Journal of Inequalities in Pure and Applied Mathematics

POLYNOMIALS AND CONVEX SEQUENCE INEQUALITIES

ROSIHAN M. ALI, M. HUSSAIN KHAN, V. RAVICHANDRAN, AND K.G. SUBRAMANIAN

School of Mathematical Sciences Universiti Sains Malaysia 11800 USM, Penang, Malaysia. EMail: rosihan@cs.usm.my
Department of Mathematics
Islamiah College
Vaniambadi 635 751, India.
EMail: khanhussaff@yahoo.co.in
School of Mathematical Sciences
Universiti Sains Malaysia
11800 USM, Penang, Malaysia.
EMail: vravi@cs.usm.my
Department of Mathematics
Madras Christian College
Tambaram, Chennai- 600 059, India.
EMail: kgsmani@vsnl.net

© 2000 Victoria University

ISSN (electronic): 1443-5756
237-04
volume 6, issue 1, article 22, 2005.

Received 12 December, 2004; accepted 27 January, 2005.

Communicated by: H. Silverman

Abstract
For a given p-valent analytic function g with positive coefficients in the open unit disk Δ, we study a class of functions $f(z)=z^{p}+\sum_{n=m}^{\infty} a_{n} z^{n}, a_{n} \geq 0$ satisfying

$$
\frac{1}{p} \Re\left(\frac{z(f * g)^{\prime}(z)}{(f * g)(z)}\right)<\alpha \quad\left(z \in \Delta ; 1<\alpha<\frac{m+p}{2 p}\right)
$$

Coefficient inequalities, distortion and covering theorems, as well as closure theorems are determined. The results obtained extend several known results as special cases.
2000 Mathematics Subject Classification: 30C45
Key words: Starlike function, Ruscheweyh derivative, Convolution, Positive coefficients, Coefficient inequalities, Growth and distortion theorems.
The authors R. M. Ali and V. Ravichandran respectively acknowledged support from an IRPA grant 09-02-05-00020 EAR and a post-doctoral research fellowship from Universiti Sains Malaysia

Contents

1 Introduction 3
2 Coefficient Inequalities 6
3 Growth and Distortion Theorems 9
4 Closure Theorems 13
5 Order and Radius Results 17
References

A Class of Multivalent Functions with Positive Coefficients Defined by Convolution

Rosihan M. Ali, M. Hussain Khan,
V. Ravichandran and
K.G. Subramanian

1. Introduction

Let \mathcal{A} denote the class of all analytic functions $f(z)$ in the unit disk $\Delta:=\{z \in$ $\mathcal{C}:|z|<1\}$ with $f(0)=0=f^{\prime}(0)-1$. The class $M(\alpha)$ defined by

$$
M(\alpha):=\left\{f \in \mathcal{A}: \Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)<\alpha \quad\left(1<\alpha<\frac{3}{2} ; z \in \Delta\right)\right\}
$$

was investigated by Uralegaddi et al. [6]. A subclass of $M(\alpha)$ was recently investigated by Owa and Srivastava [3]. Motivated by $M(\alpha)$, we introduce a more general class $P M_{g}(p, m, \alpha)$ of analytic functions with positive coefficients. For two analytic functions

$$
f(z)=z^{p}+\sum_{n=m}^{\infty} a_{n} z^{n} \quad \text { and } \quad g(z)=z^{p}+\sum_{n=m}^{\infty} b_{n} z^{n},
$$

the convolution (or Hadamard product) of f and g, denoted by $f * g$ or $(f * g)(z)$, is defined by

$$
(f * g)(z):=z^{p}+\sum_{n=m}^{\infty} a_{n} b_{n} z^{n}
$$

Let $T(p, m)$ be the class of all analytic p-valent functions $f(z)=z^{p}-\sum_{n=m}^{\infty} a_{n} z^{n}$ ($a_{n} \geq 0$), defined on the unit disk Δ and let $T:=T(1,2)$. A function $f(z) \in T(p, m)$ is called a function with negative coefficients. The subclass of T consisting of starlike functions of order α, denoted by $T S^{*}(\alpha)$, was studied by Silverman [5]. Several other classes of starlike functions with negative coefficients were studied; for e.g. see [2].

