APPROXIMATION OF A MIXED FUNCTIONAL EQUATION IN QUASI-BANACH SPACES

ABBAS NAJATI AND G. ZAMANI ESKANDANI
Department of Mathematics
Faculty of Sciences
University of Mohaghegh Ardabili
ARDABIL, IRAN
a.nejati@yahoo.com

Faculty of Mathematical Sciences
University of Tabriz, Tabriz, Iran
zamani@tabrizu.ac.ir
Received 17 August, 2008; accepted 07 February, 2009
Communicated by Th.M. Rassias

Abstract

In this paper we establish the general solution of the functional equation $$
f(2 x+y)+f(x+2 y)=6 f(x+y)+f(2 x)+f(2 y)-5[f(x)+f(y)]
$$ and investigate its generalized Hyers-Ulam stability in quasi-Banach spaces. The concept of Hyers-Ulam-Rassias stability originated from Th.M. Rassias' stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.

Key words and phrases: Generalized Hyers-Ulam stability, additive function, cubic function, quasi-Banach space, p-Banach
space.
2000 Mathematics Subject Classification. Primary 39B72, 46B03, 47Jxx.

1. Introduction and Preliminaries

In 1940, S.M. Ulam [30] gave a talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of unsolved problems. Among these was the following question concerning the stability of homomorphisms.

Let $\left(G_{1}, *\right)$ be a group and let $\left(G_{2}, \diamond, d\right)$ be a metric group with the metric $d(\cdot, \cdot)$. Given $\epsilon>0$, does there exist a $\delta(\epsilon)>0$ such that if a function $h: G_{1} \rightarrow G_{2}$ satisfies the inequality

$$
d(h(x * y), h(x) \diamond h(y))<\delta
$$

for all $x, y \in G_{1}$, then there is a homomorphism $H: G_{1} \rightarrow G_{2}$ with

$$
d(h(x), H(x))<\epsilon
$$

for all $x \in G_{1}$?

In 1941, D.H. Hyers [9] considered the case of approximately additive functions $f: E \rightarrow E^{\prime}$, where E and E^{\prime} are Banach spaces and f satisfies Hyers inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon
$$

for all $x, y \in E$. It was shown that the limit

$$
L(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}
$$

exists for all $x \in E$ and that $L: E \rightarrow E^{\prime}$ is the unique additive function satisfying

$$
\|f(x)-L(x)\| \leq \epsilon
$$

T. Aoki [2] and Th.M. Rassias [27] provided a generalization of Hyers' theorem for additive and linear mappings, respectively, by allowing the Cauchy difference to be unbounded.

Theorem 1.1 (Th.M. Rassias). Let $f: E \rightarrow E^{\prime}$ be a mapping from a normed vector space E into a Banach space E^{\prime} subject to the inequality

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right) \tag{1.1}
\end{equation*}
$$

for all $x, y \in E$, where ϵ and p are constants with $\epsilon>0$ and $p<1$. Then the limit

$$
L(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}
$$

exists for all $x \in E$ and $L: E \rightarrow E^{\prime}$ is the unique additive mapping which satisfies

$$
\begin{equation*}
\|f(x)-L(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p} \tag{1.2}
\end{equation*}
$$

for all $x \in E$. If $p<0$ then inequality (1.1) holds for $x, y \neq 0$ and (1.2) for $x \neq 0$. Also, if for each $x \in E$ the mapping $t \mapsto f(t x)$ is continuous in $t \in \mathbb{R}$, then L is linear.

The inequality (1.1) has provided much influence in the development of what is now known as generalized Hyers-Ulam stability or Hyers-Ulam-Rassias stability of functional equations. P. Găvruta in [7] provided a further generalization of Th.M. Rassias’ theorem. During the last three decades a number of papers and research monographs have been published on various generalizations and applications of the generalized Hyers-Ulam stability to a number of functional equations and mappings (see [4], [6], [8], [11], [13], [15] - [26]). We also refer the readers to the books [1], [5], [10], [14] and [28].

