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ABSTRACT. In this paper, we consider the record statistics at the time when the nth record of
any kind (either an upper or lower) is observed based on a sequence of independent random
variables with identical continuous distributions of bounded support. We provide sharp upper
bounds for expectations of record range and current upper record increment. We also present
numerical evaluations of the so obtained bounds. The results may be of interest in estimating
the expected lengths of the confidence intervals for quantiles as well as prediction intervals for
record statistics.
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1. I NTRODUCTION

Let {Xj, j ≥ 1} be a sequence of independent identically distributed (iid) continuous random
variables (r.v.’s) on a bounded support[a, b]. Let F (x), F−1(x), andµ =

∫ 1

0
F−1(x)dx ∈ (a, b)

denote the cumulative distribution function (cdf), quantile function and population mean respec-
tively. LetXj:n, 1 ≤ j ≤ n, be thejth smallest value in the finite sequenceX1, X2, . . . , Xn. An
observationXj will be called an upper record value if its value exceeds that of all previous ob-
servations. That is;Xj is an upper record ifXj > Xi for everyi < j. An analogous definition
deals with lower record values. The times at which the records occur are called record times.

Thenth upper current recordU c
n is defined as the current value of upper records, in theXn

sequence when thenth value of either lower or upper record is observed. Thenth lower current
recordLc

n can be defined similarly. It can be noticed thatU c
n+1 = U c

n iff Lc
n+1 < Lc

n and that
Lc

n+1 = Lc
n if U c

n+1 > U c
n. That is, the upper current record value is the largest observation seen

to date at the time when thenth record (of either kind) is observed. According to the definition,
Lc

0 = U c
0 = X1.
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2 MOHAMMAD Z. RAQAB

Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n be the order statistics of a sample of sizen ≥ 1. Define the
sample range sequence byIn = Xn:n − X1:n, n = 1, 2, . . . . Let Rn (n = 1, 2, . . . ) be thenth
record in the sequence of sample ranges,{In, n ≥ 1}. In fact,Rn is thenth record range in the
Xn sequence. It is also expressed by the current values of upper and lower records as

(1.1) Rn = U c
n − Lc

n, n = 1, 2, . . . .

By the definition,R0 = 0 andR1 = I2 is the first record range. The current record values
can be used (see, for example, [5]) in a general sequential method for model choice and outlier
detection involving the record range. LetN denote the stopping time such that

N = Inf{n > 0; Rn > c}, c is an arbitrary fixed value.

Hence,N gives the waiting time until the record range of an iid sample exceeds a given value
c. In this context, the waiting timeN is defined in terms of the current values of lower and
upper records but not in terms of the number of observations. For populations of thicker tails,
N would tend to be smaller.

Houchens [7] introduced the concept of current record statistics and derived the pdf of the
nth upper and lower current record statistics. Ahmadi and Balakrishnan in [1] established con-
fidence intervals for quantiles in terms of record range; in [2] they studied some reliability prop-
erties of certain current record statistics. Recently, Raqab [9] presented sharp upper bounds for
the expected values of the gap between thenth upper current record andnth upper record value
as well as upper sharp bounds for the current record increments from general distributions.

It is of interest to address the problem of sharp bounds for the expectations of current records
and other related statistics from an iid sequence with continuousF (x) supported on a finite
[a, b]. In this paper, we use an approach of Rychlik [11] to provide sharp upper bounds for the
expected record range and current upper record increments in the support interval lengths units
b− a. The obtained bounds also depend on the parameter

η =
b− µ

b− a
∈ (0, 1),

which represents the relative distance ofµ from the upper support point in the support length
units.

2. AUXILIARY RESULTS

We will present some auxiliary results that will be helpful in the subsequent results.

Lemma 2.1. For n ≥ 1, the marginal densities ofLc
n andU c

n from the iidU(0, 1) sequence are
respectively,

(2.1) fLc
n
(x) = 2n

{
1− x

n−1∑
j=0

[− log x]j

j!

