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ABSTRACT. In this paper, we consider the record statistics at the time when the nth record of
any kind (either an upper or lower) is observed based on a sequence of independent random
variables with identical continuous distributions of bounded support. We provide sharp upper
bounds for expectations of record range and current upper record increment. We also present
numerical evaluations of the so obtained bounds. The results may be of interest in estimating
the expected lengths of the confidence intervals for quantiles as well as prediction intervals for
record statistics.
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1. INTRODUCTION

Let{Xj;,j > 1} be a sequence of independent identically distributed (iid) continuous random
variables (r.v.'s) on a bounded supppitb]. Let F(x), F~'(x), andu = fol F~Y(z)dx € (a,b)
denote the cumulative distribution function (cdf), quantile function and population mean respec-
tively. Let X;.,, 1 < j < n, be thejth smallest value in the finite sequente, X, ..., X,,. An
observationX; will be called an upper record value if its value exceeds that of all previous ob-
servations. That isX; is an upper record iX; > X, for every: < j. An analogous definition
deals with lower record values. The times at which the records occur are called record times.

Thenth upper current recorti is defined as the current value of upper records, inXhe
sequence when theth value of either lower or upper record is observed. Atrelower current
recordL;, can be defined similarly. It can be noticed th&t , = Uy iff Ly, < L7 and that
Ly = Lgif U, > Uy. Thatis, the upper current record value is the largest observation seen
to date at the time when theh record (of either kind) is observed. According to the definition,
L =U§ = X;.
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Let X;., < X,., <--- < X,,.,, be the order statistics of a sample of size= 1. Define the
sample range sequence by= X,., — X1.,,n = 1,2,....LetR, (n = 1,2,...) be thenth
record in the sequence of sample randgés,n > 1}. In fact, R, is thenth record range in the
X, sequence. Itis also expressed by the current values of upper and lower records as

(1.1) R,=U‘—L¢ n=1,2....

By the definition,Ry, = 0 and R, = I is the first record range. The current record values
can be used (see, for examplg, [5]) in a general sequential method for model choice and outlier
detection involving the record range. Listdenote the stopping time such that

N =1Inf{n > 0; R, > c}, cisan arbitrary fixed value.

Hence,N gives the waiting time until the record range of an iid sample exceeds a given value
c. In this context, the waiting timév is defined in terms of the current values of lower and
upper records but not in terms of the number of observations. For populations of thicker tails,
N would tend to be smaller.

Houchens[[7] introduced the concept of current record statistics and derived the pdf of the
nth upper and lower current record statistics. Ahmadi and Balakrishnan in [1] established con-
fidence intervals for quantiles in terms of record range;lin [2] they studied some reliability prop-
erties of certain current record statistics. Recently, Radab [9] presented sharp upper bounds for
the expected values of the gap betweenitieupper current record andh upper record value
as well as upper sharp bounds for the current record increments from general distributions.

It is of interest to address the problem of sharp bounds for the expectations of current records
and other related statistics from an iid sequence with contind@us supported on a finite
la, b]. In this paper, we use an approach of Rychlik [11] to provide sharp upper bounds for the
expected record range and current upper record increments in the support interval lengths units
b — a. The obtained bounds also depend on the parameter

_b-m
b—ua

n € (0,1),

which represents the relative distanceudfrom the upper support point in the support length
units.

2. AUXILIARY RESULTS

We will present some auxiliary results that will be helpful in the subsequent results.

Lemma 2.1. For n > 1, the marginal densities df andU¢ from the iidU (0, 1) sequence are
respectively,

2.1) fL%(x):z"{l—xZM},

=
and
22 fug(a) = 2" {1 B R } |
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Proof. Let V, andWW,, be thekth lower and upper current records, respectively from a sequence
of iid U(0, 1) r.v’s with joint pdf f, (v, w) and cdfFy (v, w). It is easily observed (se€ [7]) that

1, if v* >wv, wx <w,
07 if v*< v, Wk > w,
* *
P(Vn§U7Wn>w|Vn—1:U7Wn—1:w): v* i *
iy B vt <w, wx <w,
ity MUz ws >,

where) < v* <w*<land0<v<w<l,n=12,....
Using integration, we obtain the unconditional probability as follows:

(2.3) P(V, < v, W, >uw")

Y v*
SRR anfl(x,wdxdy
dydzx.

Fy(v*,w*) = P(V} <v*) — P(Vj, < 0", Wi, > w"),
and the fact that the first integral in (R.3)/V,,—, < v*, W,,_1 > w*), we have

From the identity

(2.4) Fo(v",w") = For (v, w7) + P(V, <0%) = P(V,mq <07)

1 Y ¥
- ——— fa-1(z,y) dud

// x+1 fn 1(z,y) dydex.