Jun and Kim [12] introduced the following cubic functional equation

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+12 f(x) \tag{1.3}
\end{equation*}
$$

and they established the general solution and the generalized Hyers-Ulam stability problem for the functional equation (1.3). They proved that a function $f: E_{1} \rightarrow E_{2}$ satisfies the functional equation (1.3) if and only if there exists a function $B: E_{1} \times E_{1} \times E_{1} \rightarrow E_{2}$ such that $f(x)=$ $B(x, x, x)$ for all $x \in E_{1}$, and B is symmetric for each fixed one variable and additive for each fixed two variables. The function B is given by

$$
B(x, y, z)=\frac{1}{24}[f(x+y+z)+f(x-y-z)-f(x+y-z)-f(x-y+z)]
$$

for all $x, y, z \in E_{1}$.
A. Najati and G.Z. Eskandani [25] established the general solution and investigated the generalized Hyers-Ulam stability of the following functional equation

$$
f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+2 f(2 x)-2 f(x)
$$

in quasi-Banach spaces.

In this paper, we deal with the following functional equation derived from cubic and additive functions:

$$
\begin{equation*}
f(2 x+y)+f(x+2 y)=6 f(x+y)+f(2 x)+f(2 y)-5[f(x)+f(y)] \tag{1.4}
\end{equation*}
$$

It is easy to see that the function $f(x)=a x^{3}+c x$ is a solution of the functional equation (1.4).

The main purpose of this paper is to establish the general solution of 1.4 and investigate its generalized Hyers-Ulam stability.

We recall some basic facts concerning quasi-Banach spaces and some preliminary results.
Definition 1.1 ([3, 29]). Let X be a real linear space. A quasi-norm is a real-valued function on X satisfying the following:
(i) $\|x\| \geq 0$ for all $x \in X$ and $\|x\|=0$ if and only if $x=0$;
(ii) $\|\lambda x\|=|\lambda|\|x\|$ for all $\lambda \in \mathbb{R}$ and all $x \in X$;
(iii) There is a constant $K \geq 1$ such that $\|x+y\| \leq K(\|x\|+\|y\|)$ for all $x, y \in X$.

It follows from condition (iii) that

$$
\left\|\sum_{i=1}^{2 n} x_{i}\right\| \leq K^{n} \sum_{i=1}^{2 n}\left\|x_{i}\right\|, \quad\left\|\sum_{i=1}^{2 n+1} x_{i}\right\| \leq K^{n+1} \sum_{i=1}^{2 n+1}\left\|x_{i}\right\|
$$

for all integers $n \geq 1$ and all $x_{1}, x_{2}, \ldots, x_{2 n+1} \in X$.
The pair $(X,\|\cdot\|)$ is called a quasi-normed space if $\|\cdot\|$ is a quasi-norm on X. The smallest possible K is called the modulus of concavity of $\|\cdot\|$. A quasi-Banach space is a complete quasi-normed space.

A quasi-norm $\|\cdot\|$ is called a p-norm $(0<p \leq 1)$ if

$$
\|x+y\|^{p} \leq\|x\|^{p}+\|y\|^{p}
$$

for all $x, y \in X$. In this case, a quasi-Banach space is called a p-Banach space.
By the Aoki-Rolewicz theorem [29] (see also [3]), each quasi-norm is equivalent to some p-norm. Since it is much easier to work with p-norms than quasi-norms, henceforth we restrict our attention mainly to p-norms.

2. SOLUTIONS OF EQ. 1.4

Throughout this section, X and Y will be real vector spaces. Before proceeding to the proof of Theorem 2.3 which is the main result in this section, we need the following two lemmas.

Lemma 2.1. If a function $f: X \rightarrow Y$ satisfies (1.4), then the function $g: X \rightarrow Y$ defined by $g(x)=f(2 x)-8 f(x)$ is additive.

Proof. Let $f: X \rightarrow Y$ satisfy the functional equation (1.4). Letting $x=y=0$ in (1.4), we get that $f(0)=0$. Replacing y by $2 y$ in 1.4 , we get

$$
\begin{equation*}
f(2 x+2 y)+f(x+4 y)=6 f(x+2 y)+f(2 x)+f(4 y)-5[f(x)+f(2 y)] \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$. Replacing y by x and x by y in (2.1), we have

$$
\begin{equation*}
f(2 x+2 y)+f(4 x+y)=6 f(2 x+y)+f(4 x)+f(2 y)-5[f(2 x)+f(y)] \tag{2.2}
\end{equation*}
$$

