APPROXIMATION OF A MIXED FUNCTIONAL EQUATION IN QUASI-BANACH SPACES

ABBAS NAJATI

Department of Mathematics
Faculty of Sciences
University of Mohaghegh Ardabili
Ardabil, Iran
EMail: a.nejati@yahoo.com

G. ZAMANI ESKANDANI

Faculty of Mathematical Sciences
University of Tabriz
Tabriz, Iran

EMail: zamani@tabrizu.ac.ir

17 August, 2008
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words:

Abstract:

07 February, 2009
Th.M. Rassias

Primary 39B72, 46B03, 47Jxx.
Generalized Hyers-Ulam stability, additive function, cubic function, quasiBanach space, p-Banach space.

In this paper we establish the general solution of the functional equation

$$
f(2 x+y)+f(x+2 y)=6 f(x+y)+f(2 x)+f(2 y)-5[f(x)+f(y)]
$$

and investigate its generalized Hyers-Ulam stability in quasi-Banach spaces. The concept of Hyers-Ulam-Rassias stability originated from Th.M. Rassias' stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.

Approximation of a Mixed Functional Equation Abbas Najati and
G. Zamani Eskandani
vol. 10, iss. 1, art. 24, 2009

Title Page

Contents

Page 1 of 34
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Contents

1 Introduction and Preliminaries 3
2 Solutions of Eq. (1.4) 7
3 Generalized Hyers-Ulam stability of Eq. (1.4) 1111 7

1. Introduction and Preliminaries

In 1940, S.M. Ulam [30] gave a talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of unsolved problems. Among these was the following question concerning the stability of homomorphisms.

Let $\left(G_{1}, *\right)$ be a group and let $\left(G_{2}, \diamond, d\right)$ be a metric group with the metric $d(\cdot, \cdot)$. Given $\epsilon>0$, does there exist a $\delta(\epsilon)>0$ such that if a function $h: G_{1} \rightarrow G_{2}$ satisfies the inequality

$$
d(h(x * y), h(x) \diamond h(y))<\delta
$$

for all $x, y \in G_{1}$, then there is a homomorphism $H: G_{1} \rightarrow G_{2}$ with

$$
d(h(x), H(x))<\epsilon
$$

for all $x \in G_{1}$?
In 1941, D.H. Hyers [9] considered the case of approximately additive functions $f: E \rightarrow E^{\prime}$, where E and E^{\prime} are Banach spaces and f satisfies Hyers inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon
$$

for all $x, y \in E$. It was shown that the limit

$$
L(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}
$$

exists for all $x \in E$ and that $L: E \rightarrow E^{\prime}$ is the unique additive function satisfying

$$
\|f(x)-L(x)\| \leq \epsilon
$$

T. Aoki [2] and Th.M. Rassias [27] provided a generalization of Hyers' theorem for additive and linear mappings, respectively, by allowing the Cauchy difference to be unbounded.

Approximation of a Mixed Functional Equation Abbas Najati and
G. Zamani Eskandani
vol. 10, iss. 1, art. 24, 2009

Title Page
Contents

Page 3 of 34

```
Go Back
```

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Theorem 1.1 (Th.M. Rassias). Let $f: E \rightarrow E^{\prime}$ be a mapping from a normed vector space E into a Banach space E^{\prime} subject to the inequality

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right) \tag{1.1}
\end{equation*}
$$

for all $x, y \in E$, where ϵ and p are constants with $\epsilon>0$ and $p<1$. Then the limit

$$
L(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}
$$

exists for all $x \in E$ and $L: E \rightarrow E^{\prime}$ is the unique additive mapping which satisfies

$$
\begin{equation*}
\|f(x)-L(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p} \tag{1.2}
\end{equation*}
$$

for all $x \in E$. If $p<0$ then inequality (1.1) holds for $x, y \neq 0$ and (1.2) for $x \neq 0$. Also, if for each $x \in E$ the mapping $t \mapsto f(t x)$ is continuous in $t \in \mathbb{R}$, then L is linear.

The inequality (1.1) has provided much influence in the development of what is now known as generalized Hyers-Ulam stability or Hyers-Ulam-Rassias stability of functional equations. P. Găvruta in [7] provided a further generalization of Th.M. Rassias' theorem. During the last three decades a number of papers and research monographs have been published on various generalizations and applications of the generalized Hyers-Ulam stability to a number of functional equations and mappings (see [4], [6], [8], [11], [13], [15] - [26]). We also refer the readers to the books [1], [5], [10], [14] and [28].

Jun and Kim [12] introduced the following cubic functional equation

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+12 f(x) \tag{1.3}
\end{equation*}
$$

and they established the general solution and the generalized Hyers-Ulam stability problem for the functional equation (1.3). They proved that a function $f: E_{1} \rightarrow E_{2}$

Approximation of a Mixed Functional Equation Abbas Najati and
G. Zamani Eskandani
vol. 10, iss. 1, art. 24, 2009

Title Page
Contents

Page 4 of 34

```
Go Back
```

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
satisfies the functional equation (1.3) if and only if there exists a function $B: E_{1} \times$ $E_{1} \times E_{1} \rightarrow E_{2}$ such that $f(x)=B(x, x, x)$ for all $x \in E_{1}$, and B is symmetric for each fixed one variable and additive for each fixed two variables. The function B is given by

$$
B(x, y, z)=\frac{1}{24}[f(x+y+z)+f(x-y-z)-f(x+y-z)-f(x-y+z)]
$$

for all $x, y, z \in E_{1}$.
A. Najati and G.Z. Eskandani [25] established the general solution and investigated the generalized Hyers-Ulam stability of the following functional equation

$$
f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+2 f(2 x)-2 f(x)
$$

in quasi-Banach spaces.
In this paper, we deal with the following functional equation derived from cubic and additive functions:

$$
\begin{equation*}
f(2 x+y)+f(x+2 y)=6 f(x+y)+f(2 x)+f(2 y)-5[f(x)+f(y)] . \tag{1.4}
\end{equation*}
$$

It is easy to see that the function $f(x)=a x^{3}+c x$ is a solution of the functional equation (1.4).

The main purpose of this paper is to establish the general solution of (1.4) and investigate its generalized Hyers-Ulam stability.

We recall some basic facts concerning quasi-Banach spaces and some preliminary results.

Definition $1.2([3,29])$. Let X be a real linear space. A quasi-norm is a real-valued function on X satisfying the following:
(i) $\|x\| \geq 0$ for all $x \in X$ and $\|x\|=0$ if and only if $x=0 ;$

Approximation of a Mixed Functional Equation Abbas Najati and
G. Zamani Eskandani
vol. 10, iss. 1, art. 24, 2009

Title Page
Contents

Page 5 of 34
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
(ii) $\|\lambda x\|=|\lambda|\|x\|$ for all $\lambda \in \mathbb{R}$ and all $x \in X$;
(iii) There is a constant $K \geq 1$ such that $\|x+y\| \leq K(\|x\|+\|y\|)$ for all $x, y \in X$.

It follows from condition (iii) that

$$
\left\|\sum_{i=1}^{2 n} x_{i}\right\| \leq K^{n} \sum_{i=1}^{2 n}\left\|x_{i}\right\|, \quad\left\|\sum_{i=1}^{2 n+1} x_{i}\right\| \leq K^{n+1} \sum_{i=1}^{2 n+1}\left\|x_{i}\right\|
$$

for all integers $n \geq 1$ and all $x_{1}, x_{2}, \ldots, x_{2 n+1} \in X$.
The pair $(X,\|\cdot\|)$ is called a quasi-normed space if $\|\cdot\|$ is a quasi-norm on X. The smallest possible K is called the modulus of concavity of $\|\cdot\|$. A quasi-Banach space is a complete quasi-normed space.