A Class of Multivalent Functions with Positive Coefficients Defined by Convolution

Rosihan M. Ali, M. Hussain Khan,
V. Ravichandran and
K.G. Subramanian

Title Page
Contents

| $\langle/$ |
| :---: | :---: |
| Go Back |
| Close |
| Quit |

Page 3 of 19

Let $P(p, m)$ be the class of all analytic functions

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=m}^{\infty} a_{n} z^{n} \quad\left(a_{n} \geq 0\right) \tag{1.1}
\end{equation*}
$$

and $P:=P(1,2)$.
Definition 1.1. Let

$$
\begin{equation*}
g(z)=z^{p}+\sum_{n=m}^{\infty} b_{n} z^{n} \quad\left(b_{n}>0\right) \tag{1.2}
\end{equation*}
$$

be a fixed analytic function in Δ. Define the class $P M_{g}(p, m, \alpha)$ by

$$
\begin{aligned}
& P M_{g}(p, m, \alpha):=\left\{f \in P(p, m): \frac{1}{p} \Re\left(\frac{z(f * g)^{\prime}(z)}{(f * g)(z)}\right)<\alpha\right. \\
&\left.\left(1<\alpha<\frac{m+p}{2 p} ; z \in \Delta\right)\right\}
\end{aligned}
$$

When $g(z)=z /(1-z), p=1$ and $m=2$, the class $P M_{g}(p, m, \alpha)$ reduces to the subclass $P M(\alpha):=P \cap M(\alpha)$. When $g(z)=z /(1-z)^{\lambda+1}, p=1$ and $m=2$, the class $P M_{g}(p, m, \alpha)$ reduces to the class:

$$
P_{\lambda}(\alpha)=\left\{f \in P: \Re\left(\frac{z\left(D^{\lambda} f(z)\right)^{\prime}}{D^{\lambda} f(z)}\right)<\alpha, \quad\left(\lambda>-1,1<\alpha<\frac{3}{2} ; z \in \Delta\right)\right\}
$$

where D^{λ} denotes the Ruscheweyh derivative of order λ. When

$$
g(z)=z+\sum_{n=2}^{\infty} n^{l} z^{n}
$$

A Class of Multivalent Functions with Positive Coefficients Defined by Convolution

Rosihan M. Ali, M. Hussain Khan,
V. Ravichandran and
K.G. Subramanian

Title Page

Contents

Go Back
Close
Quit
Page 4 of 19
the class of functions $P M_{g}(1,2, \alpha)$ reduces to the class $P M_{l}(\alpha)$ where

$$
P M_{l}(\alpha)=\left\{f \in P: \Re\left(\frac{z\left(\mathcal{D}^{l} f(z)\right)^{\prime}}{\mathcal{D}^{l} f(z)}\right)<\alpha, \quad\left(1<\alpha<\frac{3}{2} ; l \geq 0 ; \quad z \in \Delta\right)\right\},
$$

where \mathcal{D}^{l} denotes the Salagean derivative of order l. Also we have

$$
P M(\alpha) \equiv P_{0}(\alpha) \equiv P M_{0}(\alpha) .
$$

A function $f \in \mathcal{A}(p, m)$ is in $\operatorname{PPC}(p, m, \alpha, \beta)$ if

$$
\frac{1}{p} \Re\left(\frac{(1-\beta) z f^{\prime}(z)+\frac{\beta}{p} z\left(z f^{\prime}\right)^{\prime}(z)}{(1-\beta) f(z)+\frac{\beta}{p} z f^{\prime}(z)}\right)<\alpha \quad\left(\beta \geq 0 ; 0 \leq \alpha<\frac{m+p}{2 p}\right)
$$

This class is similar to the class of β-Pascu convex functions of order α and it unifies the class of $P M(\alpha)$ and the corresponding convex class.

