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ABSTRACT. We study invariance in the class of weighted Lehmer means. Thus we look at triples
of weighted Lehmer means with the property that one is invariant with respect to the other two.
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1. M EANS

The abstract definitions of means are usually given as:

Definition 1.1. A mean is a functionM : R2
+ → R+, with the property

min(a, b) ≤ M(a, b) ≤ max(a, b), ∀a, b > 0.

A meanM is calledsymmetric if

M(a, b) = M(b, a), ∀a, b > 0.

In [12] the following definition was given:

Definition 1.2. The functionM is called ageneralized meanif it has the property

M(a, a) = a, ∀a > 0.

A generalized mean is called in [10] apre-mean, which seems more adequate.
Of course, each mean is reflexive, thus it is a generalized mean.
In what follows, we use the weighted Lehmer meansCp;λ defined by

Cp;λ(a, b) =
λ · ap + (1− λ) · bp

λ · ap−1 + (1− λ) · bp−1
,
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with λ ∈ [0, 1] fixed. Important special cases are the weighted arithmetic mean and the
weighted harmonic mean, given respectively by

Aλ = C1;λ and Hλ = C0;λ.

For λ = 1/2 we get the symmetric means denoted byCp,A andH. Note that the geometric
mean can also be obtained, but the weighted geometric mean cannot:

C1/2 = G but C1/2;λ 6= Gλ for λ 6= 1/2.

Forλ = 0 andλ = 1 we have

Cp;0 = Π2 respectively Cp;1 = Π1, ∀p ∈ R,

whereΠ1 andΠ2 are the first and the second projections, defined respectively by

Π1(a, b) = a, Π2(a, b) = b, ∀a, b ≥ 0.

If λ /∈ [0, 1] the functionsCp;λ are generalized means only.

2. I NVARIANT M EANS

Given three meansP, Q andR , theircompound

P (Q, R)(a, b) = P (Q(a, b), R(a, b)), ∀a, b > 0,

defines also a meanP (Q,R).

Definition 2.1. A meanP is called(Q,R)−invariant if it verifies

P (Q,R) = P.

Remark 1. Using the property of(A,G)−invariance of the mean

M(a, b) =
π

2
·

[∫ π/2

0

dθ√
a2 cos2 θ + b2 sin2 θ

]−1

,

Gauss showed that this mean gives the limit of the arithmetic-geometric double sequence. As
was proved in [1], this property is generally valid: the meanP which is(Q,R)−invariant gives
the limit of the double sequence of Gauss type defined with the meansQ andR :

an+1 = Q(an, bn), bn+1 = R(an, bn), n ≥ 0.

Moreover, the validity of this property for generalized means is proved in [14] (if the limitL
exists andP (L, L) is defined).

Remark 2. In this paper, we are interested in theproblem of invariance in a familyM of
means. It consists of determining all the triples of means(P, Q,R) from M such thatP
is (Q,R)−invariant. This problem was considered for the first time for the class of quasi-
arithmetic means by Sutô in [11] and many years later by J. Matkowski in [8]. It was called
the problem of Matkowski-Sutô and was completely solved in [4]. The invariance problem was
also solved for the class of weighted quasi-arithmetic means in [6], for the class of Greek means
in [13] and for the class of Gini-Beckenbach means in [9]. In this paper we are interested in
the problem of invariance in the class of weighted Lehmer means. We use the method of se-
ries expansion of means, as in [13]. The other papers mentioned before have used functional
equations methods.
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3. SERIES EXPANSION OF M EANS

For the study of some problems related to a meanM, in [7] the power series expansions of the
normalized functionM(1, 1−x) is used. For some means it is very difficult, or even impossible
to determine all the coefficients. In these cases, a recurrence relation for the coefficients is very
useful. Such a formula is presented in [5] asEuler’s formula .

Theorem 3.1. If the functionf has the Taylor series

f(x) =
∞∑

n−0

an · xn,

p is a real number and

[f(x)]p =
∞∑

n−0

bn · xn,

then we have the recurrence relation
n∑

k=0

[k(p + 1)− n] · ak · bn−k = 0, n ≥ 0.

Using it in [3], the series expansion of the weighted Lehmer mean is given by:

Cp;λ(1, 1− x)

= 1− (1− λ) x + λ (1− λ) (p− 1) x2 − λ (1− λ) (p− 1) [2λ (p− 1)− p]
x3

2

+ λ (1− λ) (p− 1)
[
6λ2 (p− 1)2 − 6λp (p− 1) + p (p + 1)

]
· x

4

6
+ · · · .

4. Cp,λ−COMPLEMENTARY OF M EANS

If the meanP is (Q,R)−invariant, the meanR is calledcomplementary toQ with respect
to P (or P−complementary to Q). If a given meanQ has a uniqueP−complementary mean
R, we denote it byR = QP .

Some obvious general examples are given in the following

Proposition 4.1. For every meanM we have

MM = M, ΠM
1 = Π2, MΠ2 = Π2.

If M is a symmetric mean we have also

ΠM
2 = Π1.