}
,

and

(2.2) fUc
n
(x) = 2n

{
1− (1− x)

n−1∑
j=0

[− log(1− x)]j

j!

}
.

J. Inequal. Pure and Appl. Math., 8(1) (2007), Art. 21, 11 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


EXPECTATIONS OFRECORDRANGE AND RECORD INCREMENT 3

Proof. Let Vk andWk be thekth lower and upper current records, respectively from a sequence
of iid U(0, 1) r.v.’s with joint pdffk(v, w) and cdfFk(v, w). It is easily observed (see [7]) that

P (Vn ≤ v∗, Wn > w∗|Vn−1 = v, Wn−1 = w) =


1, if v∗ ≥ v, w∗ ≤ w,

0, if v∗ < v, w∗ > w,
v∗

(v+1−w)
, if v∗ < v, w∗ ≤ w,

1−w∗

(v+1−w)
, if v∗ ≥ v, w∗ > w,

where0 < v∗ < w∗ < 1 and0 < v < w < 1, n = 1, 2, . . . .
Using integration, we obtain the unconditional probability as follows:

(2.3) P (Vn ≤ v∗, Wn > w∗)

=

∫ v∗

0

∫ 1

w∗
fn−1(x, y)dydx +

∫ 1

w∗

∫ y

v∗

v∗

x + 1− y
fn−1(x, y)dxdy

+

∫ v∗

0

∫ w∗

x

1− w∗

x + 1− y
fn−1(x, y)dydx.

From the identity

Fk(v
∗, w∗) = P (Vk ≤ v∗)− P (Vk < v∗, Wk > w∗),

and the fact that the first integral in (2.3) isP (Vn−1 ≤ v∗, Wn−1 > w∗), we have

(2.4) Fn(v∗, w∗) = Fn−1(v
∗, w∗) + P (Vn ≤ v∗)− P (Vn−1 ≤ v∗)

−
∫ 1

w∗

∫ y

v∗

v∗

x + 1− y
fn−1(x, y) dxdy

−
∫ v∗

0

∫ w∗

x

1− w∗

x + 1− y
fn−1(x, y) dydx.

Differentiating (2.4) with respect tov∗ andw∗, we obtain recursively

(2.5) fn(v∗, w∗) =

∫ w∗

v∗

1

x + 1− w∗fn−1(x, w∗)dx +

∫ w∗

v∗

1

v∗ + 1− y
fn−1(v

∗, y)dy.

Using the recurrence relation in (2.5) and an inductive argument, we immediately have the joint
pdf of Vn andWn

(2.6) fn(l, u) = 2n [− log(1− u + l)]n−1

(n− 1)!
, 0 < l < u.

It follows from (2.6) that the marginal pdf’s ofLc
n and U c

n can be derived and obtained in
the form of (2.1) and (2.2), respectively. The expressions in curly brackets in (2.1) and (2.2)
represent the cdf’s of(n−1)th lower and upper records, respectively in a sequence of iidU(0, 1)
random variables (see [4] and [3]). �

Lemma 2.2(Moriguti’s Inequality). Letg be the right derivative of the greatest convex function
G(x) =

∫ x

a
g(u)du, not greater than the indefinite integralG(x) =

∫ x

a
g(u)du of g. For every

nondecreasing functionτ on [a, b] for which both integrals in(2.7)are finite, we have

(2.7)
∫ b

a

τ(u)g(u)du ≤
∫ b

a

τ(u)g(u)du.

The equality in(2.7)holds iffτ is constant on every open interval whereG > G.
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4 MOHAMMAD Z. RAQAB

Lemma 2.2 follows from [8, Theorem 1]. Ifg ∈ L2([a, b], dx) theng(x) is the projection of
g(x) onto the convex cone of nondecreasing functions inL2([a, b], dx) (cf. [10, pp. 12-16]).