For the newly defined class $P M_{g}(p, m, \alpha)$, we obtain coefficient inequalities, distortion and covering theorems, as well as closure theorems. As special cases, we obtain results for the classes $P_{\lambda}(\alpha)$, and $P M_{l}(\alpha)$. Similar results for the class $P P C(p, m, \alpha, \beta)$ also follow from our results, the details of which are omitted here.

A Class of Multivalent Functions with Positive Coefficients Defined by Convolution

Rosihan M. Ali, M. Hussain Khan,
V. Ravichandran and
K.G. Subramanian

Title Page
Contents

2. Coefficient Inequalities

Throughout the paper, we assume that the function $f(z)$ is given by the equation (1.1) and $g(z)$ is given by by (1.2). We first prove a necessary and sufficient condition for functions to be in the class $P M_{g}(p, m, \alpha)$ in the following:
Theorem 2.1. A function $f \in P M_{g}(p, m, \alpha)$ if and only if

$$
\begin{equation*}
\sum_{n=m}^{\infty}(n-p \alpha) a_{n} b_{n} \leq p(\alpha-1) \quad\left(1<\alpha<\frac{m+p}{2 p}\right) \tag{2.1}
\end{equation*}
$$

Proof. If $f \in P M_{g}(p, m, \alpha)$, then (2.1) follows from

$$
\frac{1}{p} \Re\left(\frac{z(f * g)^{\prime}(z)}{(f * g)(z)}\right)<\alpha
$$

by letting $z \rightarrow 1$ - through real values. To prove the converse, assume that (2.1) holds. Then by making use of (2.1), we obtain

$$
\begin{aligned}
& \left|\frac{z(f * g)^{\prime}(z)-p(f * g)(z)}{z(f * g)^{\prime}(z)-(2 \alpha-1) p(f * g)(z)}\right| \\
& \quad \leq \frac{\sum_{n=m}^{\infty}(n-p) a_{n} b_{n}}{2(\alpha-1) p-\sum_{n=m}^{\infty}[n-(2 \alpha-1) p] a_{n} b_{n}} \leq 1
\end{aligned}
$$

or equivalently $f \in P M_{g}(p, m, \alpha)$.
Corollary 2.2. A function $f \in P_{\lambda}(\alpha)$ if and only if

$$
\sum_{n=2}^{\infty}(n-\alpha) a_{n} B_{n}(\lambda) \leq \alpha-1 \quad\left(1<\alpha<\frac{3}{2}\right)
$$

A Class of Multivalent Functions with Positive Coefficients Defined by Convolution

Rosihan M. Ali, M. Hussain Khan,
V. Ravichandran and
K.G. Subramanian

Title Page
Contents

Go Back
Close
Quit
Page 6 of 19

$$
\begin{equation*}
B_{n}(\lambda)=\frac{(\lambda+1)(\lambda+2) \cdots(\lambda+n-1)}{(n-1)!} \tag{2.2}
\end{equation*}
$$

Corollary 2.3. A function $f \in P M_{m}(\alpha)$ if and only if

$$
\sum_{n=2}^{\infty}(n-\alpha) a_{n} n^{m} \leq \alpha-1 \quad\left(1<\alpha<\frac{3}{2}\right)
$$

Our next theorem gives an estimate for the coefficient of functions in the class $P M_{g}(p, m, \alpha)$.