Differentiating [2.4) with respect to* andw*, we obtain recursively

* * _ w* 1 * w* 1
@S  hww) = [ et s [y

Using the recurrence relation in (2.5) and an inductive argument, we |mmed|ately have the joint
pdf of V,, andW,,

[—log(1 —u+0)]""
(n—1)! ’

It follows from (2.6) that the marginal pdf's of¢ and U¢ can be derived and obtained in

the form of [2.1) and[(2]2), respectively. The expressions in curly brackdts |n (2.1) ahd (2.2)

represent the cdf’s df.— 1)th lower and upper records, respectively in a sequence 0of(iid1)
random variables (seel[4] ard [3]). O

(2.6) fallyu) =27 0<l<u.

Lemma 2.2(Moriguti’s Inequality) Letg be the right derivative of the greatest convex function
= [ g(u)du, not greater than the indefinite integrél(z) = [ g(u)du of g. For every
nondecreasing function on [a, b] for which both integrals n@) are f|n|te we have

b b
(2.7) /T(u)g(u)dug/ 7(u)g(u)du.

The equality in(2.7) holds iffr is constant on every open interval whe¥e> G.
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Lemmg 2.2 follows from[[8, Theorem 1]. if € L?([a, b], dz) theng(x) is the projection of
g(z) onto the convex cone of nondecreasing functionifia, b, dz) (cf. [10, pp. 12-16]).
The expected value of theh record range can be written as

(2.8) B(R) = [ 1F(@) = o),
where
(2.9) on(u) = fue(u) — fre(u)

represents the difference between the pdf’s ofitieupper current record andh lower current
record from thd/(0, 1) iid sequence. The following equality

(2 10) ( ) 00 xr—le—zd Tz_i tje—t
. y(r, t) = / T = —,
¢ I'(r) =0 J!

represents the relationship between the incomplete gamma function and the sum of Poisson
probabilities. The function defined by

6m,n(x) = fUﬁ (CI?) - fU;;l (l‘)

—log(1—x)
(2.11) - / G (9,
0

where

_ 271 n—1 2m m—1 —y
gmanly) = [(n—l)! Y (m— 17 ]e ’

represents the difference between the pdf's:tth andnth upper current records € m < n)
from theU (0, 1) iid sequence. Its respective expectation can be written as

(2.12) E(In,) =EUS-U) = /0 (F~Y(x) — p)bmn(x)dz.

3. MAIN RESuULTS

We use several inequalities for the integral of the product of two functions such that one is
given and the other one belongs to class of non-decreasing functions. We assume that all the
integrals below are finite.

Theorem 3.1.Let F' be a continuous cdf with bounded supplett)]. Then forn > 1,
E(R,) < Bi(n)

—(a—b) {(1 RN Bt e
(3.1) — Y@ —2n)[_13+§577]j}.

The equality in(3.1)is attained in the limit by the sequence of continuous distributions tending
to the family of two-point distributions supported @andb with probabilitiesy and1 — 7.

Proof. Combining [2.1),[(Z]2) and (2.]L0), we rewritg(x) as
on(x) = 2" {7y(n,—logz) —vy(n,—log(l —z)}.
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Therefore, the derivative af, () is

on(x) = 2" (fu, (x) + fr.(x)) > 0.

where fy, (z) and f.,, (z) are the pdf's of thenth upper and lower records from ti&0, 1)
iid sequence, respectively (see [3]). Singg(z) is a nondecreasing function df, 1] and
a—pu<FYz)—p<b—pwitha —p <0andb—p > 0, we have

B(R) = [ 15 (@) - llin(z) - puln)lda
= [ 17 @)~ ulipnl) = onlmld
# [ 1) = ko) -
< (=) [ Tonte) = eutlae + 0= ) [ o) - et

(3.2) = (a = b)®n(n),

where®,, (z) is the antiderivative op,,(z). By definition,®,,(z) is the difference between the
cdf’s of thenth upper and lower current records. and Fy., respectively.
From [2.1), the cdf. (x) can be represented as

. on u —logx N
P(L”éu):—(n—n!/()/o Yy le™ dy dx
on

—logu o0
= T {u/ y" e Y dy + / Yy e dy} .
- ) 0 —logu

By (2.10), we have

n—1

, _ j

(3.3) Fre(u) =2"u+u* ) (29— 2")&,
=0 J:

Proceeding similarly, we write the cdf 6f as

n—1 . . j
(3.4) Fre(u)=1-2"(1—u)+ (1 —u)2y (2" — 7). log(,l| wl

, 7!

