Journal of Inequalities in Pure and Applied Mathematics

ON CERTAIN SUBCLASS OF p-VALENTLY BAZILEVIC FUNCTIONS

J. PATEL

Department of Mathematics
Utkal University, Vani Vihar
Bhubaneswar-751004, India
EMail: jpatelmath@sify.com
volume 6, issue 1 , article 16, 2005.

Received 13 December, 2004; accepted 03 February, 2005.

Communicated by: H.M. Srivastava

Abstract
Contents
Gome Page
Go Back
Close

Abstract

We introduce a subclass $\mathcal{M}_{p}(\lambda, \mu, A, B)$ of p-valent analytic functions and derive certain properties of functions belonging to this class by using the techniques of Briot-Bouquet differential subordination. Further, the integral preserving properties of Bazilevic functions in a sector are also considered.

2000 Mathematics Subject Classification: 30C45.
Key words: p-valent; Bazilevic function; Differential subordination.
The work has been supported by the financial assistance received under DRS programme from UGC, New Delhi.

Contents

1 Introduction 3
2 Preliminaries 6
3 Main Results 9
References

1. Introduction

Let \mathcal{A}_{p} be the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n} \quad(p \in \mathbb{N}=\{1,2,3, \ldots\}) \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $E=\{z \in \mathbb{C}:|z|<1\}$. We denote $\mathcal{A}_{1}=\mathcal{A}$.

A function $f \in \mathcal{A}_{p}$ is said to be in the class $\mathcal{S}_{p}^{*}(\alpha)$ of p-valently starlike of order α, if it satisfies

$$
\begin{equation*}
\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \quad(0 \leq \alpha<p ; z \in E) \tag{1.2}
\end{equation*}
$$

We write $\mathcal{S}_{p}^{*}(0)=\mathcal{S}_{p}^{*}$, the class of p-valently starlike functions in E.
A function $f \in \mathcal{A}_{p}$ is said to be in the class $\mathcal{K}_{p}(\alpha)$ of p-valently convex of order α, if it satisfies

$$
\begin{equation*}
\Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha \quad(0 \leq \alpha<p ; z \in E) . \tag{1.3}
\end{equation*}
$$

The class of p-valently convex functions in E is denoted by \mathcal{K}_{p}. It follows from (1.2) and (1.3) that

$$
f \in \mathcal{K}_{p}(\alpha) \Longleftrightarrow f \in \mathcal{S}_{p}^{*}(\alpha) \quad(0 \leq \alpha<p) .
$$

On Certain Subclass of p-Valently Bazilevic Functions

> J. Patel

Title Page
Contents

Go Back
Close
Quit
Page 3 of 28
J. Ineq. Pure and Appl. Math. 6(1) Art. 16, 2005 http://jipam.vu.edu.au

Furthermore, a function $f \in \mathcal{A}_{p}$ is said to be p-valently Bazilevic of type μ and order α, if there exists a function $g \in \mathcal{S}_{p}^{*}$ such that

$$
\begin{equation*}
\Re\left\{\frac{z f^{\prime}(z)}{f(z)^{1-\mu} g(z)^{\mu}}\right\}>\alpha \quad(z \in E) \tag{1.4}
\end{equation*}
$$

for some $\mu(\mu \geq 0)$ and $\alpha(0 \leq \alpha<p)$. We denote by $\mathcal{B}_{p}(\mu, \alpha)$, the subclass of \mathcal{A}_{p} consisting of all such functions. In particular, a function in $\mathcal{B}_{p}(1, \alpha)=$ $\mathcal{B}_{p}(\alpha)$ is said to be p-valently close-to-convex of order α in E.

For given arbitrary real numbers A and $B(-1 \leq B<A \leq 1)$, let

$$
\begin{equation*}
\mathcal{S}_{p}^{*}(A, B)=\left\{f \in \mathcal{A}_{p}: \frac{z f^{\prime}(z)}{f(z)} \prec p \frac{1+A z}{1+B z}, \quad z \in E\right\} \tag{1.5}
\end{equation*}
$$

where the symbol \prec stands for subordination. In particular, we note that $\mathcal{S}_{p}^{*}\left(1-\frac{2 \alpha}{p},-1\right)=S_{p}^{*}(\alpha)$ is the class of p-valently starlike functions of order $\alpha(0 \leq \alpha<p)$. From (1.5), we observe that $f \in \mathcal{S}_{p}^{*}(A, B)$, if and only if

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-\frac{p(1-A B)}{1-B^{2}}\right|<\frac{p(A-B)}{1-B^{2}} \quad(-1<B<A \leq 1 ; z \in E) \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\frac{p(1-A)}{2} \quad(B=-1 ; z \in E) \tag{1.7}
\end{equation*}
$$

On Certain Subclass of p-Valently Bazilevic Functions
J. Patel

Title Page
Contents

Go Back
Close
Quit
Page 4 of 28

Let $\mathcal{M}_{p}(\lambda, \mu, A, B)$ denote the class of functions in \mathcal{A}_{p} satisfying the condition

$$
\text { (1.8) } \frac{z f^{\prime}(z)}{f(z)^{1-\mu} g(z)^{\mu}}
$$

$$
\begin{aligned}
+\lambda\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-(1-\mu) \frac{z f^{\prime}(z)}{f(z)}-\mu \frac{z g^{\prime}(z)}{g(z)}\right\} & \prec p \frac{1+A z}{1+B z} \\
& (-1 \leq B<A \leq 1 ; z \in E)
\end{aligned}
$$

for some real $\mu(\mu \geq 0), \lambda(\lambda>0)$, and $g \in \mathcal{S}_{p}^{*}$. For convenience, we write

$$
\begin{aligned}
& \mathcal{M}_{p}\left(\lambda, \mu, 1-\frac{2 \alpha}{p},-1\right) \\
& =\mathcal{M}_{p}(\lambda, \mu, \alpha) \\
& =\left\{f \in \mathcal{A}_{p}: \Re\left[\frac{z f^{\prime}(z)}{f(z)^{1-\mu} g(z)^{\mu}}\right.\right. \\
& \left.\left.\quad+\lambda\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-(1-\mu) \frac{z f^{\prime}(z)}{f(z)}-\mu \frac{z g^{\prime}(z)}{g(z)}\right\}\right]>\alpha\right\}
\end{aligned}
$$

for some $\alpha(0 \leq \alpha<p)$ and $z \in E$.
In the present paper, we derive various useful properties and characteristics of the class $\mathcal{M}_{p}(\lambda, \mu, A, B)$ by employing techniques involving Briot-Bouquet differential subordination. The integral preserving properties of Bazilevic functions in a sector are also considered. Relevant connections of the results presented here with those obtained in earlier works are pointed out.