for all $x, y \in X$. Adding (2.1) to (2.2) and using (1.4), we have

$$
\begin{align*}
2 f(2 x+2 y) & +f(4 x+y)+f(x+4 y) \tag{2.3}\\
& =36 f(x+y)+f(4 x)+f(4 y)+2[f(2 x)+f(2 y)]-35[f(x)+f(y)]
\end{align*}
$$

for all $x, y \in X$. Replacing y by $-x$ in (2.3), we get

$$
\begin{equation*}
f(3 x)+f(-3 x)=f(4 x)+f(-4 x)+2[f(2 x)+f(-2 x)]-35[f(x)+f(-x)] \tag{2.4}
\end{equation*}
$$

for all $x \in X$. Letting $y=x$ in (1.4), we get

$$
\begin{equation*}
f(3 x)=4 f(2 x)-5 f(x) \tag{2.5}
\end{equation*}
$$

for all $x \in X$. Letting $y=-x$ in (1.4), we have

$$
\begin{equation*}
f(2 x)+f(-2 x)=6[f(x)+f(-x)] \tag{2.6}
\end{equation*}
$$

for all $x \in X$. It follows from (2.4), (2.5) and (2.6) that $f(-x)=-f(x)$ for all $x \in X$, i.e., f is odd. Replacing x by $x+y$ and y by $-y$ in (1.4) and using the oddness of f, we have

$$
\begin{equation*}
f(2 x+y)+f(x-y)=6 f(x)+f(2 x+2 y)-f(2 y)-5[f(x+y)-f(y)] \tag{2.7}
\end{equation*}
$$

for all $x, y \in X$. Replacing y by x and y by x in (2.7), we get

$$
\begin{equation*}
f(x+2 y)-f(x-y)=6 f(y)+f(2 x+2 y)-f(2 x)-5[f(x+y)-f(x)] \tag{2.8}
\end{equation*}
$$

for all $x, y \in X$. Adding (2.7) to (2.8), we have
(2.9) $f(2 x+y)+f(x+2 y)=2 f(2 x+2 y)-f(2 x)-f(2 y)-10 f(x+y)+11[f(x)+f(y)]$ for all $x, y \in X$. It follows from (1.4) and (2.9) that

$$
\begin{equation*}
f(2 x+2 y)-8 f(x+y)=f(2 x)+f(2 y)-8[f(x)+f(y)] \tag{2.10}
\end{equation*}
$$

for all $x, y \in X$, which means that the function $g: X \rightarrow Y$ is additive.
Lemma 2.2. If a function $f: X \rightarrow Y$ satisfies the functional equation (1.4), then the function $h: X \rightarrow Y$ defined by $h(x)=f(2 x)-2 f(x)$ is cubic .
Proof. Let $g: X \rightarrow Y$ be a function defined by $g(x)=f(2 x)-8 f(x)$ for all $x \in X$. By Lemma 2.1 and its proof, the function f is odd and the function g is additive. It is clear that

$$
\begin{equation*}
h(x)=g(x)+6 f(x), \quad f(2 x)=g(x)+8 f(x) \tag{2.11}
\end{equation*}
$$

for all $x \in X$. Replacing x by $x-y$ in (1.4), we have

$$
\begin{equation*}
f(2 x-y)+f(x+y)=6 f(x)+f(2 x-2 y)+f(2 y)-5[f(x-y)+f(y)] \tag{2.12}
\end{equation*}
$$

for all $x, y \in X$. Replacing y by $-y$ in 2.12), we have

$$
\begin{equation*}
f(2 x+y)+f(x-y)=6 f(x)+f(2 x+2 y)-f(2 y)-5[f(x+y)-f(y)] \tag{2.13}
\end{equation*}
$$

for all $x, y \in X$. Adding (2.12) to (2.13), we get

$$
\begin{align*}
& f(2 x-y)+f(2 x+y) \tag{2.14}\\
& \quad=12 f(x)+f(2 x+2 y)+f(2 x-2 y)-6[f(x+y)+f(x-y)]
\end{align*}
$$

for all $x, y \in X$. Since g is additive, it follows from (2.11) and (2.14) that

$$
h(2 x+y)+h(2 x-y)=2[h(x+y)+h(x-y)]+12 h(x)
$$

for all $x, y \in X$. So the function h is cubic.
Theorem 2.3. A function $f: X \rightarrow Y$ satisfies (1.4) if and only if there exist functions C : $X \times X \times X \rightarrow Y$ and $A: X \rightarrow Y$ such that

$$
f(x)=C(x, x, x)+A(x)
$$

for all $x \in X$, where the function C is symmetric for each fixed one variable and is additive for fixed two variables and the function A is additive.