The expected value of thenth record range can be written as

(2.8) E(Rn) =

∫ 1

0

[F−1(x)− µ]ϕn(x)dx,

where

(2.9) ϕn(u) = fUc
n
(u)− fLc

n
(u)

represents the difference between the pdf’s of thenth upper current record andnth lower current
record from theU(0, 1) iid sequence. The following equality

(2.10) γ(r, t) =

∫ ∞

t

xr−1e−x

Γ(r)
dx =

r−1∑
j=0

tje−t

j!
,

represents the relationship between the incomplete gamma function and the sum of Poisson
probabilities. The function defined by

δm,n(x) = fUc
n
(x)− fUc

m
(x)

=

∫ − log(1−x)

0

gm,n(y)dy,(2.11)

where

gm,n(y) =

[
2n

(n− 1)!
yn−1 − 2m

(m− 1)!
ym−1

]
e−y,

represents the difference between the pdf’s ofmth andnth upper current records (1 ≤ m < n)
from theU(0, 1) iid sequence. Its respective expectation can be written as

(2.12) E(Im,n) = E(U c
n − U c

m) =

∫ 1

0

(F−1(x)− µ)δm,n(x)dx.

3. M AIN RESULTS

We use several inequalities for the integral of the product of two functions such that one is
given and the other one belongs to class of non-decreasing functions. We assume that all the
integrals below are finite.

Theorem 3.1.LetF be a continuous cdf with bounded support[a, b]. Then forn ≥ 1,

E (Rn) ≤ B1(n)

= (a− b)

{
(1− 2n) + (1− η)2

n−1∑
j=0

(2n − 2j)
[− log(1− η)]j

j!

− η2

n−1∑
j=0

(2j − 2n)
[− log η]j

j!

}
.(3.1)

The equality in(3.1) is attained in the limit by the sequence of continuous distributions tending
to the family of two-point distributions supported ona andb with probabilitiesη and1− η.

Proof. Combining (2.1), (2.2) and (2.10), we rewriteϕn(x) as

ϕn(x) = 2n {γ(n,− log x)− γ(n,− log(1− x)} .
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EXPECTATIONS OFRECORDRANGE AND RECORD INCREMENT 5

Therefore, the derivative ofϕn(x) is

ϕ′n(x) = 2n (fUn(x) + fLn(x)) > 0.

wherefUn(x) andfLn(x) are the pdf’s of thenth upper and lower records from theU(0, 1)
iid sequence, respectively (see [3]). Sinceϕn(x) is a nondecreasing function on[0, 1] and
a− µ < F−1(x)− µ < b− µ with a− µ ≤ 0 andb− µ ≥ 0, we have

E(Rn) =

∫ 1

0

[F−1(x)− µ][ϕn(x)− ϕn(η)]dx

=

∫ η

0

[F−1(x)− µ][ϕn(x)− ϕn(η)]dx

+

∫ 1

η

[F−1(x)− µ][ϕn(x)− ϕn(η)]dx

≤ (a− µ)

∫ η

0

[ϕn(x)− ϕn(η)]dx + (b− µ)

∫ 1

η

[ϕn(x)− ϕn(η)]dx

= (a− b)Φn(η),(3.2)

whereΦn(x) is the antiderivative ofϕn(x). By definition,Φn(x) is the difference between the
cdf’s of thenth upper and lower current recordsFUc

n
andFLc

n
, respectively.

From (2.1), the cdfFLc
n
(x) can be represented as

P (Lc
n ≤ u) =

2n

(n− 1)!

∫ u

0

∫ − log x

0

yn−1e−y dy dx

=
2n

(n− 1)!

{
u

∫ − log u

0

yn−1e−y dy +

∫ ∞

− log u

yn−1e−2y dy

}
.