On Certain Subclass of p-Valently Bazilevic Functions
J. Patel

Title Page
Contents

Go Back
Close
Quit
Page 5 of 28

2. Preliminaries

To establish our main results, we shall require the following lemmas.
Lemma 2.1 ([6]). Let h be a convex function in E and let ω be analytic in E with $\Re\{\omega(z)\} \geq 0$. If q is analytic in E and $q(0)=h(0)$, then

$$
q(z)+\omega(z) z q^{\prime}(z) \prec h(z) \quad(z \in E)
$$

implies

$$
q(z) \prec h(z) \quad(z \in E) .
$$

Lemma 2.2. If $-1 \leq B<A \leq 1, \beta>0$ and the complex number γ satisfies $\Re(\gamma) \geq-\beta(1-A) /(1-B)$, then the differential equation

$$
q(z)+\frac{z q^{\prime}(z)}{\beta q(z)+\gamma}=\frac{1+A z}{1+B z} \quad(z \in E)
$$

has a univalent solution in E given by

$$
q(z)= \begin{cases}\frac{z^{\beta+\gamma}(1+B z)^{\beta(A-B) / B}}{\beta \int_{0}^{z} t^{\beta+\gamma-1}(1+B t)^{\beta(A-B) / B} d t}-\frac{\gamma}{\beta}, & B \neq 0 \tag{2.1}\\ \frac{z^{\beta+\gamma} \exp (\beta A z)}{\beta \int_{0}^{z} t^{\beta+\gamma-1} \exp (\beta A t) d t}-\frac{\gamma}{\beta}, & B=0\end{cases}
$$

If $\phi(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ is analytic in E and satisfies

On Certain Subclass of p-Valently Bazilevic Functions
J. Patel

Title Page
Contents

Go Back
Close
Quit
Page 6 of 28

$$
\begin{equation*}
\phi(z)+\frac{z \phi^{\prime}(z)}{\beta \phi(z)+\gamma} \prec \frac{1+A z}{1+B z} \quad(z \in E), \tag{2.2}
\end{equation*}
$$

then

$$
\phi(z) \prec q(z) \prec \frac{1+A z}{1+B z} \quad(z \in E)
$$

and $q(z)$ is the best dominant of (2.2).
The above lemma is due to Miller and Mocanu [7].
Lemma 2.3 ([12]). Let ν be a positive measure on $[0,1]$. Let h be a complexvalued function defined on $E \times[0,1]$ such that $h(\cdot, t)$ is analytic in E for each $t \in[0,1]$, and $h(z, \cdot)$ is ν-integrable on $[0,1]$ for all $z \in E$. In addition, suppose that $\Re\{h(z, t)\}>0, h(-r, t)$ is real and $\Re\{1 / h(z, t)\} \geq 1 / h(-r, t)$ for $|z| \leq$ $r<1$ and $t \in[0,1]$. If $h(z)=\int_{0}^{1} h(z, t) d \nu(t)$, then $\Re\{1 / h(z)\} \geq 1 / h(-r)$.

For real or complex numbers $a, b, c(c \neq 0,-1,-2, \ldots)$, the hypergeometric function is defined by

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; z)=1+\frac{a \cdot b}{c} \cdot \frac{z}{1!}+\frac{a(a+1) \cdot b(b+1)}{c(c+1)} \cdot \frac{z^{2}}{2!}+\cdots . \tag{2.3}
\end{equation*}
$$

We note that the series in (2.3) converges absolutely for $z \in E$ and hence represents an analytic function in E. Each of the identities (asserted by Lemma 2.3 below) is well-known [13].

Lemma 2.4. For real numbers $a, b, c(c \neq 0,-1,-2, \ldots)$, we have

$$
\begin{align*}
\int_{0}^{1} t^{b-1}(1-t)^{c-b-1} & (1-t z)^{-a} d t \tag{2.4}\\
& =\frac{\Gamma(b) \Gamma(c-b)}{\Gamma(c)}{ }_{2} F_{1}(a, b ; c ; z) \quad(c>b>0)
\end{align*}
$$

On Certain Subclass of p-Valently Bazilevic Functions
J. Patel

Title Page
Contents

Go Back
Close
Quit
Page 7 of 28

J. Ineq. Pure and Appl. Math. 6(1) Art. 16, 2005
http://jipam.vu.edu.au

$$
\begin{align*}
& { }_{2} F_{1}(a, b ; c ; z)={ }_{2} F_{1}(b, a ; c ; z) \tag{2.5}\\
& { }_{2} F_{1}(a, b ; c ; z)=(1-z)^{-a}{ }_{2} F_{1}\left(a, c-b ; c ; \frac{z}{z-1}\right) . \tag{2.6}
\end{align*}
$$

Lemma 2.5 ([10]). Let $p(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ be analytic in E and $p(z) \neq 0$ in E. If there exists a point $z_{0} \in E$ such that
(2.7) $|\arg p(z)|<\frac{\pi}{2} \eta\left(|z|<\left|z_{0}\right|\right)$ and $\left|\arg p\left(z_{0}\right)\right|=\frac{\pi}{2} \eta(0<\eta \leq 1)$,
then we have

$$
\begin{equation*}
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=i k \eta \tag{2.8}
\end{equation*}
$$

where

$$
\begin{cases}k \geq \frac{1}{2}\left(x+\frac{1}{x}\right), & \text { when } \arg p\left(z_{0}\right)=\frac{\pi}{2} \eta, \tag{2.9}\\ k \leq-\frac{1}{2}\left(x+\frac{1}{x}\right), & \text { when } \arg p\left(z_{0}\right)=-\frac{\pi}{2} \eta,\end{cases}
$$

and

$$
\begin{equation*}
\left(p\left(z_{0}\right)\right)^{1 / \eta}= \pm i x(x>0) \tag{2.10}
\end{equation*}
$$