A quasi-norm $\|\cdot\|$ is called a p-norm $(0<p \leq 1)$ if

$$
\|x+y\|^{p} \leq\|x\|^{p}+\|y\|^{p}
$$

for all $x, y \in X$. In this case, a quasi-Banach space is called a p-Banach space.
By the Aoki-Rolewicz theorem [29] (see also [3]), each quasi-norm is equivalent to some p-norm. Since it is much easier to work with p-norms than quasi-norms,

Approximation of a Mixed Functional Equation Abbas Najati and
G. Zamani Eskandani
vol. 10, iss. 1, art. 24, 2009

Title Page
Contents

Page 6 of 34

```
Go Back
```

Full Screen
Close
journal of inequalities in pure and applied mathematics

2. Solutions of Eq. (1.4)

Throughout this section, X and Y will be real vector spaces. Before proceeding to the proof of Theorem 2.3 which is the main result in this section, we need the following two lemmas.
Lemma 2.1. If a function $f: X \rightarrow Y$ satisfies (1.4), then the function $g: X \rightarrow Y$ defined by $g(x)=f(2 x)-8 f(x)$ is additive.

Proof. Let $f: X \rightarrow Y$ satisfy the functional equation (1.4). Letting $x=y=0$ in (1.4), we get that $f(0)=0$. Replacing y by $2 y$ in (1.4), we get
(2.1) $f(2 x+2 y)+f(x+4 y)=6 f(x+2 y)+f(2 x)+f(4 y)-5[f(x)+f(2 y)]$ for all $x, y \in X$. Replacing y by x and x by y in (2.1), we have
(2.2) $f(2 x+2 y)+f(4 x+y)=6 f(2 x+y)+f(4 x)+f(2 y)-5[f(2 x)+f(y)]$ for all $x, y \in X$. Adding (2.1) to (2.2) and using (1.4), we have

$$
\begin{align*}
& 2 f(2 x+2 y)+f(4 x+y)+f(x+4 y) \tag{2.3}\\
& \quad=36 f(x+y)+f(4 x)+f(4 y)+2[f(2 x)+f(2 y)]-35[f(x)+f(y)]
\end{align*}
$$

Approximation of a Mixed Functional Equation Abbas Najati and
G. Zamani Eskandani
vol. 10, iss. 1, art. 24, 2009

Title Page
Contents

Page 7 of 34

```
Go Back
```

Full Screen
Close
journal of inequalities in pure and applied mathematics

$$
\begin{equation*}
f(2 x)+f(-2 x)=6[f(x)+f(-x)] \tag{2.6}
\end{equation*}
$$

for all $x \in X$. It follows from (2.4), (2.5) and (2.6) that $f(-x)=-f(x)$ for all $x \in X$, i.e., f is odd. Replacing x by $x+y$ and y by $-y$ in (1.4) and using the oddness of f, we have
(2.7) $f(2 x+y)+f(x-y)=6 f(x)+f(2 x+2 y)-f(2 y)-5[f(x+y)-f(y)]$
for all $x, y \in X$. Replacing y by x and y by x in (2.7), we get
(2.8) $f(x+2 y)-f(x-y)=6 f(y)+f(2 x+2 y)-f(2 x)-5[f(x+y)-f(x)]$ for all $x, y \in X$. Adding (2.7) to (2.8), we have

$$
\begin{align*}
& f(2 x+y)+f(x+2 y) \tag{2.9}\\
& \quad=2 f(2 x+2 y)-f(2 x)-f(2 y)-10 f(x+y)+11[f(x)+f(y)]
\end{align*}
$$

Approximation of a Mixed Functional Equation Abbas Najati and
G. Zamani Eskandani
vol. 10, iss. 1, art. 24, 2009

Title Page
for all $x, y \in X$. It follows from (1.4) and (2.9) that

$$
\begin{equation*}
f(2 x+2 y)-8 f(x+y)=f(2 x)+f(2 y)-8[f(x)+f(y)] \tag{2.10}
\end{equation*}
$$

for all $x, y \in X$, which means that the function $g: X \rightarrow Y$ is additive.
Lemma 2.2. If a function $f: X \rightarrow Y$ satisfies the functional equation (1.4), then

Page 8 of 34
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
(2.12) $f(2 x-y)+f(x+y)=6 f(x)+f(2 x-2 y)+f(2 y)-5[f(x-y)+f(y)]$
for all $x, y \in X$. Replacing y by $-y$ in(2.12), we have
(2.13) $f(2 x+y)+f(x-y)=6 f(x)+f(2 x+2 y)-f(2 y)-5[f(x+y)-f(y)]$
for all $x, y \in X$. Adding (2.12) to (2.13), we get
(2.14) $f(2 x-y)+f(2 x+y)$

$$
=12 f(x)+f(2 x+2 y)+f(2 x-2 y)-6[f(x+y)+f(x-y)]
$$

for all $x, y \in X$. Since g is additive, it follows from (2.11) and (2.14) that

$$
h(2 x+y)+h(2 x-y)=2[h(x+y)+h(x-y)]+12 h(x)
$$

for all $x, y \in X$. So the function h is cubic. $C: X \times X \times X \rightarrow Y$ and $A: X \rightarrow Y$ such that

$$
f(x)=C(x, x, x)+A(x)
$$

for all $x \in X$, where the function C is symmetric for each fixed one variable and is additive for fixed two variables and the function A is additive.

Proof. We first assume that the function $f: X \rightarrow Y$ satisfies (1.4). Let $g, h: X \rightarrow$ Y be functions defined by

$$
g(x):=f(2 x)-8 f(x), \quad h(x):=f(2 x)-2 f(x)
$$

for all $x \in X$. By Lemmas 2.1 and 2.2, we achieve that the functions g and h are additive and cubic, respectively, and

$$
\begin{equation*}
f(x)=\frac{1}{6}[h(x)-g(x)] \tag{2.15}
\end{equation*}
$$

,

Title Page
Contents
Approximation of a Mixed Functional Equation Abbas Najati and
G. Zamani Eskandani
vol. 10, iss. 1, art. 24, 2009
\square
Page 9 of 34

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
for all $x \in X$. Therefore by Theorem 2.1 of [12] there exists a function $C: X \times$ $X \times X \rightarrow Y$ such that $h(x)=6 C(x, x, x)$ for all $x \in X$, and C is symmetric for each fixed one variable and is additive for fixed two variables. So

$$
f(x)=C(x, x, x)+A(x)
$$

for all $x \in X$, where $A(x)=-\frac{1}{6} g(x)$ for all $x \in X$.
Conversely, let

$$
f(x)=C(x, x, x)+A(x)
$$

for all $x \in X$, where the function C is symmetric for each fixed one variable and additive for fixed two variables and the function A is additive. By a simple computation one can show that the functions $x \mapsto C(x, x, x)$ and A satisfy the functional equation (1.4). So the function f satisfies (1.4).

Approximation of a Mixed Functional Equation Abbas Najati and
G. Zamani Eskandani
vol. 10, iss. 1, art. 24, 2009

Title Page
Contents

Full Screen
Close
journal of inequalities in pure and applied mathematics

3. Generalized Hyers-Ulam stability of Eq. (1.4)

Throughout this section, assume that X is a quasi-normed space with quasi-norm $\|\cdot\|_{X}$ and that Y is a p-Banach space with p-norm $\|\cdot\|_{Y}$. Let K be the modulus of concavity of $\|\cdot\|_{Y}$.

