (2.7) implies- < 1. It follows thatr .

Theorenj 2.3 is proved. O

AC = BD = arcch

2.3. Conclusion. It seems quite likely that one could similarly examine the monotonicity pat-
terns of these ratios for the Lambert and Saccheri quadrilaterals under conditions other than
that of a fixed base. Likewise, one could examine the monotonicity patterns of other ratios of
distances, in this or other Riemann geometries.
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