On Certain Subclass of p-Valently Bazilevic Functions
J. Patel

Title Page
Contents

Go Back
Close
Quit
Page 8 of 28

3. Main Results

Theorem 3.1. Let $-1 \leq B<A \leq 1, \lambda>0$ and $\mu \geq 0$. If $f \in \mathcal{M}_{p}(\lambda, \mu, A, B)$, then

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{p f(z)^{1-\mu} g(z)^{\mu}} \prec \frac{\lambda}{p Q(z)}=q(z) \quad(z \in E), \tag{3.1}
\end{equation*}
$$

where

$$
\begin{gather*}
Q(z)= \begin{cases}\int_{0}^{1} s^{\frac{p}{\lambda}-1}\left(\frac{1+B s z}{1+B z}\right)^{\frac{p(A-B)}{\lambda B}} d s, & B \neq 0 \\
\int_{0}^{1} s^{\frac{p}{\lambda}-1} \exp \left(\frac{p}{\lambda}(s-1) A z\right) d s, & B=0\end{cases} \tag{3.2}\\
q(z)=\frac{1}{1+B z} \text { when } A=-\frac{\lambda B}{p}, B \neq 0,
\end{gather*}
$$

and $q(z)$ is the best dominant of (3.1). Furthermore, if $A \leq-\lambda B / p$ with $-1 \leq B<0$, then

$$
\begin{equation*}
\mathcal{M}_{p}(\lambda, \mu, A, B) \subset \mathcal{B}_{p}(\mu, \rho) \tag{3.3}
\end{equation*}
$$

where

$$
\rho=\rho(p, \lambda, A, B)=p\left\{{ }_{2} F_{1}\left(1, \frac{p(B-A)}{\lambda B} ; \frac{p}{\lambda}+1 ; \frac{B}{B-1}\right)\right\}^{-1}
$$

On Certain Subclass of p-Valently Bazilevic Functions

> J. Patel

Title Page
Contents

Go Back
Close
Quit
Page 9 of 28

The result is best possible.

Proof. Defining the function $\phi(z)$ by

$$
\begin{equation*}
\phi(z)=\frac{z f^{\prime}(z)}{p f(z)^{1-\mu} g(z)^{\mu}} \quad(z \in E) \tag{3.4}
\end{equation*}
$$

we note that $\phi(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ is analytic in E. Taking the logarithmic differentiations in both sides of (3.4), we have

$$
\begin{align*}
\frac{z f^{\prime}(z)}{f(z)^{1-\mu} g(z)^{\mu}}+\lambda\{1 & \left.+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-(1-\mu) \frac{z f^{\prime}(z)}{f(z)}-\mu \frac{z g^{\prime}(z)}{g(z)}\right\} \tag{3.5}\\
& =p \phi(z)+\lambda \frac{z \phi^{\prime}(z)}{\phi(z)} \prec \frac{p(1+A z)}{1+B z} \quad(z \in E)
\end{align*}
$$

Thus, $\phi(z)$ satisfies the differential subordination (2.2) and hence by using Lemma 2.2, we get

$$
\phi(z) \prec q(z) \prec \frac{1+A z}{1+B z} \quad(z \in E),
$$

where $q(z)$ is given by (2.1) for $\beta=p / \lambda$ and $\gamma=0$, and is the best dominant of (3.5). This proves the assertion (3.1).

Next, we show that

$$
\begin{equation*}
\inf _{|z|<1}\{\Re(q(z))\}=q(-1) \tag{3.6}
\end{equation*}
$$

On Certain Subclass of p-Valently Bazilevic Functions
J. Patel

Title Page
Contents

Go Back
Close
Quit
Page 10 of 28

If we set $a=p(B-A) / \lambda B, b=p / \lambda, c=(p / \lambda)+1$, then $c>b>0$. From
J. Ineq. Pure and Appl. Math. 6(1) Art. 16, 2005 http://jipam.vu.edu.au
(3.2), by using (2.4), (2.5) and (2.6), we see that for $B \neq 0$

$$
\begin{align*}
Q(z) & =(1+B z)^{a} \int_{0}^{1} s^{b-1}(1+B s z)^{-a} d s \tag{3.7}\\
& =\frac{\Gamma(b)}{\Gamma(c)}{ }_{2} F_{1}\left(1, a ; c ; \frac{B z}{B z+1}\right) .
\end{align*}
$$

To prove (3.6), we need to show that $\Re\{1 / Q(z)\} \geq 1 / Q(-1), z \in E$. Since $A<-\lambda B / p$ implies $c>a>0$, by using (2.4), (3.7) yields

$$
Q(z)=\int_{0}^{1} h(z, s) d \nu(s)
$$

where

$$
\begin{aligned}
h(z, s) & =\frac{1+B z}{1+(1-s) B z}(0 \leq s \leq 1) \quad \text { and } \\
d \nu(s) & =\frac{\Gamma(b)}{\Gamma(a) \Gamma(c-a)} s^{a-1}(1-s)^{c-a-1} d s
\end{aligned}
$$

which is a positive measure on $[0,1]$. For $-1 \leq B<0$, it may be noted that $\Re\{h(z, s)\}>0, h(-r, s)$ is real for $0 \leq r<1,0 \in[0,1]$ and

$$
\Re\left\{\frac{1}{h(z, s)}\right\}=\Re\left\{\frac{1+(1-s) B z}{1+B z}\right\} \geq \frac{1-(1-s) B r}{1-B r}=\frac{1}{h(-r, s)}
$$

for $|z| \leq r<1$ and $s \in[0,1]$. Therefore, by using Lemma 2.3, we have

$$
\Re\left\{\frac{1}{Q(z)}\right\} \geq \frac{1}{Q(-r)}, \quad|z| \leq r<1
$$

On Certain Subclass of p-Valently Bazilevic Functions
J. Patel

Title Page
Contents

Go Back
Close
Quit
Page 11 of 28
and by letting $r \rightarrow 1^{-}$, we obtain $\Re\{1 / Q(z)\} \geq 1 / Q(-1)$. Further, by taking $A \rightarrow(-\lambda B / p)^{+}$for the case $A=(-\lambda B / p)$, and using (3.1), we get (3.3).

The result is best possible as the function $q(z)$ is the best dominant of (3.1). This completes the proof of Theorem 3.1.