In this section, using an idea of Găvruta [7] we prove the stability of the functional equation (1.4) in the spirit of Hyers, Ulam and Rassias. For convenience, we use the following abbreviation for a given function $f: X \rightarrow Y$:

$$
D f(x, y):=f(2 x+y)+f(x+2 y)-6 f(x+y)-f(2 x)-f(2 y)+5[f(x)+f(y)]
$$

for all $x, y \in X$.
We will use the following lemma in this section.
Lemma 3.1 ([23]). Let $0 \leq p \leq 1$ and let $x_{1}, x_{2}, \ldots, x_{n}$ be non-negative real numbers. Then

$$
\begin{equation*}
\left(\sum_{i=1}^{n} x_{i}\right)^{p} \leq \sum_{i=1}^{n} x_{i}^{p} \tag{3.1}
\end{equation*}
$$

Approximation of a Mixed Functional Equation Abbas Najati and
G. Zamani Eskandani
vol. 10, iss. 1, art. 24, 2009

Title Page
Contents

Page 11 of 34

```
Go Back
```

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
for all $x \in X$ and all $y \in\{0, x,-x / 2\}$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequalities

$$
\begin{equation*}
\|D f(x, y)\|_{Y} \leq \varphi(x, y) \tag{3.4}
\end{equation*}
$$

for all $x, y \in X$. Then the limit

$$
A(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n+1} x\right)-8 f\left(2^{n} x\right)}{2^{n}}
$$

exists for all $x \in X$, and the function $A: X \rightarrow Y$ is a unique additive function satisfying

$$
\begin{equation*}
\|f(2 x)-8 f(x)-A(x)+f(0)\|_{Y} \leq \frac{K}{2}[\widetilde{\varphi}(x)]^{\frac{1}{p}} \tag{3.6}
\end{equation*}
$$

for all $x \in X$, where

$$
\widetilde{\varphi}(x)=K^{2 p} M(2 x,-x)+\frac{K^{2 p}}{2^{p}} M(x, x)+K^{p} M(2 x, 0)+5^{p} M(x, 0) .
$$

Proof. Letting $y=x$ in (3.4), we have

$$
\begin{equation*}
\|f(3 x)-4 f(2 x)+5 f(x)\|_{Y} \leq \frac{1}{2} \varphi(x, x) \tag{3.7}
\end{equation*}
$$

for all $x \in X$. Replacing x by $2 x$ and y by $-x$ in (3.4), we have
(3.8) $\|f(3 x)-f(4 x)+5 f(2 x)-f(-2 x)-6 f(x)+5 f(-x)+f(0)\|_{Y} \leq \varphi(2 x,-x)$.

Approximation of a Mixed Functional Equation Abbas Najati and
G. Zamani Eskandani
vol. 10 , iss. 1 , art. 24,2009

Title Page
Contents

$\mathbf{4}$		
$\mathbf{4}$		
Page 12 of 34		
Go Back		

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Using (3.5), (3.7) and (3.8), we have

$$
\begin{equation*}
\|g(2 x)-2 g(x)-f(0)\|_{Y} \leq \phi(x) \tag{3.9}
\end{equation*}
$$

for all $x \in X$, where

$$
\phi(x)=K\left[K^{2} \varphi(2 x,-x)+\frac{K^{2}}{2} \varphi(x, x)+K \varphi(2 x, 0)+5 \varphi(x, 0)\right]
$$

and $g(x)=f(2 x)-8 f(x)$. By Lemma 3.1 and (3.3), we infer that

$$
\begin{equation*}
\sum_{i=0}^{\infty} \frac{1}{2^{i p}} \phi^{p}\left(2^{i} x\right)<\infty \tag{3.10}
\end{equation*}
$$

for all $x \in X$. Replacing x by $2^{n} x$ in (3.9) and dividing both sides of (3.9) by 2^{n+1}, we get

$$
\begin{equation*}
\left\|\frac{1}{2^{n+1}} g\left(2^{n+1} x\right)-\frac{1}{2^{n}} g\left(2^{n} x\right)-\frac{1}{2^{n+1}} f(0)\right\|_{Y} \leq \frac{1}{2^{n+1}} \phi\left(2^{n} x\right) \tag{3.11}
\end{equation*}
$$

for all $x \in X$ and all non-negative integers n. Since Y is a p-Banach space, we have

$$
\begin{align*}
& \left\|\frac{1}{2^{n+1}} g\left(2^{n+1} x\right)-\frac{1}{2^{m}} g\left(2^{m} x\right)-\sum_{i=m}^{n} \frac{1}{2^{i+1}} f(0)\right\|_{Y}^{p} \tag{3.12}\\
& \quad \leq \sum_{i=m}^{n}\left\|\frac{1}{2^{i+1}} g\left(2^{i+1} x\right)-\frac{1}{2^{i}} g\left(2^{i} x\right)-\frac{1}{2^{i+1}} f(0)\right\|_{Y}^{p} \\
& \quad \leq \frac{1}{2^{p}} \sum_{i=m}^{n} \frac{1}{2^{i p}} \phi^{p}\left(2^{i} x\right)
\end{align*}
$$

Title Page
Contents
\square
Page 13 of 34

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b
for all $x \in X$ and all non-negative integers n and m with $n \geq m$. Therefore we conclude from (3.10) and (3.12) that the sequence $\left\{\frac{1}{2^{n}} g\left(2^{n} x\right)\right\}$ is a Cauchy sequence in Y for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{1}{2^{n}} g\left(2^{n} x\right)\right\}$ converges in Y for all $x \in X$. So we can define the function $A: X \rightarrow Y$ by

$$
\begin{equation*}
A(x):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} g\left(2^{n} x\right) \tag{3.13}
\end{equation*}
$$

for all $x \in X$. Letting $m=0$ and passing the limit when $n \rightarrow \infty$ in (3.12), we get (3.6). Now, we show that A is an additive function. It follows from (3.10), (3.11) and (3.13) that

$$
\begin{aligned}
& \|A(2 x)-2 A(x)\|_{Y} \\
& \quad=\lim _{n \rightarrow \infty}\left\|\frac{1}{2^{n}} g\left(2^{n+1} x\right)-\frac{1}{2^{n-1}} g\left(2^{n} x\right)\right\|_{Y} \\
& \quad \leq 2 K \lim _{n \rightarrow \infty}\left(\left\|\frac{1}{2^{n+1}} g\left(2^{n+1} x\right)-\frac{1}{2^{n}} g\left(2^{n} x\right)-\frac{1}{2^{n+1}} f(0)\right\|_{Y}+\frac{1}{2^{n+1}}\|f(0)\|_{Y}\right) \\
& \quad \leq \lim _{n \rightarrow \infty} \frac{K}{2^{n}} \phi\left(2^{n} x\right)=0
\end{aligned}
$$

for all $x \in X$. So
(3.14)

$$
\begin{equation*}
A(2 x)=2 A(x) \tag{3.14}
\end{equation*}
$$

for all $x \in X$. On the other hand, it follows from (3.2), (3.4) and (3.13) that

Approximation of a Mixed Functional Equation Abbas Najati and
G. Zamani Eskandani
vol. 10, iss. 1, art. 24, 2009

Title Page
Contents

Page 14 of 34

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
for all $x, y \in X$. Hence the function A satisfies (1.4). So by Lemma 2.1, the function $x \mapsto A(2 x)-8 A(x)$ is additive. Therefore (3.14) implies that the function A is additive.

To prove the uniqueness of A, let $T: X \rightarrow Y$ be another additive function satisfying (3.6). It follows from (3.3) that

$$
\lim _{n \rightarrow \infty} \frac{1}{2^{n p}} M\left(2^{n} x, 2^{n} y\right)=\lim _{n \rightarrow \infty} \sum_{i=n}^{\infty} \frac{1}{2^{i p}} \varphi^{p}\left(2^{i} x, 2^{i} y\right)=0
$$

for all $x \in X$ and all $y \in\{0, x,-x / 2\}$. Hence $\lim _{n \rightarrow \infty} \frac{1}{2^{n p}} \widetilde{\varphi}\left(2^{n} x\right)=0$ for all $x \in X$. So it follows from (3.6) and (3.13) that

$$
\begin{aligned}
\|A(x)-T(x)\|_{Y}^{p} & =\lim _{n \rightarrow \infty} \frac{1}{2^{n p}}\left\|g\left(2^{n} x\right)-T\left(2^{n} x\right)+f(0)\right\|_{Y}^{p} \\
& \leq \frac{K^{p}}{2^{p}} \lim _{n \rightarrow \infty} \frac{1}{2^{n p}} \widetilde{\varphi}\left(2^{n} x\right)=0
\end{aligned}
$$

for all $x \in X$. So $A=T$.
Corollary 3.3. Let θ be non-negative real number. Suppose that a function f :

Approximation of a Mixed Functional Equation Abbas Najati and
G. Zamani Eskandani
vol. 10, iss. 1, art. 24, 2009

Title Page
Contents

$\mathbf{4}$	$\boldsymbol{~}$
$\mathbf{4}$	$\boldsymbol{}$
Page 15 of 34	
Go Back	

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof. It follows from (3.15) that $\|f(0)\|_{Y} \leq \theta / 4$. So the result follows from Theorem 3.2.