Theorem 2.4. If $f \in P M_{g}(p, m, \alpha)$, then

$$
a_{n} \leq \frac{p(\alpha-1)}{(n-p \alpha) b_{n}}
$$

with equality only for functions of the form

$$
f_{n}(z)=z^{p}+\frac{p(\alpha-1)}{(n-p \alpha) b_{n}} z^{n}
$$

Proof. Let $f \in P M_{g}(p, m, \alpha)$. By making use of the inequality (2.1), we have

$$
(n-p \alpha) a_{n} b_{n} \leq \sum_{n=m}^{\infty}(n-p \alpha) a_{n} b_{n} \leq p(\alpha-1)
$$

or

$$
a_{n} \leq \frac{p(\alpha-1)}{(n-p \alpha) b_{n}}
$$

A Class of Multivalent Functions with Positive Coefficients Defined by Convolution

Rosihan M. Ali, M. Hussain Khan,
V. Ravichandran and
K.G. Subramanian

Clearly for

$$
f_{n}(z)=z^{p}+\frac{p(\alpha-1)}{(n-p \alpha) b_{n}} z^{n} \in P M_{g}(p, m, \alpha)
$$

we have

$$
a_{n}=\frac{p(\alpha-1)}{(n-p \alpha) b_{n}}
$$

Corollary 2.5. If $f \in P_{\lambda}(\alpha)$, then

$$
a_{n} \leq \frac{\alpha-1}{(n-\alpha) B_{n}(\lambda)}
$$

with equality only for functions of the form

$$
f_{n}(z)=z+\frac{\alpha-1}{(n-\alpha) B_{n}(\lambda)} z^{n}
$$

where $B_{n}(\lambda)$ is given by (2.2).
Corollary 2.6. If $f \in P M_{m}(\alpha)$, then

$$
a_{n} \leq \frac{\alpha-1}{(n-\alpha) n^{m}}
$$

with equality only for functions of the form

$$
f_{n}(z)=z+\frac{\alpha-1}{(n-\alpha) n^{m}} z^{n}
$$

A Class of Multivalent Functions with Positive Coefficients Defined by Convolution

Rosihan M. Ali, M. Hussain Khan,
V. Ravichandran and
K.G. Subramanian

3. Growth and Distortion Theorems

We now prove the growth theorem for the functions in the class $P M_{g}(p, m, \alpha)$.
Theorem 3.1. If $f \in P M_{g}(p, m, \alpha)$, then

$$
r^{p}-\frac{p(\alpha-1)}{(m-p \alpha) b_{m}} r^{m} \leq|f(z)| \leq r^{p}+\frac{p(\alpha-1)}{(m-p \alpha) b_{m}} r^{m}, \quad|z|=r<1
$$

provided $b_{n} \geq b_{m} \geq 1$. The result is sharp for

$$
\begin{equation*}
f(z)=z^{p}+\frac{p(\alpha-1)}{(m-p \alpha) b_{m}} z^{m} \tag{3.1}
\end{equation*}
$$

Proof. By making use of the inequality (2.1) for $f \in P M_{g}(p, m, \alpha)$ together with

$$
(m-p \alpha) b_{m} \leq(n-p \alpha) b_{n}
$$

we obtain

$$
b_{m}(m-p \alpha) \sum_{n=m}^{\infty} a_{n} \leq \sum_{n=m}^{\infty}(n-p \alpha) a_{n} b_{n} \leq p(\alpha-1)
$$

or

$$
\begin{equation*}
\sum_{n=m}^{\infty} a_{n} \leq \frac{p(\alpha-1)}{(m-p \alpha) b_{m}} \tag{3.2}
\end{equation*}
$$

A Class of Multivalent Functions with Positive Coefficients Defined by Convolution