Setting $\mu=1, A=1-(2 \alpha / p)((p-\lambda) / 2 \leq \alpha<p)$ and $B=-1$ in Theorem 3.1, we have

Corollary 3.2. If $f \in \mathcal{A}_{p}$ satisfies

$$
\Re\left\{\frac{z f^{\prime}(z)}{g(z)}+\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z g^{\prime}(z)}{g(z)}\right)\right\}>\alpha \quad(\lambda>0, z \in E)
$$

for some $g \in \mathcal{S}_{p}^{*}$, then $f \in \mathcal{B}_{p}(\kappa(p, \lambda, \alpha))$, where

$$
\begin{equation*}
\kappa(p, \lambda, \alpha)=p\left\{{ }_{2} F_{1}\left(1, \frac{2(p-\alpha)}{\lambda} ; \frac{p}{\lambda}+1 ; \frac{1}{2}\right)\right\}^{-1} \tag{3.8}
\end{equation*}
$$

The result is best possible.
Taking $\mu=0, A=1-(2 \alpha / p)((p-\lambda) / 2 \leq \alpha<p)$ and $B=-1$ in Theorem 3.1, we get
Corollary 3.3. If $f \in \mathcal{A}_{p}$ satisfies

$$
\Re\left\{(1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}>\alpha \quad(\lambda>0, z \in E)
$$

On Certain Subclass of p-Valently Bazilevic Functions
J. Patel

Title Page
Contents

Go Back
Close
Quit
Page 12 of 28
then $f \in \mathcal{S}_{p}^{*}(\kappa(p, \lambda, \alpha))$, where $\kappa(p, \lambda, \alpha)$ is given by (3.8). The result is best possible.

Putting $\lambda=1$ in Corollary 3.3, we get

Corollary 3.4. For $(p-1) / 2 \leq \alpha<p$, we have

$$
\mathcal{K}_{p}(\alpha) \subset \mathcal{S}_{p}^{*}(\varkappa(p, \alpha))
$$

where $\varkappa(p, \alpha)=p\left\{{ }_{2} F_{1}(1,2(p-\alpha) ; p+1 ; 1 / 2)\right\}^{-1}$. The result is best possible.

Remark 1.

1. Noting that

$$
\left\{{ }_{2} F_{1}\left(1,2(1-\alpha) ; 2 ; \frac{1}{2}\right)\right\}^{-1}= \begin{cases}\frac{1-2 \alpha}{2^{2(1-\alpha)}\left(1-2^{2 \alpha-1}\right)}, & \alpha \neq \frac{1}{2} \\ \frac{1}{2 \ln 2}, & \alpha=\frac{1}{2}\end{cases}
$$

Corollary 3.4 yields the corresponding result due to MacGregor [5] (see also [12]) for $p=1$.
2. It is proved [9] that if $p \geq 2$ and $f \in \mathcal{K}_{p}$, then f is p-valently starlike in E but is not necessarily p-valently starlike of order larger than zero in E. However, our Corollary 3.4 shows that if f is p-valently convex of order at least $(p-1) / 2$, then f is p-valently starlike of order larger than zero in E.
Theorem 3.5. If $f \in \mathcal{B}_{p}(\mu, \alpha)$ for some $\mu(\mu>0), \alpha(0 \leq \alpha<p)$, then $f \in \mathcal{M}_{p}(\lambda, \mu, \alpha)$ for $|z|<R(p, \lambda, \alpha)$, where $\lambda>0$ and

$$
R(p, \lambda, \alpha)= \begin{cases}\frac{(p+\lambda-\alpha)-\sqrt{(p+\lambda-\alpha)^{2}-p(p-2 \alpha)}}{p-2 \alpha}, & \alpha \neq \frac{p}{2} \tag{3.9}\\ \frac{p}{p+2 \lambda}, & \alpha=\frac{p}{2}\end{cases}
$$

On Certain Subclass of p-Valently Bazilevic Functions
J. Patel

Title Page
Contents

Go Back
Close
Quit
Page 13 of 28

The bound $R(p, \lambda, \alpha)$ is best possible.

Proof. From (1.4), we get

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)^{1-\mu} g(z)^{\mu}}=\alpha+(p-\alpha) u(z) \quad(z \in E) \tag{3.10}
\end{equation*}
$$

where $u(z)=1+u_{1} z+u_{2} z^{2}+\cdots$ is analytic and has a positive real part in E. Differentiating (3.10) logarithmically, we deduce that

$$
\begin{aligned}
& \Re\left\{\frac{z f^{\prime}(z)}{f(z)^{1-\mu} g(z)^{\mu}}+\lambda\right.\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right. \\
&\left.\left.-(1-\mu) \frac{z f^{\prime}(z)}{f(z)}-\mu \frac{z g^{\prime}(z)}{g(z)}\right)\right\}-\alpha \\
&=(p-\alpha) \Re\left\{u(z)+\frac{\lambda z u^{\prime}(z)}{\alpha+(p-\alpha) u(z)}\right\}
\end{aligned}
$$

$$
\begin{equation*}
\geq(p-\alpha) \Re\left\{u(z)-\frac{\lambda\left|z u^{\prime}(z)\right|}{|\alpha+(p-\alpha) u(z)|}\right\} . \tag{3.11}
\end{equation*}
$$

Using the well-known estimates [5]

$$
\left|z u^{\prime}(z)\right| \leq \frac{2 r}{1-r^{2}} \Re\{u(z)\} \quad \text { and } \quad \Re\{u(z)\} \geq \frac{1-r}{1+r} \quad(|z|=r<1)
$$

in (3.11), we get

$$
\begin{array}{r}
\Re\left\{\frac{z f^{\prime}(z)}{f(z)^{1-\mu} g(z)^{\mu}}+\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-(1-\mu) \frac{z f^{\prime}(z)}{f(z)}-\mu \frac{z g^{\prime}(z)}{g(z)}\right)\right\}-\alpha \\
\geq(p-\alpha) \Re\{u(z)\}\left\{1-\frac{2 \lambda r}{\alpha\left(1-r^{2}\right)+(p-\alpha)(1-r)^{2}}\right\}
\end{array}
$$