7=0

Using (3.2),[(3.B) and (3}4), we obta[n (B.1). The inequality in|(3.2) becomes equality if

. a, if 0<z<n,
F(x) = :
b, if n<x<l,
which determines the family of two-point distributions. O

Now, we consider the bounds for the mean of current record increrigis, ), 0 < m < n.
The functiond,, ,(z) in (2.13) is not monotonic fom > 1 andF~* — x is nondecreasing. In
order to get optimal evaluations for current record increments, we should analyze the variability
of &,,»(z). Theoren] 3 below allows us to establish sharp bounds on the expectations of
current record increments for distributions with finite support.
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Theorem 3.2. For givenl < m < n, there exists a uniqug,,,, € [0, 1] defined as the
solution to equation

(3.5) 2"y(n,—log(l —u)) — 2"y(m, —log(1 — u)) + y(m, —2log(1l — u))
—y(n,—2log(1 — u)) = 2" — 2™,
such that for
gm,n(m) = 5m7n (max{:z:,pmm}) ) 0<x<1,

and every nondecreasinge L'([0, 1], dx), we have

1 1
(3.6) / (%) mn()du < / (%) B (2)dr
0 0
with the equality iff
(3.7) T(u) = const, 0<x < ppn.

Proof. By simple analysis of the derivative ¢f (2]13), ,,, 1 < m < n, is decreasing-increasing.
Precisely, 6,, ,(z) decreases on0,6,,,) and increases of,,,,1), wheref,,,, = 1—

1[ (n—1)! 1/(n—m)
[G=r] . By adding the fact$,,,(0) = 0, 6,,,(1) = 2" — 2™ > 0, we conclude

675 (m—1)!
thatd,, ,, is negative-positive passing the horizontal axi§,af that satisfies

The antiderivative ob,, ,,(x) needed for the projection,, ,,(x), is therefore concave decreas-
ing, convex decreasing and convex increasingif,, .|, [@m.n, Emon)s @Nd[Enn, 1], respec-
tively. Further, it is negative with\,, ,(0) = A,, (1) = 0. Thus its greatest convex minorant
A, is given by

(3.9) K, (2) < Omlpmn) ] pm.
Ay (), it pmn <z <l

wherep,, ,, is determined by solving the equation

(3.10) Apn(z) = 6pp(x)z.

Using (2.10), Eq.[(3.10) can be simplified and rewritten in the form

u p—log(l—x)
/ / mn(y)dydz
0 0

={2" = 2" 4+ 2M~(m, —log(1 — u)) — 2"y(n, —log(1 — u))} u,

which leads to/(3]5). Note that E.(B.5) has to be solved numerically in order to find the numbers
Pmn'S. O

Theorem 3.3. Let F' be a continuous cdf with bounded suppletty]. If m = 0, then
(3.11) E(lnmn) < By(m,n)

|
—

n

:(b—a){@"—l)(l—n)—(l—n)2 <2n_zj>[—10g<_1‘””j}.

!

.
Il
o

J. Inequal. Pure and Appl. Math8(1) (2007), Art. 21, 11 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

EXPECTATIONS OFRECORDRANGE AND RECORDINCREMENT 7

Letl < m < nandp,,, be the unique solution of3.5). If a < 11 < apsm, + b(1 — prn), WE
have

E(ILn,) < Ba(m,n)

n—1
log(1 —
—(b-a) {(2“ (1 =) — (1= S (20 — 27 2 LoelL = )]
7=0 I
m—1 . j
(3.12) (1-n*> (2" - 2) log('ll n)] } .
j=0 J:
If appn +0(1 — pn) < p < b, then
E(Im,n) S BZ(mvn)
n—1 .
log(1 — pmn
— (b— a)n {2”(1 o pmm)z [ g( . P )]
j=0 J:
1 .
(3.13) (1 S B )l o 2m>} .
=0 J:
The bound$3.11)and (3.12)are attained in limit by the probability distributions
(3.14) P(X,=a)=n=1-P(X,=1).
The bound[3.13)is attained in limit by the probability distribution
—b(1 =
(3.15) P(X1 _# b(p pm’">) = pmn=1—P (X, =1).

Proof. It follows from (2.12) and[(2]7) that
(3.16) < [P 0) = Wale) = ()l
0

+ /771 [_mn — Omn(n)] da.