By (2.10), we have

(3.3) FLc
n
(u) = 2nu + u2

n−1∑
j=0

(2j − 2n)
[− log u)]j

j!
,

Proceeding similarly, we write the cdf ofU c
n as

(3.4) FUc
n
(u) = 1− 2n(1− u) + (1− u)2

n−1∑
j=0

(2n − 2j)
[− log(1− u)]j

j!
.

Using (3.2), (3.3) and (3.4), we obtain (3.1). The inequality in (3.2) becomes equality if

F−1(x) =

{
a, if 0 < x < η,

b, if η < x < 1,

which determines the family of two-point distributions. �

Now, we consider the bounds for the mean of current record incrementsE(Im,n), 0 ≤ m < n.
The functionδm,n(x) in (2.11) is not monotonic form ≥ 1 andF−1 − µ is nondecreasing. In
order to get optimal evaluations for current record increments, we should analyze the variability
of δm,n(x). Theorem 3.2 below allows us to establish sharp bounds on the expectations of
current record increments for distributions with finite support.
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Theorem 3.2. For given1 ≤ m < n, there exists a uniqueρm,n ∈ [θm,n, 1] defined as the
solution to equation

(3.5) 2nγ(n,− log(1− u))− 2mγ(m,− log(1− u)) + γ(m,−2 log(1− u))

− γ(n,−2 log(1− u)) = 2n − 2m,

such that for

δm,n(x) = δm,n (max{x, ρm,n}) , 0 ≤ x ≤ 1,

and every nondecreasingτ ∈ L1([0, 1], dx), we have

(3.6)
∫ 1

0

τ(x) δm,n(x)du ≤
∫ 1

0

τ(x) δm,n(x)dx

with the equality iff

(3.7) τ(u) = const, 0 < x < ρm,n.

Proof. By simple analysis of the derivative of (2.11),δm,n, 1 ≤ m < n, is decreasing-increasing.
Precisely, δm,n(x) decreases on(0, θm,n) and increases on(θm,n, 1), where θm,n = 1−

e−
1
2 [

(n−1)!
(m−1)! ]

1/(n−m)

. By adding the factsδm,n(0) = 0, δm,n(1) = 2n − 2m > 0, we conclude
thatδm,n is negative-positive passing the horizontal axis atξm,n that satisfies

(3.8) 2mγ(m,− log(1− ξm,n))− 2nγ(n,− log(1− ξm,n)) = 2m − 2n.

The antiderivative ofδm,n(x) needed for the projection,∆m,n(x), is therefore concave decreas-
ing, convex decreasing and convex increasing in[0, θm,n], [θm,n, ξm,n], and [ξm,n, 1], respec-
tively. Further, it is negative with∆m,n(0) = ∆m,n(1) = 0. Thus its greatest convex minorant
∆m,n is given by

(3.9) ∆m,n(x) =

{
δm,n(ρm,n)x, if 0 ≤ x ≤ ρm,n,

∆m,n(x), if ρm,n < x < 1.

whereρm,n is determined by solving the equation

(3.10) ∆m,n(x) = δm,n(x)x.

Using (2.10), Eq. (3.10) can be simplified and rewritten in the form∫ u

0

∫ − log(1−x)

0

gm,n(y)dydx

= {2n − 2m + 2mγ(m,− log(1− u))− 2nγ(n,− log(1− u))}u,

which leads to (3.5). Note that Eq.(3.5) has to be solved numerically in order to find the numbers
ρm,n’s. �

Theorem 3.3.LetF be a continuous cdf with bounded support[a, b]. If m = 0, then

E(Im,n) ≤ B2(m, n)(3.11)

= (b− a)

{
(2n − 1)(1− η)− (1− η)2

n−1∑
j=0

(2n − 2j)
[− log(1− η)]j

j!