On Certain Subclass of p-Valently Bazilevic Functions
J. Patel

Title Page
Contents

Go Back
Close
Quit
Page 14 of 28
which is certainly positive if $r<R(p, \lambda, \alpha)$, where $R(p, \lambda, \alpha)$ is given by (3.9).
To show that the bound $R(p, \lambda, \alpha)$ is best possible, we consider the function $f \in \mathcal{A}_{p}$ defined by

$$
\frac{z f^{\prime}(z)}{f(z)^{1-\mu} g(z)^{\mu}}=\alpha+(p-\alpha) \frac{1-z}{1+z} \quad(0 \leq \alpha<p, z \in E)
$$

for some $g \in \mathcal{S}_{p}^{*}$. Noting that

$$
\begin{aligned}
& \Re\left\{\frac{z f^{\prime}(z)}{f(z)^{1-\mu} g(z)^{\mu}}+\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-(1-\mu) \frac{z f^{\prime}(z)}{f(z)}-\mu \frac{z g^{\prime}(z)}{g(z)}\right)\right\}-\alpha \\
& =(p-\alpha)\left[\frac{1-z}{1+z}+\frac{2 \lambda z}{\alpha\left(1-z^{2}\right)+(p-\alpha)(1+z)^{2}}\right] \\
& =0
\end{aligned}
$$

for $z=-R(p, \lambda, \alpha)$, we conclude that the bound is best possible. This proves Theorem 3.5.

For $\mu=0$ and $\lambda=1$, Theorem 3.5 yields:
Corollary 3.6. If $f \in \mathcal{S}_{p}^{*}(\alpha)(0 \leq \alpha<p)$, then $f \in K_{p}(\alpha)$ in $|z|<\xi(p, \alpha)$, where

$$
\xi(p, \alpha)= \begin{cases}\frac{(p+1-\alpha)-\sqrt{\alpha^{2}+2(p-\alpha)+1}}{p-2 \alpha}, & \alpha \neq \frac{p}{2} \\ \frac{p}{p+2}, & \alpha=\frac{p}{2}\end{cases}
$$

On Certain Subclass of p-Valently Bazilevic Functions
J. Patel

Title Page
Contents

Go Back
Close
Quit
Page 15 of 28

The bound $\xi(p, \alpha)$ is best possible.

Theorem 3.7. If $f \in \mathcal{A}_{p}$ satisfies

$$
\Re\left\{\frac{f(z)}{z^{p}}\right\}>0 \quad \text { and } \quad\left|\frac{z f^{\prime}(z)}{f(z)^{1-\mu} g(z)^{\mu}}-p\right|<p \quad(0 \leq \mu, z \in E)
$$

for $g \in \mathcal{S}_{p}^{*}$, then f is p-valently convex(univalent) in $|z|<\widetilde{R}(p, \mu)$, where

$$
\widetilde{R}(p, \mu)=\frac{3+2 \mu(p-1)-\sqrt{(3+2 \mu(p-1))^{2}-4 p(2 \mu p-p-1)}}{2(2 \mu p-p-1)}
$$

The bound $\widetilde{R}(p, \mu)$ is best possible.
Proof. Letting

$$
h(z)=\frac{z f^{\prime}(z)}{p f(z)^{1-\mu} g(z)^{\mu}}-1 \quad(z \in E)
$$

we note that $h(z)$ is analytic in $E, h(0)=0$ and $|h(z)|<1$ for $z \in E$. Thus, by applying Schwarz's Lemma we get

$$
h(z)=z \psi(z)
$$

where $\psi(z)$ is analytic in E and $|\psi(z)| \leq 1$ for $z \in E$. Therefore,

$$
\begin{equation*}
z f^{\prime}(z)=p f(z)^{1-\mu} g(z)^{\mu}(1+z \psi(z)) \tag{3.12}
\end{equation*}
$$

Making use of logarithmic differentiation in (3.12), we obtain

On Certain Subclass of p-Valently Bazilevic Functions
J. Patel

Title Page
Contents

Go Back
Close
Quit
Page 16 of 28

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=(1-\mu) \frac{z f^{\prime}(z)}{f(z)}+\mu \frac{z g^{\prime}(z)}{g(z)}+\frac{z\left(\psi(z)+z \psi^{\prime}(z)\right)}{1+z \psi(z)} \tag{3.13}
\end{equation*}
$$

Setting $\phi(z)=f(z) / z^{p}=1+c_{1} z+c_{2} z^{2}+\cdots, \Re\{\phi(z)\}>0$ for $z \in E$, we get

$$
\frac{z f^{\prime}(z)}{f(z)}=p+\frac{z \phi^{\prime}(z)}{\phi(z)}
$$

so that by (3.13),

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=(1-\mu) p+(1-\mu) \frac{z \phi^{\prime}(z)}{\phi(z)}+\mu \frac{z g^{\prime}(z)}{g(z)}+\frac{z\left(\psi(z)+z \psi^{\prime}(z)\right)}{1+z \psi(z)} . \tag{3.14}
\end{equation*}
$$

Now, by using the well-known estimates [1]

$$
\begin{aligned}
& \Re\left\{\frac{z \phi^{\prime}(z)}{\phi(z)}\right\} \geq-\frac{2 r}{1-r^{2}}, \Re\left\{\frac{z g^{\prime}(z)}{g(z)}\right\} \geq-\frac{p(1-r)}{1+r} \text { and } \\
& \Re\left\{\frac{\psi(z)+z \psi^{\prime}(z)}{1+z \psi(z)}\right\} \geq-\frac{1}{1-r}
\end{aligned}
$$

for $|z|=r<1$ in (3.14), we deduce that

$$
\Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} \geq \frac{(2 \mu p-p-1) r^{2}-\{3+2 \mu(p-1)\} r+p}{1-r^{2}}
$$

which is certainly positive if $r<\widetilde{R}(p, \mu)$.
It is easily seen that the bound $\widetilde{R}(p, \mu)$ is sharp for the functions $f, g \in \mathcal{A}_{p}$ defined in E by

$$
\frac{z f^{\prime}(z)}{p f(z)^{1-\mu} g(z)^{\mu}}=\frac{1}{1+z}, g(z)=\frac{z^{p}}{(1+z)^{2}} \quad(0 \leq \mu, z \in E)
$$

On Certain Subclass of p-Valently Bazilevic Functions

> J. Patel

Title Page
Contents

Go Back
Close
Quit
Page 17 of 28

Choosing $\mu=0$ in Theorem 3.7, we have

Corollary 3.8. If $f \in \mathcal{A}_{p}$ satisfies

$$
\Re\left\{\frac{f(z)}{z^{p}}\right\}>0 \quad \text { and } \quad\left|\frac{z f^{\prime}(z)}{f(z)}-p\right|<p \quad(z \in E)
$$

then f is p-valently convex in $|z|<\{\sqrt{9+4 p(p+1)}-3\} / 2(p+1)$. The result is best possible.