Theorem 3.4. Let $\varphi: X \times X \rightarrow[0, \infty)$ be a function such that

$$
\lim _{n \rightarrow \infty} 2^{n} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)=0
$$

for all $x, y \in X$, and

$$
\begin{equation*}
M(x, y):=\sum_{i=1}^{\infty} 2^{i p} \varphi^{p}\left(\frac{x}{2^{i}}, \frac{y}{2^{i}}\right)<\infty \tag{3.16}
\end{equation*}
$$

for all $x \in X$ and all $y \in\{0, x,-x / 2\}$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequalities

$$
\|D f(x, y)\|_{Y} \leq \varphi(x, y), \quad\|f(x)+f(-x)\|_{Y} \leq \varphi(x, 0)
$$

for all $x, y \in X$. Then the limit

$$
A(x)=\lim _{n \rightarrow \infty} 2^{n}\left[f\left(\frac{x}{2^{n-1}}\right)-8 f\left(\frac{x}{2^{n}}\right)\right]
$$

exists for all $x \in X$ and the function $A: X \rightarrow Y$ is a unique additive function satisfying

$$
\begin{equation*}
\|f(2 x)-8 f(x)-A(x)\|_{Y} \leq \frac{K}{2}[\widetilde{\varphi}(x)]^{\frac{1}{p}} \tag{3.17}
\end{equation*}
$$

for all $x \in X$, where

$$
\widetilde{\varphi}(x)=K^{2 p} M(2 x,-x)+\frac{K^{2 p}}{2^{p}} M(x, x)+K^{p} M(2 x, 0)+5^{p} M(x, 0)
$$

Approximation of a Mixed Functional Equation Abbas Najati and
G. Zamani Eskandani
vol. 10, iss. 1, art. 24, 2009

Title Page
Contents

Page 16 of 34

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof. It follows from (3.16) that $\varphi(0,0)=0$ and so $f(0)=0$. We introduce the same definitions for $g: X \rightarrow Y$ and $\phi(x)$ as in the proof of Theorem 3.2. Similar to the proof of Theorem 3.2, we have

$$
\begin{equation*}
\|g(2 x)-2 g(x)\|_{Y} \leq \phi(x) \tag{3.18}
\end{equation*}
$$

for all $x \in X$. By Lemma 3.1 and (3.16), we infer that

$$
\begin{equation*}
\sum_{i=1}^{\infty} 2^{i p} \phi^{p}\left(\frac{x}{2^{i}}\right)<\infty \tag{3.19}
\end{equation*}
$$

for all $x \in X$. Replacing x by $\frac{x}{2^{n+1}}$ in (3.18) and multiplying both sides of (3.18) by 2^{n}, we get

$$
\left\|2^{n+1} g\left(\frac{x}{2^{n+1}}\right)-2^{n} g\left(\frac{x}{2^{n}}\right)\right\|_{Y} \leq 2^{n} \phi\left(\frac{x}{2^{n+1}}\right)
$$

for all $x \in X$ and all non-negative integers n. Since Y is a p-Banach space, we have

$$
\begin{align*}
\left\|2^{n+1} g\left(\frac{x}{2^{n+1}}\right)-2^{m} g\left(\frac{x}{2^{m}}\right)\right\|_{Y}^{p} & \leq \sum_{i=m}^{n}\left\|2^{i+1} g\left(\frac{x}{2^{i+1}}\right)-2^{i} g\left(\frac{x}{2^{i}}\right)\right\|_{Y}^{p} \tag{3.20}\\
& \leq \sum_{i=m}^{n} 2^{i p} \phi^{p}\left(\frac{x}{2^{i+1}}\right)
\end{align*}
$$

for all $x \in X$ and all non-negative integers n and m with $n \geq m$. Therefore we conclude from (3.19) and (3.20) that the sequence $\left\{2^{n} g\left(x / 2^{n}\right)\right\}$ is a Cauchy sequence in Y for all $x \in X$. Since Y is complete, the sequence $\left\{2^{n} g\left(x / 2^{n}\right)\right\}$ converges in Y for all $x \in X$. So we can define the function $A: X \rightarrow Y$ by

$$
A(x):=\lim _{n \rightarrow \infty} 2^{n} g\left(\frac{x}{2^{n}}\right)
$$

Approximation of a Mixed Functional Equation Abbas Najati and
G. Zamani Eskandani
vol. 10, iss. 1, art. 24, 2009

Title Page
Contents

$\mathbf{4 4}$	
$\mathbf{4}$	
Page 17 of 34	
Go Back	

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
for all $x \in X$. Letting $m=0$ and passing the limit when $n \rightarrow \infty$ in (3.20) and applying Lemma 3.1, we get (3.17).

The rest of the proof is similar to the proof of Theorem 3.2 and we omit the details.

Corollary 3.5. Let θ, r, s be non-negative real numbers such that $r, s>1$ or $0<$ $r, s<1$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequalities

$$
\begin{equation*}
\|D f(x, y)\|_{Y} \leq \theta\left(\|x\|_{X}^{r}+\|y\|_{X}^{s}\right), \quad\|f(x)+f(-x)\|_{Y} \leq \theta\|x\|_{X}^{r} \tag{3.21}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique additive function $A: X \rightarrow Y$ satisfying

$$
\begin{aligned}
& \|f(2 x)-8 f(x)-A(x)\|_{Y} \\
& \leq \frac{K \theta}{2}\left\{\frac{\left(2^{r+1} K^{2}\right)^{p}+K^{2 p}+\left(2^{r+1} K\right)^{p}+10^{p}}{\left|2^{p}-2^{r p}\right|}\|x\|_{X}^{r p}+\frac{\left(2 K^{2}\right)^{p}+K^{2 p}}{\left|2^{p}-2^{s p}\right|}\|x\|_{X}^{s p}\right\}^{\frac{1}{p}}
\end{aligned}
$$

for all $x \in X$.
Proof. It follows from (3.21) that $f(0)=0$. Hence the result follows from Theorems 3.2 and 3.4.

Corollary 3.6. Let $\theta \geq 0$ and $r, s>0$ be real numbers such that $\lambda:=r+s \neq 1$. Suppose that an odd function $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\|D f(x, y)\|_{Y} \leq \theta\|x\|_{X}^{r}\|y\|_{Y}^{s} \tag{3.22}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique additive function $A: X \rightarrow Y$ satisfying

$$
\|f(2 x)-8 f(x)-A(x)\|_{Y} \leq \frac{K^{3} \theta}{2}\left\{\frac{1+2^{p(r+1)}}{\left|2^{p}-2^{\lambda p}\right|}\right\}^{\frac{1}{p}}\|x\|_{X}^{\lambda}
$$

for all $x \in X$.

Approximation of a Mixed Functional Equation Abbas Najati and
G. Zamani Eskandani
vol. 10, iss. 1, art. 24, 2009

Title Page
Contents

$\mathbf{4 4}$	$\boldsymbol{~}$
$\mathbf{4}$	
Page 18 of 34	
Go Back	

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof. $f(0)=0$, since f is odd. Hence the result follows from Theorems 3.2 and 3.4.