}
.
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EXPECTATIONS OFRECORDRANGE AND RECORD INCREMENT 7

Let 1 ≤ m < n andρm,n be the unique solution of(3.5). If a ≤ µ ≤ aρm,n + b(1 − ρm,n), we
have

E(Im,n) ≤ B2(m, n)

= (b− a)

{
(2n − 2m)(1− η)− (1− η)2

n−1∑
j=0

(2n − 2j)
[− log(1− η)]j

j!

+ (1− η)2

m−1∑
j=0

(2m − 2j)
[− log(1− η)]j

j!

}
.(3.12)

If aρm,n + b(1− ρm,n) ≤ µ ≤ b, then

E(Im,n) ≤ B2(m, n)

= (b− a)η

{
2n(1− ρm,n)

n−1∑
j=0

[− log(1− ρm,n)]j

j!

− 2m(1− ρm,n)
m−1∑
j=0

[− log(1− ρm,n)]j

j!
− (2n − 2m)

}
.(3.13)

The bounds(3.11)and (3.12)are attained in limit by the probability distributions

(3.14) P (X1 = a) = η = 1− P (X1 = b) .

The bound(3.13)is attained in limit by the probability distribution

(3.15) P

(
X1 =

µ− b(1− ρm,n)

ρm,n

)
= ρm,n = 1− P (X1 = b) .

Proof. It follows from (2.12) and (2.7) that

E(Im,n) =

∫ 1

0

[F−1(x)− µ][δm,n(x)− δm,n(η)]dx

≤
∫ 1

0

[F−1(x)− µ][δm,n(x)− δm,n(η)]dx(3.16)

=

∫ η

0

[F−1(x)− µ][δm,n(x)− δm,n(η)]dx

+

∫ 1

η

[F−1(x)− µ]
[
δm,n(x)− δm,n(η)

]
dx.

Using the fact thatδm,n(x) is a nondecreasing function anda < F−1(x) < b, we obtain

E(Im,n) ≤ (a− µ)

∫ η

0

[δm,n(x)− δm,n(η)]dx

+ (b− µ)

∫ 1

η

[δm,n(x)− δm,n(η)]dx(3.17)

= (a− b)∆m,n(η).

Form = 0, U c
0 = X1 and

δ0,n(x) = (2n − 1)− 2nγ(n,− log(1− x)).
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∆0,n(x) is non-increasing convex and non-decreasing convex on(0, ν) and(ν, 1), respectively
whereν is the unique solution of

2nγ(n,− log(1− x)) = 2n − 1.

Therefore,

(3.18) E(Im,n) ≤ (b− a)
(
η − FUc

n
(η)

)
.

By (3.4) and (3.18), we immediately obtain (3.11).
Sinceδ0,n(x) = δ0,n(x), the inequality in (3.16) becomes equality for any distributionF (x).

The equality in (3.17) holds if

F−1(x)− µ =

{
a− µ, if 0 ≤ x < η,

b− µ, if η ≤ x < 1,

which determines the two-point distribution supported ona andb with probabilitiesη and1−η.
For1 ≤ m < n, the greatest convex minorant of the antiderivative∆m,n is defined in (3.9).
If a ≤ µ ≤ aρm,n + b(1− ρm,n), then∆m,n(η) = ∆m,n(η). Consequently,

E(Im,n) ≤ (a− b)∆m,n(η),

and by (3.4), we deduce (3.12). The inequality in (3.17) becomes equality if

F−1(x)− µ =

{
a− µ, if 0 ≤ x < η,

b− µ, if η ≤ x < 1,

which leads to the two-point distribution supported ona andb with probabilitiesη and1− η.
If aρm,n + b(1− ρm,n) ≤ µ ≤ b, then by (3.9),∆m,n(η) = δm,n(ρm,n)η. Hence,

E(Im,n) ≤ (a− b)ηδm,n(ρm,n).