For a function $f \in \mathcal{A}_{p}$, we define the integral operator $F_{\mu, \delta}$ as follows:

$$
\begin{equation*}
F_{\mu, \delta}(f)=F_{\mu, \delta}(f)(z)=\left(\frac{\delta+p \mu}{z^{\delta}} \int_{0}^{z} t^{\delta-1} f(t)^{\mu} d t\right)^{\frac{1}{\mu}}(z \in E) \tag{3.15}
\end{equation*}
$$

where μ and δ are real numbers with $\mu>0, \delta>-p \mu$.
The following lemma will be required for the proof of Theorem 3.12 below.
Lemma 3.9. Let $g \in \mathcal{S}_{p}^{*}(A, B), \mu$ and δ are real numbers with $\mu>0, \delta>$ $\max \left\{-p \mu,-\frac{p \mu(1-A)}{(1-B)}\right\}$. Then $F_{\mu, \delta}(g) \in \mathcal{S}_{p}^{*}(A, B)$.

The proof of the above lemma follows by using Lemma 2.2 followed by a simple calculation.
Theorem 3.10. Let μ and δ be real numbers with $\mu>0, \delta>\max \left\{-p \mu,-\frac{p \mu(1-A)}{(1-B)}\right\}$ $(-1 \leq B<A \leq 1)$ and let $f \in f \in \mathcal{A}_{p}$. If

On Certain Subclass of p-Valently Bazilevic Functions
J. Patel

Title Page
Contents

Go Back
Close
Quit
Page 18 of 28

$$
\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)^{1-\mu} g(z)^{\mu}}-\alpha\right)\right|<\frac{\pi}{2} \beta \quad(0 \leq \alpha<p ; 0<\beta \leq 1)
$$

for some $g \in \mathcal{S}_{p}^{*}(A, B)$, then

$$
\left|\arg \left(\frac{z\left(F_{\mu, \delta}\right)^{\prime}(f)}{F_{\mu, \delta}(f)^{1-\mu} F_{\mu, \delta}(g)^{\mu}}-\alpha\right)\right|<\frac{\pi}{2} \eta,
$$

where $F_{\mu, \delta}(f)$ is the operator given by (3.15) and $\eta(0<\eta \leq 1)$ is the solution of the equation
(3.16) $\beta=\left\{\begin{array}{r}\eta+\frac{2}{\pi} \tan ^{-1}\left(\frac{(1+B) \eta \sin \left(\frac{\pi}{2}(1-t(A, B, \delta, \mu, p))\right)}{(1+B) \delta+\mu p(1+A)+(1+B) \eta \cos \left(\frac{\pi}{2}(1-t(A, B, \delta, \mu, p))\right)}\right), \\ B \neq-1 ; \\ \eta, \\ B=-1,\end{array}\right.$

On Certain Subclass of p-Valently Bazilevic Functions
J. Patel

Title Page
and

$$
\begin{equation*}
t(A, B, \delta, \mu, p)=\frac{2}{\pi} \sin ^{-1}\left(\frac{\mu p(A-B)}{\delta\left(1-B^{2}\right)+\mu p(1-A B)}\right) \tag{3.17}
\end{equation*}
$$

Proof. Let us put

$$
q(z)=\frac{1}{p-\alpha}\left(\frac{z\left(F_{\mu, \delta}\right)^{\prime}(f)}{F_{\mu, \delta}(f)^{1-\mu} F_{\mu, \delta}(g)^{\mu}}-\beta\right)=\frac{\Phi(z)}{\Psi(z)}
$$

where

Contents

Go Back

Close
Quit
Page 19 of 28

$$
\Phi(z)=\frac{1}{p-\alpha}\left\{z^{\delta} f(z)^{\mu}-\delta \int_{0}^{z} t^{\delta-1} f(t)^{\mu} d t-\mu \alpha \int_{0}^{z} t^{\delta-1} g(t)^{\mu} d t\right\}
$$

and

$$
\Psi(z)=\mu \int_{0}^{z} t^{\delta-1} g(t)^{\mu} d t
$$

Then $q(z)$ is analytic in E and $q(0)=1$. By a simple calculation, we get

$$
\begin{aligned}
\frac{\Phi^{\prime}(z)}{\Psi^{\prime}(z)} & =q(z)\left(1+\frac{S(z)}{z S^{\prime}(z)} \frac{z q^{\prime}(z)}{q(z)}\right) \\
& =\frac{1}{p-\beta}\left(\frac{z f^{\prime}(z)}{f(z)^{1-\mu} g(z)^{\mu}}-\alpha\right) .
\end{aligned}
$$

Since $F_{\mu, \delta}(g) \in \mathcal{S}_{p}^{*}(A, B)$, by (1.6) and (1.7), we have

$$
\begin{equation*}
\frac{z S^{\prime}(z)}{S(z)}=\delta+\mu \frac{z\left(F_{\mu, \delta}\right)^{\prime}(g)}{F_{\mu, \delta}(g)}=\rho e^{i \pi \theta / 2} \tag{3.18}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
\delta+\frac{\mu p(1-A)}{1-B}<\rho<\delta+\frac{\mu p(1+A)}{1+B} \\
-t(A, B, \delta, \mu, p)<\theta<t(A, B, \delta, \mu, p) \text { for } B \neq-1
\end{array}\right.
$$

when $t(A, B, \delta, \mu, p)$ is given by (3.17), and

$$
\left\{\begin{array}{l}
\delta+\frac{\mu p(1-A)}{2}<\rho<\infty \\
-1<\theta<1 \text { for } B=-1
\end{array}\right.
$$

On Certain Subclass of p-Valently Bazilevic Functions
J. Patel

Title Page
Contents

Go Back
Close
Quit
Page 20 of 28

Further, taking $\omega(z)=S(z) / z S^{\prime}(z)$ in Lemma 2.1, we note that $q(z) \neq 0$ in E. If there exists a point $z_{0} \in E$ such that the condition (2.7) is satisfied, then (by Lemma 2.5) we obtain (2.8) under the restrictions (2.9) and (2.10).