Rosihan M. Ali, M. Hussain Khan,
V. Ravichandran and
K.G. Subramanian

Title Page
Contents
Go Back
Close
Pait 9 of 19

By using (3.2) for the function $f(z)=z^{p}+\sum_{n=m}^{\infty} a_{n} z^{n} \in P M_{g}(p, m, \alpha)$, we have for $|z|=r$,

$$
\begin{aligned}
|f(z)| & \leq r^{p}+\sum_{n=m}^{\infty} a_{n} r^{n} \\
& \leq r^{p}+r^{m} \sum_{n=m}^{\infty} a_{n} \\
& \leq r^{p}+\frac{p(\alpha-1)}{(m-p \alpha) b_{m}} r^{m}
\end{aligned}
$$

and similarly,

$$
|f(z)| \geq r^{p}-\frac{p(\alpha-1)}{(m-p \alpha) b_{m}} r^{m}
$$

Theorem 3.1 also shows that $f(\Delta)$ for every $f \in P M_{g}(p, m, \alpha)$ contains the disk of radius $1-\frac{p(\alpha-1)}{(m-p \alpha) b_{m}}$.
Corollary 3.2. If $f \in P_{\lambda}(\alpha)$, then

$$
r-\frac{\alpha-1}{(2-\alpha)(\lambda+1)} r^{2} \leq|f(z)| \leq r+\frac{\alpha-1}{(2-\alpha)(\lambda+1)} r^{2} \quad(|z|=r)
$$

The result is sharp for

$$
\begin{equation*}
f(z)=z+\frac{\alpha-1}{(2-\alpha)(\lambda+1)} z^{2} \tag{3.3}
\end{equation*}
$$

A Class of Multivalent Functions with Positive Coefficients Defined by Convolution

Rosihan M. Ali, M. Hussain Khan,
V. Ravichandran and
K.G. Subramanian

Corollary 3.3. If $f \in P M_{m}(\alpha)$, then

$$
r-\frac{\alpha-1}{(2-\alpha) 2^{m}} r^{2} \leq|f(z)| \leq r+\frac{\alpha-1}{(2-\alpha) 2^{m}} r^{2} \quad(|z|=r)
$$

The result is sharp for

$$
\begin{equation*}
f(z)=z+\frac{\alpha-1}{(2-\alpha) 2^{m}} z^{2} \tag{3.4}
\end{equation*}
$$

The distortion estimates for the functions in the class $P M_{g}(p, m, \alpha)$ is given in the following:

Theorem 3.4. If $f \in P M_{g}(p, m, \alpha)$, then

$$
\begin{aligned}
& p r^{p-1}-\frac{m p(\alpha-1)}{(m-p \alpha) b_{m}} r^{m-1} \leq\left|f^{\prime}(z)\right| \leq p r^{p-1}+\frac{m p(\alpha-1)}{(m-p \alpha) b_{m}} r^{m-1} \\
&|z|=r<1
\end{aligned}
$$

provided $b_{n} \geq b_{m}$. The result is sharp for the function given by (3.1).
Proof. By making use of the inequality (2.1) for $f \in P M_{g}(p, m, \alpha)$, we obtain

$$
\sum_{n=m}^{\infty} a_{n} b_{n} \leq \frac{p(\alpha-1)}{(m-p \alpha)}
$$

and therefore, again using the inequality (2.1), we get

$$
\sum_{n=m}^{\infty} n a_{n} \leq \frac{m p(\alpha-1)}{(m-p \alpha) b_{m}}
$$

A Class of Multivalent Functions with Positive Coefficients Defined by Convolution

Rosihan M. Ali, M. Hussain Khan,
V. Ravichandran and
K.G. Subramanian

Title Page
Contents

Go Back
Close
Quit
Page 11 of 19

For the function $f(z)=z^{p}+\sum_{n=m}^{\infty} a_{n} z^{n} \in P M_{g}(p, m, \alpha)$, we now have

$$
\begin{aligned}
\left|f^{\prime}(z)\right| & \leq p r^{p-1}+\sum_{n=m}^{\infty} n a_{n} r^{n-1} \quad(|z|=r) \\
& \leq p r^{p-1}+r^{m-1} \sum_{n=m}^{\infty} n a_{n} \\
& \leq p r^{p-1}+\frac{m p(\alpha-1)}{(m-p \alpha) b_{m}} r^{m-1}
\end{aligned}
$$

and similarly we have

$$
\left|f^{\prime}(z)\right| \geq p r^{p-1}-\frac{m p(\alpha-1)}{(m-p \alpha) b_{m}} r^{m-1}
$$