We shall call these resultstrivial casesof complementariness.

Denote theCp;λ−complementary of the meanM by MC(p;λ), or byMC(p) if λ = 1/2. Using
Euler’s formula, we can establish the following.

Theorem 4.2. If the meanM has the series expansion

M(1, 1− x) = 1 +
∞∑

n=0

anx
n,
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then the first terms of the series expansion ofMC(p;λ), for λ 6= 0, 1, are

MC(p;λ)(1, 1− x)

= 1− 1− λ + λa1

1− λ
x− λ

(1− λ)2 [(p− 1) a1 (a1 + 2 (1− λ)) + a2 (1− λ)] · x2

− λ

2 (1− λ)3

[
a1 (p− 1)

(
2λ3p− λ2 (p + 2)− 4λ (p− 1) + 3p− 2

)
+ a2

1 (p− 1)
(
2λ2 (1− 3p) + λ (3p + 2) + 3p− 4

)
+ a3

1 (p− 1) (2λp + p− 2)

+ 4a2 (p− 1) (1− λ)2 + 4a1a2 (p− 1) (1− λ) +2a3 (1− λ)2] · x3 + · · · .

Corollary 4.3. The first terms of the series expansion ofCC(p;λ)
r;µ are

CC(p;λ)
r;µ (1, 1− x)

= 1− 1− 2λ + λµ

1− µ
x +

λ (1− µ)

(1− λ)2 [p (1− 2λ + µ) + µr (λ− 1)− 1

+ 2λ− λµ]x2 +
λ (1− µ)

(1− λ)3

[
p2

(
2λ3 + 2λµ2 − 6λ2µ− λµ + 5λ2 + µ2 + µ− 5λ + 1

)
+ 4pr

(
λµ2 + λµ− λ2µ −µ2

)
+ r2

(
2λµ− 4λµ2 − λ2µ− µ + 2µ2

)
+ p

(
2λ2µ2

+ 12λ2µ− 6λµ2 − 2λ3 − 9λ2 + µ2 −λµ + 7λ− µ− 1) + r
(
5λ2µ− 4λ2µ2

+ 4λµ2 −6λµ + µ) + 2λ2µ2 + 4λ2 − 6λ2µ +2λµ− 2λ] x3 + · · · .

Using them we can prove the following main result.

Corollary 4.4. We have
Cp;λ(Cr;µ, Cu;ν) = Cp;λ

if we are in one of the following non-trivial cases:

i) C1;λ(C1;(2λ−1)/λ, Cu;1) = C1;λ;

ii) C0;λ(C0;(2λ−1)/λ, Cu;1) = C0;λ;

iii) C0(Cr;µ, C−r;1−µ) = C0;

iv) C1/2(Cr;µ, C1−r;1−µ) = C1/2;

v) C1(Cr;µ, C2−r;1−µ) = C1;

vi) C0;λ(C0;(3λ−1)/2λ, C0;1/2) = C0;λ;

vii) C1;λ(C1;(3λ−1)/2λ, C1) = C1;λ;

viii) C0,1/3(Cr;0, C0) = C0;1/3;

ix) C1,1/3(Cr;0, C1) = C1;1/3;

x) C2,1/4(C1;−1/2, C1) = C2,1/4;

xi) C−1,1/4(C0;−1/2, C0) = C−1,1/4;

xii) C0;λ(C0, C0;λ/(2−2λ)) = C0;λ;

xiii) C1;λ(C1, C1;λ/(2−2λ)) = C1;λ;

xiv) C−1;3/4(C0, C0;3/2) = C−1;3/4;

xv) C2;3/4(C1, C1;3/2) = C2;3/4.
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Proof. We consider the equivalent conditionCC(p;λ)
r;µ = Cu;ν which gives

CC(p;λ)
r;µ (1, 1− x) = Cu;ν(1, 1− x).

Equating the coefficients ofxk, k = 1, 2, . . . , 5, we get the following table of solutions with
corresponding conclusions:

Case λ µ ν p r u CC(p;λ)
r;µ = Cu;ν Case

1 0 µ 0 p r u CΠ(2)
r;µ = Π2 Trivial

2 λ 1 0 p r u Π
C(p;λ)
1 = Π2 Trivial

3 1
2

0 1 p r u Π
C(p)
2 = Π1 Trivial

4 λ 2λ−1
λ

1 1 1 u AA(λ)
2λ−1

λ

= Π1 i)

5 λ 2λ−1
λ

1 0 0 u HH(λ)
2λ−1

λ

= Π1 ii)

6 1
2

µ 1− µ 0 r −r CHr;µ = C−r;1−µ iii)

7 1
2

µ 1− µ 1
2

r 1− r CGr;µ = C1−r;1−µ iv)

8 1
2

µ 1− µ 1 r 2− r CAr;µ = C2−r;1−µ v)

9 1
2

1
2

1
2

p p p CC(p)
p = Cp Trivial

10 λ 3λ−1
2λ

1
2

0 0 0 HH(λ)
3λ−1
2λ

= H vi)