Theorem 3.7. Let $\psi: X \times X \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{8^{n}} \psi\left(2^{n} x, 2^{n} y\right)=0 \tag{3.23}
\end{equation*}
$$

for all $x, y \in X$, and

$$
\begin{equation*}
M(x, y):=\sum_{i=0}^{\infty} \frac{1}{8^{i p}} \psi^{p}\left(2^{i} x, 2^{i} y\right)<\infty \tag{3.24}
\end{equation*}
$$

for all $x \in X$ and all $y \in\{0, x,-x / 2\}$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequalities

Title Page
Contents

$\mathbf{4 4}$	
$\mathbf{4}$	
Page 19 of 34	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof. Similar to the proof of Theorem 3.2, we have

$$
\begin{equation*}
\|f(4 x)-10 f(2 x)+16 f(x)-f(0)\|_{Y} \leq \phi(x) \tag{3.27}
\end{equation*}
$$

for all $x \in X$, where

$$
\phi(x)=K\left[K^{2} \psi(2 x,-x)+\frac{K^{2}}{2} \psi(x, x)+K \psi(2 x, 0)+5 \psi(x, 0)\right] .
$$

Let $h: X \rightarrow Y$ be a function defined by $h(x)=f(2 x)-2 f(x)$. Hence (3.27) means

$$
\begin{equation*}
\|h(2 x)-8 h(x)-f(0)\|_{Y} \leq \phi(x) \tag{3.28}
\end{equation*}
$$

for all $x \in X$. By Lemma 3.1 and (3.24), we infer that

$$
\begin{equation*}
\sum_{i=0}^{\infty} \frac{1}{8^{i p}} \phi^{p}\left(2^{i} x\right)<\infty \tag{3.29}
\end{equation*}
$$

for all $x \in X$. Replacing x by $2^{n} x$ in (3.28) and dividing both sides of (3.28) by 8^{n+1}, we get

$$
\begin{equation*}
\left\|\frac{1}{8^{n+1}} h\left(2^{n+1} x\right)-\frac{1}{8^{n}} h\left(2^{n} x\right)-\frac{1}{8^{n+1}} f(0)\right\|_{Y} \leq \frac{1}{8^{n+1}} \phi\left(2^{n} x\right) \tag{3.30}
\end{equation*}
$$

for all $x \in X$ and all non-negative integers n. Since Y is a p-Banach space, we have

$$
\begin{align*}
& \left\|\frac{1}{8^{n+1}} h\left(2^{n+1} x\right)-\frac{1}{8^{m}} h\left(2^{m} x\right)-\sum_{i=m}^{n} \frac{1}{8^{i+1}} f(0)\right\|_{Y}^{p} \tag{3.31}\\
& \quad \leq \sum_{i=m}^{n}\left\|\frac{1}{8^{i+1}} h\left(2^{i+1} x\right)-\frac{1}{8^{i}} h\left(2^{i} x\right)-\frac{1}{8^{i+1}} f(0)\right\|_{Y}^{p}
\end{align*}
$$

Title Page

Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 20 of 34	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\leq \frac{1}{8^{p}} \sum_{i=m}^{n} \frac{1}{8^{i p}} \phi^{p}\left(2^{i} x\right)
$$

for all $x \in X$ and all non-negative integers n and m with $n \geq m$. Therefore we conclude from (3.29) and (3.31) that the sequence $\left\{\frac{1}{8^{n}} h\left(2^{n} x\right)\right\}$ is a Cauchy sequence in Y for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{1}{8^{n}} h\left(2^{n} x\right)\right\}$ converges for all $x \in X$. So we can define the function $C: X \rightarrow Y$ by:

$$
\begin{equation*}
C(x)=\lim _{n \rightarrow \infty} \frac{1}{8^{n}} h\left(2^{n} x\right) \tag{3.32}
\end{equation*}
$$

for all $x \in X$. Letting $m=0$ and passing the limit when $n \rightarrow \infty$ in (3.31), we get (3.26). Now, we show that the function C is cubic. It follows from (3.29), (3.30) and (3.32) that

$$
\begin{aligned}
& \|C(2 x)-8 C(x)\|_{Y} \\
& \quad=\lim _{n \rightarrow \infty}\left\|\frac{1}{8^{n}} h\left(2^{n+1} x\right)-\frac{1}{8^{n-1}} h\left(2^{n} x\right)\right\|_{Y} \\
& \quad \leq 8 K \lim _{n \rightarrow \infty}\left(\left\|\frac{1}{8^{n+1}} h\left(2^{n+1} x\right)-\frac{1}{8^{n}} h\left(2^{n} x\right)-\frac{1}{8^{n+1}} f(0)\right\|_{Y}+\frac{1}{8^{n+1}}\|f(0)\|_{Y}\right) \\
& \quad \leq \lim _{n \rightarrow \infty} \frac{K}{8^{n}} \phi\left(2^{n} x\right)=0
\end{aligned}
$$

Approximation of a Mixed Functional Equation Abbas Najati and
G. Zamani Eskandani
vol. 10 , iss. 1 , art. 24,2009

Title Page
Contents

Page 21 of 34

```
Go Back
```

Full Screen

Close

journal of inequalities in pure and applied mathematics
for all $x \in X$. On the other hand, it follows from (3.23), (3.25) and (3.32) that

$$
\begin{aligned}
\|D C(x, y)\|_{Y} & =\lim _{n \rightarrow \infty} \frac{1}{8^{n}}\left\|D h\left(2^{n} x, 2^{n} y\right)\right\|_{Y} \\
& =\lim _{n \rightarrow \infty} \frac{1}{8^{n}}\left\{\left\|D f\left(2^{n+1} x, 2^{n+1} y\right)-2 D f\left(2^{n} x, 2^{n} y\right)\right\|_{Y}\right\} \\
& \leq \lim _{n \rightarrow \infty} \frac{K}{8^{n}}\left\{\left\|D f\left(2^{n+1} x, 2^{n+1} y\right)\right\|_{Y}+2\left\|D f\left(2^{n} x, 2^{n} y\right)\right\|_{Y}\right\} \\
& \leq \lim _{n \rightarrow \infty} \frac{K}{8^{n}}\left[\psi\left(2^{n+1} x, 2^{n+1} y\right)+2 \psi\left(2^{n} x, 2^{n} y\right)\right]=0
\end{aligned}
$$

for all $x, y \in X$. Hence the function C satisfies (1.4). So by Lemma 2.2, the function $x \mapsto C(2 x)-2 C(x)$ is cubic. Hence (3.33) implies that the function C is cubic. To prove the uniqueness of C, let $T: X \rightarrow Y$ be another cubic function satisfying (3.26). It follows from (3.24) that

$$
\lim _{n \rightarrow \infty} \frac{1}{8^{n p}} M\left(2^{n} x, 2^{n} y\right)=\lim _{n \rightarrow \infty} \sum_{i=n}^{\infty} \frac{1}{8^{i p}} \psi^{p}\left(2^{i} x, 2^{i} y\right)=0
$$

for all $x \in X$ and $y \in\{0, x,-x / 2\}$. Hence $\lim _{n \rightarrow \infty} \frac{1}{8^{n p}} \widetilde{\psi}\left(2^{n} x\right)=0$ for all $x \in X$. So it follows from (3.26) and (3.32) that

$$
\begin{aligned}
\|C(x)-T(x)\|_{Y}^{p} & =\lim _{n \rightarrow \infty} \frac{1}{8^{n p}}\left\|h\left(2^{n} x\right)-T\left(2^{n} x\right)+\frac{1}{7} f(0)\right\|_{Y}^{p} \\
& \leq \frac{K^{p}}{8^{p}} \lim _{n \rightarrow \infty} \frac{1}{8^{n p}} \widetilde{\psi}\left(2^{n} x\right)=0
\end{aligned}
$$

for all $x \in X$. So $C=T$.
Corollary 3.8. Let θ be non-negative real number. Suppose that a function f : $X \rightarrow Y$ satisfies the inequalities (3.15). Then there exists a unique cubic function

Approximation of a Mixed Functional Equation Abbas Najati and
G. Zamani Eskandani
vol. 10, iss. 1, art. 24, 2009

Title Page
Contents

Page 22 of 34

```
Go Back
```

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
$C: X \rightarrow Y$ satisfying

$$
\|f(2 x)-2 f(x)-C(x)\|_{Y} \leq \frac{K^{2} \theta}{2}\left\{\frac{\left(2 K^{2}\right)^{p}+(2 K)^{p}+K^{2 p}+10^{p}}{8^{p}-1}\right\}^{\frac{1}{p}}+\frac{K \theta}{28}
$$

for all $x \in X$.
Proof. We get from (3.15) that $\|f(0)\| \leq \theta / 4$. So the result follows from Theorem 3.7.