At first, suppose that $q\left(z_{0}\right)^{\frac{1}{\eta}}=i x(x>0)$. For the case $B \neq-1$, by (3.18), we obtain

$$
\begin{aligned}
& \arg (\left.\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)^{1-\mu} g\left(z_{0}\right)^{\mu}}-\alpha\right) \\
& \quad=\arg \left(q\left(z_{0}\right)\right)+\arg \left(1+\frac{1}{\delta+\mu \frac{z_{0}\left(F_{\mu, \delta}(g)\right)^{\prime}\left(z_{0}\right)}{F_{\mu, \delta}(g)\left(z_{0}\right)}} \cdot \frac{z_{0} q^{\prime}\left(z_{0}\right)}{q\left(z_{0}\right)}\right) \\
& \quad=\frac{\pi}{2} \eta+\arg \left(1+\left(\rho e^{i \pi \theta / 2}\right)^{-1} i \eta k\right) \\
& \quad=\frac{\pi}{2} \eta+\tan ^{-1}\left(\frac{\eta k \sin (\pi(1-\theta) / 2)}{\rho+\cos (\pi(1-\theta) / 2)}\right) \\
& \quad \geq \frac{\pi}{2} \eta+\tan ^{-1}\left(\frac{\eta \sin (\pi(1-t(A, B, \delta, \mu, p)) / 2)}{\delta+\frac{\mu p(1+A)}{1+B}+\eta \cos (\pi(1-t(A, B, \delta, \mu, p)) / 2)}\right) \\
& \quad=\frac{\pi}{2} \beta
\end{aligned}
$$

where β and $t(A, B, \delta, \mu, p)$ are given by (3.16) and (3.17), respectively. Similarly, for the case $B=-1$, we have

$$
\arg \left(\frac{z f^{\prime}(z)}{f(z)^{1-\mu} g(z)^{\mu}}-\alpha\right) \geq \frac{\pi}{2} \eta
$$

On Certain Subclass of p-Valently Bazilevic Functions
J. Patel

Title Page
Contents

Go Back
Close
Quit
Page 21 of 28

This is a contradiction to the assumption of our theorem.

Next, suppose that $q\left(z_{0}\right)^{\frac{1}{\eta}}=-i x(x>0)$. For the case $B \neq-1$, applying the same method as above, we have

$$
\begin{aligned}
& \arg \left(\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)^{1-\mu} g\left(z_{0}\right)^{\mu}}-\alpha\right) \\
& \quad \leq-\frac{\pi}{2} \eta-\tan ^{-1}\left(\frac{\eta \sin (\pi(1-t(A, B, \delta, \mu, p)) / 2)}{\delta+\frac{\mu p(1+A)}{1+B}+\eta \cos (\pi(1-t(A, B, \delta, \mu, p)) / 2)}\right) \\
& \quad=-\frac{\pi}{2} \beta
\end{aligned}
$$

where β and $t(A, B, \delta, \mu, p)$ are given by (3.16) and (3.17), respectively and for the case $B=-1$, we have

$$
\arg \left(\frac{z f^{\prime}(z)}{f(z)^{1-\mu} g(z)^{\mu}}-\alpha\right) \leq-\frac{\pi}{2} \eta
$$

which contradicts the assumption. Thus, we complete the proof of the theorem.

Letting $\mu=1, B \rightarrow A$ and $g(z)=z^{p}$ in Theorem 3.10, we have
Corollary 3.11. Let $\delta>-p$ and $f \in \mathcal{A}_{p}$. If

$$
\left|\arg \left(\frac{f^{\prime}(z)}{z^{p-1}}-\alpha\right)\right|<\frac{\pi}{2} \beta \quad(0 \leq \alpha<p ; 0<\beta \leq 1)
$$

On Certain Subclass of p-Valently Bazilevic Functions
J. Patel

Title Page
Contents

Go Back
Close
Quit
Page 22 of 28
then

$$
\left|\arg \left(\frac{F_{1, \delta}^{\prime}(f)}{z^{p-1}}-\alpha\right)\right|<\frac{\pi}{2} \eta
$$

where $F_{1, \delta}(f)$ is the integral operator given by (3.15) for $\mu=1$ and $\eta(0<\eta \leq$ 1) is the solution of the equation

$$
\beta=\eta+\frac{2}{\pi} \tan ^{-1}\left(\frac{\eta}{\delta+p}\right) .
$$

Theorem 3.12. Let $\lambda>0$. If $f \in \mathcal{A}$ satisfies the condition
(3.19) $\gamma\left\{\frac{z f^{\prime}(z)}{f^{1-\mu}(z) g^{\mu}(z)}\right\}$

$$
+\lambda\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-(1-\mu) \frac{z f^{\prime}(z)}{f(z)}-\mu \frac{z g^{\prime}(z)}{g(z)}\right\} \neq i t(z \in E)
$$

for some $\mu(\mu \geq 0)$, $\gamma(\gamma>0)$ and $g \in \mathcal{S}_{p}^{*}$, where t is a real number with $|t| \geq \sqrt{\lambda(\lambda+2 p \gamma)}$, then

$$
\Re\left\{\frac{z f^{\prime}(z)}{f^{1-\mu}(z) g^{\mu}(z)}\right\}>0 \quad(z \in E)
$$

Proof. Let

$$
\phi(z)=\frac{z f^{\prime}(z)}{p f^{1-\mu}(z) g^{\mu}(z)} \quad(z \in E)
$$

On Certain Subclass of p-Valently Bazilevic Functions
J. Patel

Title Page
Contents

Go Back
Close
Quit
Page 23 of 28
where $\phi(0)=1$. From (3.19), we easily have $\phi(z) \neq 0$ in E. In fact, if ϕ has a zero of order m at $z=z_{1} \in E$, then ϕ can be written as

$$
\phi(z)=\left(z-z_{1}\right)^{m} q(z) \quad(m \in \mathbb{N})
$$

where $q(z)$ is analytic in E and $q\left(z_{1}\right) \neq 0$. Hence, we have

$$
\begin{align*}
\gamma\left\{\frac{z f^{\prime}(z)}{f^{1-\mu}(z) g^{\mu}(z)}\right\} & +\lambda\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-(1-\mu) \frac{z f^{\prime}(z)}{f(z)}-\mu \frac{z g^{\prime}(z)}{g(z)}\right\} \\
& =p \gamma \phi(z)+\lambda \frac{z \phi^{\prime}(z)}{\phi(z)} \\
& =p \gamma\left(z-z_{1}\right)^{m} q(z)+\lambda \frac{m z}{z-z_{1}}+\lambda \frac{z q^{\prime}(z)}{q(z)} \tag{3.20}
\end{align*}
$$