Corollary 3.5. If $f \in P_{\lambda}(\alpha)$, then

$$
1-\frac{2(\alpha-1)}{(2-\alpha)(\lambda+1)} r \leq\left|f^{\prime}(z)\right| \leq 1+\frac{2(\alpha-1)}{(2-\alpha)(\lambda+1)} r \quad(|z|=r)
$$

The result is sharp for the function given by (3.3)
Corollary 3.6. If $f \in P M_{m}(\alpha)$, then

$$
1-\frac{2(\alpha-1)}{(2-\alpha) 2^{m}} r \leq\left|f^{\prime}(z)\right| \leq 1+\frac{2(\alpha-1)}{(2-\alpha) 2^{m}} r \quad(|z|=r)
$$

The result is sharp for the function given by (3.4)

Rosihan M. Ali, M. Hussain Khan,
V. Ravichandran and
K.G. Subramanian

Title Page
Contents
Go Back
Quit

4. Closure Theorems

We shall now prove the following closure theorems for the class $P M_{g}(p, m, \alpha)$. Let the functions $F_{k}(z)$ be given by

$$
\begin{equation*}
F_{k}(z)=z^{p}+\sum_{n=m}^{\infty} f_{n, k} z^{n}, \quad(k=1,2, \ldots, M) \tag{4.1}
\end{equation*}
$$

Theorem 4.1. Let $\lambda_{k} \geq 0$ for $k=1,2, \ldots, M$ and $\sum_{k=1}^{M} \lambda_{k} \leq 1$. Let the function $F_{k}(z)$ defined by (4.1) be in the class $P M_{g}(p, m, \alpha)$ for every $k=$ $1,2, \ldots, M$. Then the function $f(z)$ defined by

$$
f(z)=z^{p}+\sum_{n=m}^{\infty}\left(\sum_{k=1}^{M} \lambda_{k} f_{n, k}\right) z^{n}
$$

belongs to the class $P M_{g}(p, m, \alpha)$.
Proof. Since $F_{k}(z) \in P M_{g}(p, m, \alpha)$, it follows from Theorem 2.1 that

$$
\begin{equation*}
\sum_{n=m}^{\infty}(n-p \alpha) b_{n} f_{n, k} \leq p(\alpha-1) \tag{4.2}
\end{equation*}
$$

for every $k=1,2, \ldots, M$. Hence

$$
\begin{aligned}
\sum_{n=m}^{\infty}(n-p \alpha) b_{n}\left(\sum_{k=1}^{M} \lambda_{k} f_{n, k}\right) & =\sum_{k=1}^{M} \lambda_{k}\left(\sum_{n=m}^{\infty}(n-p \alpha) b_{n} f_{n, k}\right) \\
& \leq \sum_{k=1}^{M} \lambda_{k} p(\alpha-1) \leq p(\alpha-1)
\end{aligned}
$$

A Class of Multivalent Functions with Positive Coefficients Defined by Convolution

Rosihan M. Ali, M. Hussain Khan,
V. Ravichandran and
K.G. Subramanian

Title Page

Contents

44	\rightarrow
4	-
Go Back	
Close	
Quit	

Page 13 of 19

By Theorem 2.1, it follows that $f(z) \in P M_{g}(p, m, \alpha)$.
Corollary 4.2. The class $P M_{g}(p, m, \alpha)$ is closed under convex linear combinations.