Theorem 3.9. Let $\psi: X \times X \rightarrow[0, \infty)$ be a function such that

$$
\lim _{n \rightarrow \infty} 8^{n} \psi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)=0
$$

for all $x, y \in X$, and

$$
\begin{equation*}
M(x, y):=\sum_{i=1}^{\infty} 8^{i p} \psi^{p}\left(\frac{x}{2^{i}}, \frac{y}{2^{i}}\right)<\infty \tag{3.34}
\end{equation*}
$$

for all $x \in X$ and all $y \in\{0, x,-x / 2\}$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequalities

$$
\|D f(x, y)\|_{Y} \leq \psi(x, y), \quad\|f(x)+f(-x)\|_{Y} \leq \psi(x, 0)
$$

for all $x, y \in X$. Then the limit

$$
C(x)=\lim _{n \rightarrow \infty} 8^{n}\left[f\left(\frac{x}{2^{n-1}}\right)-2 f\left(\frac{x}{2^{n}}\right)\right]
$$

exists for all $x \in X$ and the function $C: X \rightarrow Y$ is a unique cubic function satisfying

$$
\begin{equation*}
\|f(2 x)-2 f(x)-C(x)\|_{Y} \leq \frac{K}{8}[\widetilde{\psi}(x)]^{\frac{1}{p}} \tag{3.35}
\end{equation*}
$$

Approximation of a Mixed Functional Equation Abbas Najati and
G. Zamani Eskandani
vol. 10, iss. 1, art. 24, 2009

Title Page
Contents

Page 23 of 34
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
for all $x \in X$, where

$$
\widetilde{\psi}(x)=K^{2 p} M(2 x,-x)+\frac{K^{2 p}}{2^{p}} M(x, x)+K^{p} M(2 x, 0)+5^{p} M(x, 0) .
$$

Proof. It follows from (3.34) that $\psi(0,0)=0$ and so $f(0)=0$. We introduce the same definitions for $h: X \rightarrow Y$ and $\phi(x)$ as in the proof of Theorem 3.7. Similar to the proof of Theorem 3.7, we have

$$
\begin{equation*}
\|h(2 x)-8 h(x)\|_{Y} \leq \phi(x) \tag{3.36}
\end{equation*}
$$

Approximation of a Mixed Functional Equation Abbas Najati and
G. Zamani Eskandani
vol. 10, iss. 1, art. 24, 2009

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 24 of 34	
Go Back	

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
for all $x \in X$ and all non-negative integers n and m with $n \geq m$. Therefor we conclude from (3.37) and (3.38) that the sequence $\left\{8^{n} h\left(x / 2^{n}\right)\right\}$ is a Cauchy sequence
in Y for all $x \in X$. Since Y is complete, the sequence $\left\{8^{n} h\left(x / 2^{n}\right)\right\}$ converges in Y for all $x \in X$. So we can define the function $C: X \rightarrow Y$ by

$$
C(x):=\lim _{n \rightarrow \infty} 8^{n} h\left(\frac{x}{2^{n}}\right)
$$

for all $x \in X$. Letting $m=0$ and passing the limit when $n \rightarrow \infty$ in (3.38) and applying Lemma 3.1, we get (3.35).

The rest of the proof is similar to the proof of Theorem 3.7 and we omit the details.

Corollary 3.10. Let θ, r, s be non-negative real numbers such that $r, s>3$ or $0<$ $r, s<3$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequalities (3.21). Then there exists a unique cubic function $C: X \rightarrow Y$ satisfying

$$
\begin{aligned}
& \|f(2 x)-2 f(x)-C(x)\|_{Y} \\
& \leq \frac{K \theta}{2}\left\{\frac{\left(2^{r+1} K^{2}\right)^{p}+K^{2 p}+\left(2^{r+1} K^{2}\right)^{p}+10^{p}}{\mid 8^{p}-2^{r p \mid}}\|x\|_{X}^{r p}+\frac{\left(2 K^{2}\right)^{p}+K^{2 p}}{\left|8^{p}-2^{s p}\right|}\|x\|_{X}^{s p}\right\}^{\frac{1}{p}}
\end{aligned}
$$

for all $x \in X$.
Proof. It follows from (3.21) that $f(0)=0$. Hence the result follows from Theorems 3.7 and 3.9.

Corollary 3.11. Let θ and $r, s>0$ be non-negative real numbers such that $\lambda:=$ $r+s \neq 3$. Suppose that an odd function $f: X \rightarrow Y$ satisfies the inequality (3.22). Then there exists a unique cubic function $C: X \rightarrow Y$ satisfying

$$
\|f(2 x)-2 f(x)-C(x)\|_{Y} \leq \frac{K^{3} \theta}{2}\left\{\frac{1+2^{(r+1) p}}{\left|8^{p}-2^{\lambda p}\right|}\right\}^{\frac{1}{p}}\|x\|_{X}^{\lambda}
$$

for all $x \in X$.

Approximation of a Mixed Functional Equation Abbas Najati and
G. Zamani Eskandani
vol. 10, iss. 1, art. 24, 2009

Title Page
Contents

$\mathbf{4 4}$	
$\mathbf{4}$	
Page 25 of 34	
Go Back	

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof. $f(0)=0$, since f is odd. Hence the result follows from Theorems 3.7 and 3.9.

Theorem 3.12. Let $\varphi: X \times X \rightarrow[0, \infty)$ be a function such that

$$
\lim _{n \rightarrow \infty} \frac{1}{2^{n}} \varphi\left(2^{n} x, 2^{n} y\right)=0
$$

for all $x, y \in X$, and

$$
M_{a}(x, y):=\sum_{i=0}^{\infty} \frac{1}{2^{i p}} \varphi^{p}\left(2^{i} x, 2^{i} y\right)<\infty
$$

for all $x \in X$ and all $y \in\{0, x,-x / 2\}$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequalities

$$
\|D f(x, y)\|_{Y} \leq \varphi(x, y) \quad\|f(x)+f(-x)\|_{Y} \leq \varphi(x, 0)
$$

for all $x, y \in X$. Then there exist a unique additive function $A: X \rightarrow Y$ and a unique cubic function $C: X \rightarrow Y$ such that

$$
\begin{equation*}
\left\|f(x)-A(x)-C(x)-\frac{1}{7} f(0)\right\|_{Y} \leq \frac{K^{2}}{48}\left\{4\left[\widetilde{\varphi_{a}}(x)\right]^{\frac{1}{p}}+\left[\widetilde{\varphi}_{c}(x)\right]^{\frac{1}{p}}\right\} \tag{3.39}
\end{equation*}
$$

Approximation of a Mixed Functional Equation Abbas Najati and
G. Zamani Eskandani
vol. 10, iss. 1, art. 24, 2009

Title Page
Contents

$\mathbf{4 4}$	
$\mathbf{4}$	
Page 26 of 34	
Go Back	

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof. By Theorems 3.2 and 3.7, there exists an additive function $A_{0}: X \rightarrow Y$ and a cubic function $C_{0}: X \rightarrow Y$ such that

$$
\begin{aligned}
\left\|A_{0}(x)-f(2 x)+8 f(x)-f(0)\right\|_{Y} & \leq \frac{K}{2}\left[\widetilde{\varphi_{a}}(x)\right]^{\frac{1}{p}} \\
\left\|C_{0}(x)-f(2 x)+2 f(x)-\frac{1}{7} f(0)\right\|_{Y} & \leq \frac{K}{8}\left[\widetilde{\varphi}_{c}(x)\right]^{\frac{1}{p}}
\end{aligned}
$$

for all $x \in X$. Therefore it follows from the last inequalities that

$$
\left\|f(x)+\frac{1}{6} A_{0}(x)-\frac{1}{6} C_{0}(x)-\frac{1}{7} f(0)\right\|_{Y} \leq \frac{K^{2}}{48}\left\{4\left[\widetilde{\varphi_{a}}(x)\right]^{\frac{1}{p}}+\left[\widetilde{\varphi}_{c}(x)\right]^{\frac{1}{p}}\right\}
$$

for all $x \in X$. So we obtain (3.39) by letting $A(x)=-\frac{1}{6} A_{0}(x)$ and $C(x)=\frac{1}{6} C_{0}(x)$ for all $x \in X$.