But the imaginary part of (3.20) can take any infinite values when $z \rightarrow z_{1}$ in a suitable direction. This contradicts (3.19). Thus, if there exists a point $z_{0} \in E$ such that

$$
\Re\{p(z)\}>0 \text { for }|z|<\left|z_{0}\right|, \quad \Re\left\{p\left(z_{0}\right)\right\}>0 \text { and } p\left(z_{0}\right)=i \ell(\ell \neq 0)
$$

then we have $p\left(z_{0}\right) \neq 0$. From Lemma 2.5 and (3.20), we get

$$
\begin{gathered}
p \gamma \phi\left(z_{0}\right)+\lambda \frac{z_{0} \phi^{\prime}\left(z_{0}\right)}{\phi\left(z_{0}\right)}=i(p \gamma \ell+\lambda k) \\
p \gamma \ell+\lambda k \geq \frac{1}{2}\left(\frac{\lambda}{\ell}+(\lambda+2 p \gamma) \ell\right) \geq \sqrt{\lambda(\lambda+2 p \gamma)} \text { when } \ell>0
\end{gathered}
$$

On Certain Subclass of p-Valently Bazilevic Functions
J. Patel

Title Page
Contents

Go Back
Close
Quit
Page 24 of 28
and

$$
p \gamma \ell+\lambda k \leq-\frac{1}{2}\left(\frac{\lambda}{|\ell|}+(\lambda+2 p \gamma)|\ell|\right) \leq-\sqrt{\lambda(\lambda+2 p \gamma)} \text { when } \ell<0
$$

which contradicts (3.19). Therefore, we have $\Re\{\phi(z)\}>0$ in E. This completes the proof of the theorem.

Taking $g(z)=z^{p}$ and $\mu=1$ in Theorem 3.12, we have
Corollary 3.13. Let $\lambda>0$. If $f \in \mathcal{A}_{p}$ satisfies the condition

$$
\gamma \frac{f^{\prime}(z)}{z^{p-1}}+\lambda\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-p\right\} \neq i t \quad(z \in E)
$$

for some $\gamma(\gamma>0)$, where t is a real number with $|t| \geq \sqrt{\lambda(\lambda+2 p \gamma)}$, then

$$
\Re\left\{\frac{f^{\prime}(z)}{z^{p-1}}\right\}>0 \quad(z \in E)
$$

Corollary 3.14. Let $\lambda>0$. If $f \in \mathcal{A}_{p}$ satisfies the condition

$$
\left|\gamma\left\{\frac{f^{\prime}(z)}{z^{p-1}}-p\right\}+\lambda\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-p\right\}\right|<\lambda+\gamma p \quad(z \in E)
$$

for some $\gamma(\gamma>0)$, then

On Certain Subclass of p-Valently Bazilevic Functions

> J. Patel

Title Page
Contents

Go Back
Close
Quit
Page 25 of 28

$$
\Re\left\{\frac{f^{\prime}(z)}{z^{p-1}}\right\}>0 \quad(z \in E)
$$

Remark 2. From a result of Nunokawa [9] and Saitoh and Nunokawa [11], it follows that, if $f \in \mathcal{A}_{p}$ satisfies the hypothesis of Corollary 3.13 or Corollary 3.14, then f is p-valent in E and p-valently convex in the disc $|z|<(\sqrt{p+1}-$ 1) $/ p$.

Letting $\gamma=1, \mu=0$ in Theorem 3.12, we get the following result due to Dinggong [4] which in turn yields the work of Cho and Kim [3] for $p=1$.

Corollary 3.15. Let $\lambda>0$. If $f \in \mathcal{A}_{p}$ satisfies the condition

$$
(1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\lambda\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} \neq i t \quad(z \in E)
$$

where t is a real number with $|t| \geq \sqrt{\lambda(\lambda+2 p)}$, then $f \in S_{p}^{*}$.
On Certain Subclass of p-Valently Bazilevic Functions
J. Patel

Title Page
Contents
Go Back
Close
Page 26 of 28

References

[1] W.M.CAUSEY and E.P. MERKES, Radii of starlikeness for certain classes of analytic functions, J. Math. Anal. Appl., 31 (1970), 579-586.
[2] MING-PO CHEN and S. OWA, Notes on certain p-valently Bazilevic functions, Panamerican Math. J., 3 (1993), 51-59.
[3] N.E. CHO AND J.A. KIM, On a sufficient condition and an angular estimation for Φ-like functions, Taiwanese J. Math., 2 (1998), 397-403.
[4] Y. DINGGONG, On a criterion for multivalently starlikeness, Taiwanese J. Math., 1 (1997), 143-148.
[5] T.H. MACGREGOR, The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 14 (1963), 514-520.
[6] S.S. MILLER and P.T. MOCANU, Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157-171.
[7] S.S. MILLER and P.T. MOCANU, Univalent solutions of Briot-Bouquet differential subordinations, J. Differential Eqns., 58 (1985), 297-309.
[8] Z. NEHARI, Conformal Mapping, McGraw Hill, 1952, New York.
[9] M. NUNOKAWA, On the theory of univalent functions, Tsukuba J. Math., 11 (1987), 273-286.
[10] M. NUNOKAWA, On the order of strongly starlikeness of strongly convex functions, Proc. Japan Acad. Ser. A. Math. Sci., 68 (1993), 234-237.
[11] H. SAITOH and M. NUNOKAWA, On certain subclasses of analytic functions involving a linear operator, Sūrikaisekikenkyūsho, Kyoto Univ., Kōkyūroku No. 963 (1996), 97-109.
[12] D.R. WILKEN AND J. FENG, A remark on convex and starlike functions, J. London Math. Soc., 21 (1980), 287-290.
[13] E.T. WHITTAKER AND G.N. WATSON, A Course on Modern Analysis, 4th Edition (Reprinted), Cambridge University Press, Cambridge 1927.

On Certain Subclass of p-Valently Bazilevic Functions
J. Patel

Title Page
Contents
44

4

Go Back
Close
Quit
Page 28 of 28