From (3.7), the equality in (3.16) is attained ifF−1(x) = c on (0, ρm,n) and the equality in
(3.17) is attained ifF−1(x) = b on (ρm,n, 1). From the moment conditionE(X1) = µ, we
havec = [µ− b(1− ρm,n)]/ρm,n. This leads to the probability distribution (3.15). �

Remark 3.4. Maximization of the bounds in Theorems 3.1 and 3.3 with respect to0 < η < 1
leads to parameter free bounds. In the case of record range, a general bound independent ofη
is derived by maximizing the right hand side of (3.2),

q1(η) = (a− b)
(
FUc

n
(η)− FLc

n
(η)

)
.

It follows from the fact thatq1(η) is a concave and symmetric about1/2 function withq1(0) =
q1(1) = 0, the maximal bound is attained atη = 1/2. Substitutingη = 1/2 in (3.1), we obtain

B1(n) = (b− a)

{
(2n − 1)− 1

2

n−1∑
j=0

(2n − 2j)
(log 2)j

j!

}
.

This bound is attained in limit by the two-point distribution

P (X = a) = P (X = b) =
1

2
.

For the current upper record increment, the valueη maximizing the bound in Theorem 3.3 can
be obtained by maximizing the right hand side of (3.17),

q2(η) = (a− b)∆m,n(η).

It is easily checked that the bound is maximized by0 < η < 1 satisfyingδm,n(η) = 0, or
equivalently (3.8).

J. Inequal. Pure and Appl. Math., 8(1) (2007), Art. 21, 11 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


EXPECTATIONS OFRECORDRANGE AND RECORD INCREMENT 9

Table 4.1: Values ofD(n) for n = 1, 2, ..., 8.

D(n)
n U(−2, 3) Exp(1) N(1/2, 1)

1 0.7500 0.7720 0.6846
2 0.4346 0.5003 0.3702
3 0.2021 0.2818 0.1677
4 0.0780 0.1395 0.0657
5 0.0256 0.0610 0.0227
6 0.0073 0.0238 0.0070
7 0.0018 0.0083 0.0020
8 0.0004 0.0026 0.0005

The standard exponential distribution is truncated on(0,
√

3) and the normal distributionN(1/2, 1) is
truncated on(−1, 3).

4. COMPUTATIONAL RESULTS

We evaluate the values of the upper bounds for the expectations of the record range and
current record increment based on three distributionsU(−2, 3), standard exponentialExp(1)
on (0,

√
3), andN(1/2, 1) on (−1, 3). The bounds obtained by Moriguti’s inequalities are

expressed in terms of the parameterη = (b− µ)/(b− a). The bound for the mean of the record
range can be computed by evaluating (3.1). The ratio

D(n) =
(b− a)−B1(n)

(b− a)− ERn

,

represents the relative distance ofB1(n) from the support interval length with respect to the
distance ofERn from the support interval length. In Table 4.1, values ofD(n) are presented
for n = 1, 2, . . . , 8. It is shown in Table 4.1 that the boundsB1(n), n ≥ 1 tend to the length
of support intervals asn gets large. These bounds tend to their respective limits faster than the
exact expectations of the record range.

The numbersρm,n are determined numerically by solving (3.5). In fact, foraρm,n + b(1 −
ρm,n) ≤ µ < b, the bounds for the current record increments can be determined by computing
the valuesρm,n’s and then evaluating the formula (3.13). Ifa ≤ µ ≤ ρm,n + b(1 − ρm,n),
∆m,n(η) = ∆m,n(η) and then the bounds can be obtained by (3.12). The evaluations of the
boundsB2(m, n), 0 ≤ m < n given in (3.11), (3.12) and (3.13) as well as the exact expectations
of the record increments are used to compute the following ratio

H(m, n) =
(b− a)−B2(m, n)

(b− a)− E(Im,n)
, 0 ≤ m < n.

These ratios are presented in Table 4.2 for various choices ofm andn. Clearly, form = 0 and
n getting large, the ratios tend to1 and consequently, the bounds tend to the exact expectations.
For fixedm ≥ 1, the ratios decrease slowly asn increases.
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