To prove the uniqueness of A and C, let $A_{1}, C_{1}: X \rightarrow Y$ be further additive and cubic functions satisfying (3.39). Let $A^{\prime}=A-A_{1}$ and $C^{\prime}=C-C_{1}$. Then

$$
\begin{align*}
&\left\|A^{\prime}(x)+C^{\prime}(x)\right\|_{Y} \leq K\left[\left\|f(x)-A(x)-C(x)-\frac{1}{7} f(0)\right\|_{Y}\right. \tag{3.40}\\
&\left.\quad+\left\|f(x)-A_{1}(x)-C_{1}(x)-\frac{1}{7} f(0)\right\|_{Y}\right] \\
& \leq \frac{K^{3}}{24}\left\{4\left[\widetilde{\varphi_{a}}(x)\right]^{\frac{1}{p}}+\left[\widetilde{\varphi}_{c}(x)\right]^{\frac{1}{p}}\right\}
\end{align*}
$$

for all $x \in X$. Since

$$
\lim _{n \rightarrow \infty} \frac{1}{8^{n p}} \widetilde{\varphi}_{c}\left(2^{n} x\right)=\lim _{n \rightarrow \infty} \frac{1}{2^{n p}} \widetilde{\varphi_{a}}\left(2^{n} x\right)=0
$$

for all $x \in X$, then (3.40) implies that

$$
\lim _{n \rightarrow \infty} \frac{1}{8^{n}}\left\|A^{\prime}\left(2^{n} x\right)+C^{\prime}\left(2^{n} x\right)\right\|_{Y}=0
$$

Approximation of a Mixed Functional Equation Abbas Najati and
G. Zamani Eskandani
vol. 10 , iss. 1 , art. 24,2009

Title Page
Contents

$\boldsymbol{4}$	
$\mathbf{4}$	
Page 27 of 34	
Go Back	

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
for all $x \in X$. Since A^{\prime} is additive and C^{\prime} is cubic, we get $C^{\prime}=0$. So it follows from (3.40) that

$$
\left\|A^{\prime}(x)\right\|_{Y} \leq \frac{5 K^{3}}{24}\left[\widetilde{\varphi_{a}}(x)\right]^{\frac{1}{p}}
$$

for all $x \in X$. Therefore $A^{\prime}=0$.

Corollary 3.13. Let θ be a non-negative real number. Suppose that a function f : $X \rightarrow Y$ satisfies the inequalities (3.15). Then there exist a unique additive function $A: X \rightarrow Y$ and a unique cubic function $C: X \rightarrow Y$ satisfying

$$
\|f(x)-A(x)-C(x)\|_{Y} \leq \frac{K}{6}\left(\delta_{a}+\delta_{c}\right)
$$

for all $x \in X$, where

$$
\begin{aligned}
& \delta_{a}=\frac{K^{2} \theta}{2}\left\{\frac{\left(2 K^{2}\right)^{p}+(2 K)^{p}+k^{2 p}+10^{p}}{2^{p}-1}\right\}^{\frac{1}{p}}+\frac{K \theta}{4} \\
& \delta_{c}=\frac{K^{2} \theta}{2}\left\{\frac{\left(2 K^{2}\right)^{p}+(2 K)^{p}+K^{2 p}+10^{p}}{8^{p}-1}\right\}^{\frac{1}{p}}+\frac{K \theta}{28}
\end{aligned}
$$

Approximation of a Mixed Functional Equation Abbas Najati and
G. Zamani Eskandani
vol. 10, iss. 1, art. 24, 2009
for all $x, y \in X$, and

$$
M_{c}(x, y):=\sum_{i=1}^{\infty} 8^{i p} \psi^{p}\left(\frac{x}{2^{i}}, \frac{y}{2^{i}}\right)<\infty
$$

Title Page
Contents

Page 28 of 34

Full Screen
Close
\square

```
Go Back
Go Back
```

journal of inequalities in pure and applied mathematics
issn: 1443-575b

J
for all $x \in X$ and all $y \in\{0, x,-x / 2\}$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequalities

$$
\|D f(x, y)\|_{Y} \leq \psi(x, y) \quad\|f(x)+f(-x)\|_{Y} \leq \psi(x, 0)
$$

for all $x, y \in X$. Then there exist a unique additive function $A: X \rightarrow Y$ and a unique cubic function $C: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)-C(x)\|_{Y} \leq \frac{K^{2}}{48}\left\{4\left[\widetilde{\psi_{a}}(x)\right]^{\frac{1}{p}}+\left[\widetilde{\psi}_{c}(x)\right]^{\frac{1}{p}}\right\} \tag{3.41}
\end{equation*}
$$

for all $x \in X$, where

$$
\begin{aligned}
M_{a}(x, y) & :=\sum_{i=1}^{\infty} 2^{i p} \psi^{p}\left(\frac{x}{2^{i}}, \frac{y}{2^{i}}\right) \\
\widetilde{\psi_{c}}(x) & :=K^{2 p} M_{c}(2 x,-x)+\frac{K^{2 p}}{2^{p}} M_{c}(x, x)+K^{p} M_{c}(2 x, 0)+5^{p} M_{c}(x, 0) \\
\widetilde{\psi_{a}}(x) & :=K^{2 p} M_{a}(2 x,-x)+\frac{K^{2 p}}{2^{p}} M_{a}(x, x)+K^{p} M_{a}(2 x, 0)+5^{p} M_{a}(x, 0) .
\end{aligned}
$$

Approximation of a Mixed Functional Equation Abbas Najati and
G. Zamani Eskandani
vol. 10, iss. 1, art. 24, 2009

Title Page
Contents
\square
Page 29 of 34

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
for all $x \in X$, where

$$
\begin{aligned}
& \delta_{a}(x)=\left\{\frac{\left(2^{r+1} K^{2}\right)^{p}+K^{2 p}+\left(2^{r+1} K^{2}\right)^{p}+10^{p}}{\left|2^{p}-2^{r p}\right|}\|x\|_{X}^{r p}+\frac{\left(2 K^{2}\right)^{p}+K^{2 p}}{\left|2^{p}-2^{s p}\right|}\|x\|_{X}^{s p}\right\}^{\frac{1}{p}}, \\
& \delta_{c}(x)=\left\{\frac{\left(2^{r+1} K^{2}\right)^{p}+K^{2 p}+\left(2^{r+1} K^{2}\right)^{p}+10^{p}}{\left|8^{p}-2^{r p}\right|}\|x\|_{X}^{r p}+\frac{\left(2 K^{2}\right)^{p}+K^{2 p}}{\left|8^{p}-2^{s p}\right|}\|x\|_{X}^{s p}\right\}^{\frac{1}{p}} .
\end{aligned}
$$