Theorem 4.3. Let

$$
F_{p}(z)=z^{p} \text { and } F_{n}(z)=z^{p}+\frac{p(\alpha-1)}{(n-p \alpha) b_{n}} z^{n}
$$

for $n=m, m+1, \ldots$ Then $f(z) \in P M_{g}(p, m, \alpha)$ if and only if $f(z)$ can be expressed in the form

$$
\begin{equation*}
f(z)=\lambda_{p} z^{p}+\sum_{n=m}^{\infty} \lambda_{n} F_{n}(z) \tag{4.3}
\end{equation*}
$$

where each $\lambda_{j} \geq 0$ and $\lambda_{p}+\sum_{n=m}^{\infty} \lambda_{n}=1$.
Proof. Let $f(z)$ be of the form (4.3). Then

$$
f(z)=z^{p}+\sum_{n=m}^{\infty} \frac{\lambda_{n} p(\alpha-1)}{(n-p \alpha) b_{n}} z^{n}
$$

and therefore

$$
\sum_{n=m}^{\infty} \frac{\lambda_{n} p(\alpha-1)}{(n-p \alpha) b_{n}} \frac{(n-p \alpha) b_{n}}{p(\alpha-1)}=\sum_{n=m}^{\infty} \lambda_{n}=1-\lambda_{p} \leq 1
$$

By Theorem 2.1, we have $f(z) \in P M_{g}(p, m, \alpha)$.

A Class of Multivalent Functions with Positive Coefficients Defined by Convolution

Rosihan M. Ali, M. Hussain Khan,
V. Ravichandran and
K.G. Subramanian
Title Page

Conversely, let $f(z) \in P M_{g}(p, m, \alpha)$. From Theorem 2.4, we have

$$
a_{n} \leq \frac{p(\alpha-1)}{(n-p \alpha) b_{n}} \quad \text { for } \quad n=m, m+1, \ldots
$$

Therefore we may take

$$
\lambda_{n}=\frac{(n-p \alpha) b_{n} a_{n}}{p(\alpha-1)} \quad \text { for } \quad n=m, m+1, \ldots
$$

and

$$
\lambda_{p}=1-\sum_{n=m}^{\infty} \lambda_{n}
$$

Then

$$
f(z)=\lambda_{p} z^{p}+\sum_{n=m}^{\infty} \lambda_{n} F_{n}(z)
$$

We now prove that the class $P M_{g}(p, m, \alpha)$ is closed under convolution with certain functions and give an application of this result to show that the class $P M_{g}(p, m, \alpha)$ is closed under the familiar Bernardi integral operator.

Theorem 4.4. Let $h(z)=z^{p}+\sum_{n=m}^{\infty} h_{n} z^{n}$ be analytic in Δ with $0 \leq h_{n} \leq 1$. If $f(z) \in P M_{g}(p, m, \alpha)$, then $(f * h)(z) \in P M_{g}(p, m, \alpha)$.

Proof. The result follows directly from Theorem 2.1.
A Class of Multivalent Functions with Positive Coefficients Defined by Convolution

Rosihan M. Ali, M. Hussain Khan,
V. Ravichandran and
K.G. Subramanian

The generalized Bernardi integral operator is defined by the following integral:

$$
\begin{equation*}
F(z)=\frac{c+p}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \quad(c>-1 ; z \in \Delta) \tag{4.4}
\end{equation*}
$$

Since

$$
F(z)=f(z) *\left(z^{p}+\sum_{n=m}^{\infty} \frac{c+p}{c+n} z^{n}\right)
$$

we have the following:
Corollary 4.5. If $f(z) \in P M_{g}(p, m, \alpha)$, then $F(z)$ given by (4.4) is also in $P M_{g}(p, m, \alpha)$.

A Class of Multivalent Functions with Positive Coefficients Defined by Convolution

Rosihan M. Ali, M. Hussain Khan,
V. Ravichandran and
K.G. Subramanian

5. Order and Radius Results

Let $P S_{h}^{*}(p, m, \beta)$ be the subclass of $P(m, p)$ consisting of functions f for which $f * h$ is starlike of order β.