Using the fact tha#,, ,,(z) is a nondecreasing function and< F~!(z) < b, we obtain

E(In) < (a— 1) / Bonn(2) — B ()

(3.17) ) / B (2) — B ()
— (0~ BB ).
Form = 0,U§ = X, and
Bom(z) = (2 — 1) — 2 (n, —log(1 — z)).
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Ay, () is non-increasing convex and non-decreasing conveX)an and(v, 1), respectively
wherev is the unique solution of

2"y(n, —log(l —x)) =2" — 1.
Therefore,

By (3.4) and[(3.18), we immediately obtajn (3.11).
Sincedy ,(z) = 0o (), the inequality in[(3.16) becomes equality for any distributiof).
The equality in[(3.1]7) holds if

a—u, If 0<x<mn,
Fla)—p=4 " !
b—p, If n<x<l,
which determines the two-point distribution supportedi@ndb with probabilitiesy and1 — 1.
Forl < m < n, the greatest convex minorant of the antiderivailig,, is defined in[(3.9).
If a <p<apmn+b(1— pnn) thenA,, .(n) = A,...(n). Consequently,
E(Lnn) < (a—0)An.(n),
and by [3.4), we deduck (3112). The inequalityin (B.17) becomes equality if
a—u, If 0<x<mn,
Fla)—p=4 " !
b—p, Iif n<x<l,
which leads to the two-point distribution supportedcoandb with probabilitiesy and1 — 7.
If apmn+0(1 — pmn) < < b, thenby[B.B)A,..(1) = dmn(pmn)n. Hence,
E(Inn) < (a = 0)16mn(Pmn)-

From [3.7), the equality if (3:16) is attainedAf!(x) = ¢ on (0, p,.,) and the equality in
(B:17) is attained i ~'(z) = b on (p,,.,1). From the moment conditio”'(X;) = p, we
havec = [ — b(1 — pm.n)]/pPm.n- This leads to the probability distribution (3]15). O

Remark 3.4. Maximization of the bounds in Theorefns|3.1 3.3 with respetton < 1
leads to parameter free bounds. In the case of record range, a general bound independent of
is derived by maximizing the right hand side pf (3.2),

0 (n) = (a—b) (Fug(n) — Frz(n)) -
It follows from the fact that;, () is a concave and symmetric abayg function withg, (0) =
¢ (1) = 0, the maximal bound is attainedgt= 1/2. Substituting; = 1/2 in (3.), we obtain

n—1 ;
Bi(n) = (b—a) {(2 —1) - 5;O(z - 2])7} .
This bound is attained in limit by the two-point distribution
P(X:a):P(X:b):%.

For the current upper record increment, the vajuraximizing the bound in Theorem 8.3 can
be obtained by maximizing the right hand side[of (8.17),

Q2(7]> - (CL - b)Am,n(n)
It is easily checked that the bound is maximized(by: n < 1 satisfyingd,,,.(n) = 0, or
equivalently [(3.B).
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Table 4.1: Values aD(n) forn =1,2,...,8.

D(n)

U(—2,3) [Exp(M)[ N(1/2,1) |
0.7500] 0.7720] 0.6846
0.4346| 0.5003| 0.3702
0.2021| 0.2818| 0.1677
0.0780| 0.1395 0.0657
0.0256| 0.0610, 0.0227
0.0073| 0.0238| 0.0070
0.0018| 0.0083| 0.0020
0.0004| 0.0026/ 0.0005

O~NO O, WNPRS

The standard exponential distribution is truncated@n,/3) and the normal distributio®V (1/2,1) is
truncated or{—1, 3).

4. COMPUTATIONAL RESULTS

We evaluate the values of the upper bounds for the expectations of the record range and
current record increment based on three distributidfis2, 3), standard exponentidlxp(1)
on (0,v/3), and N(1/2,1) on (—1,3). The bounds obtained by Moriguti’s inequalities are
expressed in terms of the paramejet (b — 11)/(b — a). The bound for the mean of the record
range can be computed by evaluating](3.1). The ratio
(b —a) — Bi(n)
(b—a)— ER,’
represents the relative distance®f(n) from the support interval length with respect to the
distance ofE R, from the support interval length. In Talile 4.1, valuesxf:) are presented
forn = 1,2,...,8. Itis shown in Tabl¢ 4]1 that the bounds(n), n > 1 tend to the length
of support intervals as gets large. These bounds tend to their respective limits faster than the
exact expectations of the record range.

The numbergp,, ,, are determined numerically by solvirig (8.5). In fact, &@r,, ,, + b(1 —
Pmn) < i < b, the bounds for the current record increments can be determined by computing
the valuesp,,,’s and then evaluating the formula (3]13). df< u < pp, + b(1 — pimn),
Amn(n) = A,n(n) and then the bounds can be obtained[by (3.12). The evaluations of the
boundsBs(m, n),0 < m < ngivenin (3.11),[(3.12) and (3.1L3) as well as the exact expectations
of the record increments are used to compute the following ratio

(b — CL) — BQ(m7 TL)
(b - (l) - E(Im,n) ’
These ratios are presented in Tgble 4.2 for various choicesanidn. Clearly, form = 0 and

n getting large, the ratios tend tcand consequently, the bounds tend to the exact expectations.
For fixedm > 1, the ratios decrease slowly asncreases.

D(n) =

H(m,n) = 0<m<n.
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