Corollary 3.16. Let $\theta \geq 0$ and $r, s>0$ be real numbers such that $\lambda:=r+s \in$ $(0,1) \cup(3,+\infty)$. Suppose that an odd function $f: X \rightarrow Y$ satisfies the inequality (3.22). Then there exist a unique additive function $A: X \rightarrow Y$ and a unique cubic function $C: X \rightarrow Y$ such that

$$
\begin{align*}
\| f(x)-A(x) & -C(x) \|_{Y} \tag{3.43}\\
& \leq \frac{K^{4} \theta}{12}\left[\left\{\frac{1+2^{p(r+1)}}{\left|2^{p}-2^{\lambda p}\right|}\right\}^{\frac{1}{p}}+\left\{\frac{1+2^{p(r+1)}}{\left|8^{p}-2^{\lambda p}\right|}\right\}^{\frac{1}{p}}\right]\|x\|_{X}^{\lambda}
\end{align*}
$$

for all $x \in X$.
Theorem 3.17. Let $\varphi: X \times X \rightarrow[0, \infty)$ be a function such that
Approximation of a Mixed Functional Equation Abbas Najati and
G. Zamani Eskandani
vol. 10, iss. 1, art. 24, 2009

$$
\lim _{n \rightarrow \infty} \frac{1}{8^{n}} \varphi\left(2^{n} x, 2^{n} y\right)=0, \quad \lim _{n \rightarrow \infty} 2^{n} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)=0
$$

for all $x, y \in X$, and

$$
M_{a}(x, y):=\sum_{i=1}^{\infty} 2^{i p} \varphi^{p}\left(\frac{x}{2^{i}}, \frac{y}{2^{i}}\right)<\infty, \quad M_{c}(x, y):=\sum_{i=0}^{\infty} \frac{1}{8^{i p}} \varphi^{p}\left(2^{i} x, 2^{i} y\right)<\infty
$$

for all $x \in X$ and all $y \in\{0, x,-x / 2\}$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequalities

$$
\|D f(x, y)\|_{Y} \leq \varphi(x, y) \quad\|f(x)+f(-x)\|_{Y} \leq \varphi(x, 0)
$$

Title Page
Contents
\square
Page 30 of 34

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
for all $x, y \in X$. Then there exist a unique additive function $A: X \rightarrow Y$ and a unique cubic function $C: X \rightarrow Y$ such that

$$
\|f(x)-A(x)-C(x)\|_{Y} \leq \frac{K^{2}}{48}\left\{4\left[\widetilde{\varphi_{a}}(x)\right]^{\frac{1}{p}}+\left[\widetilde{\varphi}_{c}(x)\right]^{\frac{1}{p}}\right\}
$$

for all $x \in X$, where

$$
\begin{aligned}
& \widetilde{\varphi}_{c}(x):=K^{2 p} M_{c}(2 x,-x)+\frac{K^{2 p}}{2^{p}} M_{c}(x, x)+K^{p} M_{c}(2 x, 0)+5^{p} M_{c}(x, 0) \\
& \widetilde{\varphi_{a}}(x):=K^{2 p} M_{a}(2 x,-x)+\frac{K^{2 p}}{2^{p}} M_{a}(x, x)+K^{p} M_{a}(2 x, 0)+5^{p} M_{a}(x, 0)
\end{aligned}
$$

Proof. By the assumption, we get $f(0)=0$. So the result follows from Theorem 3.4 and Theorem 3.7.

Corollary 3.18. Let θ, r, s be non-negative real numbers such that $1<r, s<3$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequalities (3.21) for all $x, y \in$ X. Then there exists a unique additive mapping $A: X \rightarrow Y$ and a unique cubic mapping $C: X \rightarrow Y$ satisfying (3.42).

Proof. It follows from (3.21) that $f(0)=0$. Hence the result follows from Corollaries 3.5 and 3.10.

Corollary 3.19. Let θ, r, s be non-negative real numbers such that $1<\lambda:=r+s<$ 3. Suppose that an odd function $f: X \rightarrow Y$ satisfies the inequality (3.22) for all $x, y \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ and a unique cubic mapping $C: X \rightarrow Y$ satisfying (3.43).

Proof. $f(0)=0$, since f is odd. Hence the result follows from Corollaries 3.6 and 3.11.

Approximation of a Mixed Functional Equation Abbas Najati and
G. Zamani Eskandani
vol. 10, iss. 1, art. 24, 2009

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 31 of 34	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] J. ACZÉL AND J. DHOMBRES, Functional Equations in Several Variables, Cambridge University Press, 1989.
[2] T. AOKI, On the stability of the linear transformationin Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
[3] Y. BENYAMINI AND J. LINDENSTRAUSS, Geometric Nonlinear Functional Analysis, vol. 1, Colloq. Publ., vol. 48, Amer. Math. Soc., Providence, RI, 2000.
[4] P.W. CHOLEWA, Remarks on the stability of functional equations, Aequationes Math., 27 (1984), 76-86.
[5] P. CZERWIK, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore and London, 2002.
[6] S. CZERWIK, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59-64.
[7] P. GĂVRUTA, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
[8] A. GRABIEC, The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen, 48 (1996), 217-235.
[9] D.H. HYERS, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., 27 (1941), 222-224.
[10] D.H. HYERS, G. ISAC AND Th.M. RASSIAS, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.

Approximation of a Mixed Functional Equation Abbas Najati and
G. Zamani Eskandani
vol. 10, iss. 1, art. 24, 2009

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 32 of 34	
Go Back	

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
[11] G. ISAC AND Th.M. RASSIAS, Stability of Ψ-additive mappings: applications to nonlinear analysis, Internat. J. Math. Math. Sci., 19 (1996), 219-228.
[12] K.-W. JUN AND H.-M. KIM, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl., 274 (2002), 867-878.
[13] K. JUN and Y. LEE, On the Hyers-Ulam-Rassias stability of a Pexiderized quadratic inequality, Math. Inequal. Appl., 4 (2001), 93-118.
[14] S.-M. JUNG, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press lnc., Palm Harbor, Florida, 2001.
[15] S.-M. JUNG and T.-S. KIM, A fixed point approach to stability of cubic functional equation, Bol. Soc. Mat. Mexicana, 12 (2006), 51-57.
[16] Pl. KANNAPPAN, Quadratic functional equation and inner product spaces, Results Math., 27 (1995), 368-372.
[17] M. MIRZAVAZIRI and M.S. MOSLEHIAN, A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc., 37 (2006), 361-376.
[18] M.S. MOSLEHIAN, On the orthogonal stability of the Pexiderized quadratic equation, J. Difference Equ. Appl., 11 (2005), 999-1004.
[19] M.S. MOSLEHIAN AND Th.M. RASSIAS, Stability of functional equations in non-Archimedian spaces, Appl. Anal. Disc. Math., 1 (2007), 325-334.
[20] A. NAJATI, Hyers-Ulam stability of an n-Apollonius type quadratic mapping, Bull. Belg. Math. Soc. Simon-Stevin, 14 (2007), 755-774.
[21] A. NAJATI AND C. PARK, The Pexiderized Apollonius-Jensen type additive mapping and isomorphisms between C^{*}-algebras, J. Difference Equ. Appl., 14 (2008), 459-479.

Approximation of a Mixed Functional Equation Abbas Najati and
G. Zamani Eskandani
vol. 10, iss. 1, art. 24, 2009

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 33 of 34	
Go Back	

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
[22] A. NAJATI, On the stability of a quartic functional equation, J. Math. Anal. Appl., 340 (2008), 569-574.
[23] A. NAJATI AND M.B. MOGHIMI, Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl., 337 (2008), 399-415.
[24] A. NAJATI AND C. PARK, Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras associated to the Pexiderized Cauchy functional equation, J. Math. Anal. Appl., 335 (2007), 763-778.
[25] A. NAJATI AND G. ZAMANI ESKANDANI, Stability of a mixed additive and cubic functional equation in quasi-Banach spaces, J. Math. Anal. Appl., 342 (2008), 1318-1331.
[26] C. PARK, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl., 275 (2002), 711-720.
[27] Th.M. RASSIAS, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
[28] Th.M. RASSIAS, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers Co., Dordrecht, Boston, London, 2003.
[29] S. ROLEWICZ, Metric Linear Spaces, PWN-Polish Sci. Publ., Warszawa, Reidel, Dordrecht, 1984.
[30] S.M. ULAM, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.

0
m

Approximation of a Mixed Functional Equation Abbas Najati and
G. Zamani Eskandani
vol. 10, iss. 1, art. 24, 2009

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 34 of 34	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