Theorem 5.1. Let $h(z)=z^{p}+\sum_{n=m}^{\infty} h_{n} z^{n}$ with $h_{n}>0$. Let $(\alpha-1) n h_{n} \leq$ $(n-p \alpha) b_{n}$. If $f \in P M_{g}(p, m, \alpha)$, then $f \in P S_{h}^{*}(p, m, \beta)$, where

$$
\beta:=\inf _{n \geq m}\left[\frac{(n-p \alpha) b_{n}-(\alpha-1) n h_{n}}{(n-p \alpha) b_{n}-(\alpha-1) p h_{n}}\right] .
$$

Proof. Let us first note that the condition $(\alpha-1) n h_{n} \leq(n-p \alpha) b_{n}$ implies $f \in P S_{h}^{*}(p, m, 0)$. From the definition of β, it follows that

$$
\beta \leq \frac{(n-p \alpha) b_{n}-(\alpha-1) n h_{n}}{(n-p \alpha) b_{n}-(\alpha-1) p h_{n}}
$$

or

$$
\frac{(n-p \beta) h_{n}}{1-\beta} \leq \frac{(n-p \alpha) b_{n}}{\alpha-1}
$$

and therefore, in view of (2.1),

$$
\sum_{n=m}^{\infty} \frac{(n-p \beta)}{p(1-\beta)} a_{n} h_{n} \leq \sum_{n=m}^{\infty} \frac{(n-p \alpha)}{p(\alpha-1)} a_{n} b_{n} \leq 1
$$

Thus

$$
\left|\frac{1}{p} \cdot \frac{z(f * h)^{\prime}(z)}{(f * h)(z)}-1\right| \leq \frac{\sum_{n=m}^{\infty}(n / p-1) a_{n} h_{n}}{1-\sum_{n=m}^{\infty} a_{n} h_{n}} \leq 1-\beta
$$

and therefore $f \in P S_{h}^{*}(p, m, \beta)$.

Similarly we can prove the following:
Theorem 5.2. If $f \in P M_{g}(p, m, \alpha)$, then $f \in P M_{h}(p, m, \beta)$ in $|z|<r(\alpha, \beta)$ where

$$
r(\alpha, \beta):=\min \left\{1 ; \inf _{n \geq m}\left[\frac{(n-p \alpha)}{(n-p \alpha)} \frac{(\beta-1)}{(\alpha-1)} \frac{b_{n}}{h_{n}}\right]^{\frac{1}{n-p}}\right\}
$$

A Class of Multivalent

 Functions with Positive Coefficients Defined by ConvolutionRosihan M. Ali, M. Hussain Khan,
V. Ravichandran and
K.G. Subramanian

References

[1] R.M. ALI, M. HUSSAIN KHAN, V. RAVICHANDRAN and K.G. SUBRAMANIAN, A class of multivalent functions with negative coefficients defined by convolution, preprint.
[2] O.P. AHUJA, Hadamard products of analytic functions defined by Ruscheweyh derivatives, in Current Topics in Analytic Function Theory, 13-28, World Sci. Publishing, River Edge, NJ.
[3] S. OWA AND H.M. SRIVASTAVA, Some generalized convolution properties associated with certain subclasses of analytic functions, J. Inequal. Pure Appl. Math., 3(3) (2002), Article 42, 13 pp. [ONLINE: http: / / jipam. vu.edu.au/article.php?sid=194]
[4] V. RAVICHANDRAN, On starlike functions with negative coefficients, Far East J. Math. Sci., 8(3) (2003), 359-364.
[5] H. SILVERMAN, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1975), 109-116.
[6] B.A. URALEGADDI, M.D. GANIGI and S.M. SARANGI, Univalent functions with positive coefficients, Tamkang J. Math., 25(3) (1994), 225230.

A Class of Multivalent Functions with Positive Coefficients Defined by Convolution

Rosihan M. Ali, M. Hussain Khan,
V. Ravichandran and
K.G. Subramanian

Title Page
Contents

Go Back
Close
Quit
Page 19 of 19