11 λ 3λ−1
2λ

1
2

1 1 1 AA(λ)
3λ−1
2λ

= A vii)

12 1
3

0 1
2

0 r 0 Π
H(1/3)
2 = H viii)

13 1
3

0 1
2

1 r 1 Π
A(1/3)
2 = A ix)

14 1
4

−1
2

1
2

2 1 1 AC(2;1/4)
−1/2 = A x)

15 1
4

-1
2

1
2

−1 0 0 HC(2;1/4)
−1/2 = H xi)

16 λ 1
2

λ
2(1−λ)

0 0 0 HH(λ) = H λ
2(1−λ)

xii)

17 λ 1
2

λ
2(1−λ)

1 1 1 AA(λ) = A λ
2(1−λ)

xiii)

18 3
4

1
2

3
2

−1 0 0 HC(−1;3/4) = H3/2 xiv)

19 3
4

1
2

3
2

2 1 1 AC(2;3/4) = A3/2 xv)

�

Remark 3. Equating the coefficients ofx1, x2, ..., xn, we have a system ofn equations with six
unknowns (the parameters of the means). Forn = 2, 3, 4, solving the system, we get relations
among the parameters such as:

ν =
λ (1− µ)

1− λ
, u =

λµr − µr + pµ− 2λp + p

1− 2λ + λµ
, r =

Z

λ− 1
,

J. Inequal. Pure and Appl. Math., 9(2) (2008), Art. 54, 7 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


6 IULIA COSTIN AND GHEORGHETOADER

where

Z2µ (µ− 1) + 2pµZ (λ− λµ + µ− 1) + λ2p− 2λ2µ2p− λ2p2 + 2λ3p2 − 2λ3p

+ 3λ2µ2p2 − λµ3p2 − λ3µp2 + λ3µp + λµ3p + 4λ2µp + 4λµp2

− 5λ2µp2 − 2λµp− 2λµ2p + µ2p− µp2 = 0.

For n = 5 we obtained the table of solutions given in the previous corollary. Forn = 6,
however, the system could not even be solved using Maple. As a result, we are not certain that
we have obtained all the solutions for the problem of invariance.

Remark 4. The cases i)-ii), vi)-vii), xii)-xiii) and xiv)-xv), involveC1;λ = Aλ andC0;λ = Hλ.
There are, however, no similar cases forC1/2;λ. Instead we have the following results forGλ:

GG(λ)
2λ−1

λ

= Π1, Π
G(1/3)
2 = G, GG(λ)

3λ−1
2λ

= G, GG(λ) = G λ
2(1−λ)

,

but these are not Lehmer means.

Remark 5. It is easy to see that not all of the generalized means that appear in the above results
are means. In such a case, the result given in Remark 1 can be negative. For example, in the
case xv), if we consider

an+1 = C1(an, bn), bn+1 = C1;3/2(an, bn), n ≥ 0,

for a0 = 10 andb0 = 1, we geta2 = a0 andb2 = b0, thus the sequences are divergent. Also, in
the case xii), if we takeλ = 4/5, the double sequence

an+1 = C0(an, bn), bn+1 = C0;2(an, bn), n ≥ 0,

has the limit zero fora0 = 10 andb0 = 1, which is different fromC0;4/5(10, 1). This is because
C0;4/5 is not defined in(0, 0) , thus the proof of the Invariance Principle in [14] does not work.

Corollary 4.5. For means we have

Cp;λ(Cr;µ, Cu;ν) = Cp;λ

if we are in one of the following non-trivial cases:

i) C1;λ(C1;(2λ−1)/λ, Cu;1) = C1;λ, λ ∈ [1/2, 1];

ii) C0;λ(C0;(2λ−1)/λ, Cu;1) = C0;λ, λ ∈ [1/2, 1];

iii) C0(Cr;µ, C−r;1−µ) = C0;

iv) C1/2(Cr;µ, C1−r;1−µ) = C1/2;

v) C1(Cr;µ, C2−r;1−µ) = C1;

vi) C0;λ(C0;(3λ−1)/2λ, C0;1/2) = C0;λ, λ ∈ [1/3, 1];

vii) C1;λ(C1;(3λ−1)/2λ, C1) = C1;λ, λ ∈ [1/3, 1];

viii) C0,1/3(Cr;0, C0) = C0;1/3;

ix) C1,1/3(Cr;0, C1) = C1;1/3;

x) C0;λ(C0, C0;λ/(2−2λ)) = C0;λ, λ ∈ [0, 2/3];

xi) C1;λ(C1, C1;λ/(2−2λ)) = C1;λ, λ ∈ [0, 2/3].
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Remark 6. Each of the above results allows us to define a double sequence of Gauss type with
known limit.

Corollary 4.6. For symmetric means, we have

Cp(Cr, Cu) = Cp

if and only if we are in the following non-trivial cases:

i) C0(Cr, C−r) = C0;

ii) C1/2(Cr, C1−r) = C1/2;

iii) C1(Cr, C2−r) = C1.
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