Proof. We first assume that the function $f: X \rightarrow Y$ satisfies (1.4). Let $g, h: X \rightarrow Y$ be functions defined by

$$
g(x):=f(2 x)-8 f(x), \quad h(x):=f(2 x)-2 f(x)
$$

for all $x \in X$. By Lemmas 2.1 and 2.2, we achieve that the functions g and h are additive and cubic, respectively, and

$$
\begin{equation*}
f(x)=\frac{1}{6}[h(x)-g(x)] \tag{2.15}
\end{equation*}
$$

for all $x \in X$. Therefore by Theorem 2.1 of [12] there exists a function $C: X \times X \times X \rightarrow Y$ such that $h(x)=6 C(x, x, x)$ for all $x \in X$, and C is symmetric for each fixed one variable and is additive for fixed two variables. So

$$
f(x)=C(x, x, x)+A(x)
$$

for all $x \in X$, where $A(x)=-\frac{1}{6} g(x)$ for all $x \in X$.
Conversely, let

$$
f(x)=C(x, x, x)+A(x)
$$

for all $x \in X$, where the function C is symmetric for each fixed one variable and additive for fixed two variables and the function A is additive. By a simple computation one can show that the functions $x \mapsto C(x, x, x)$ and A satisfy the functional equation $\sqrt{1.4}$. So the function f satisfies (1.4).

3. Generalized Hyers-Ulam stability of Eq. (1.4)

Throughout this section, assume that X is a quasi-normed space with quasi-norm $\|\cdot\|_{X}$ and that Y is a p-Banach space with p-norm $\|\cdot\|_{Y}$. Let K be the modulus of concavity of $\|\cdot\|_{Y}$.

In this section, using an idea of Găvruta [7] we prove the stability of the functional equation (1.4) in the spirit of Hyers, Ulam and Rassias. For convenience, we use the following abbreviation for a given function $f: X \rightarrow Y$:

$$
D f(x, y):=f(2 x+y)+f(x+2 y)-6 f(x+y)-f(2 x)-f(2 y)+5[f(x)+f(y)]
$$

for all $x, y \in X$.
We will use the following lemma in this section.
Lemma 3.1 ([23]). Let $0 \leq p \leq 1$ and let $x_{1}, x_{2}, \ldots, x_{n}$ be non-negative real numbers. Then

$$
\begin{equation*}
\left(\sum_{i=1}^{n} x_{i}\right)^{p} \leq \sum_{i=1}^{n} x_{i}^{p} . \tag{3.1}
\end{equation*}
$$

Theorem 3.2. Let $\varphi: X \times X \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{2^{n}} \varphi\left(2^{n} x, 2^{n} y\right)=0 \tag{3.2}
\end{equation*}
$$

for all $x, y \in X$, and

$$
\begin{equation*}
M(x, y):=\sum_{i=0}^{\infty} \frac{1}{2^{i p}} \varphi^{p}\left(2^{i} x, 2^{i} y\right)<\infty \tag{3.3}
\end{equation*}
$$

for all $x \in X$ and all $y \in\{0, x,-x / 2\}$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequalities

$$
\begin{equation*}
\|D f(x, y)\|_{Y} \leq \varphi(x, y) \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
\|f(x)+f(-x)\|_{Y} \leq \varphi(x, 0) \tag{3.5}
\end{equation*}
$$

for all $x, y \in X$. Then the limit

$$
A(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n+1} x\right)-8 f\left(2^{n} x\right)}{2^{n}}
$$

exists for all $x \in X$, and the function $A: X \rightarrow Y$ is a unique additive function satisfying

$$
\begin{equation*}
\|f(2 x)-8 f(x)-A(x)+f(0)\|_{Y} \leq \frac{K}{2}[\widetilde{\varphi}(x)]^{\frac{1}{p}} \tag{3.6}
\end{equation*}
$$

for all $x \in X$, where

$$
\widetilde{\varphi}(x)=K^{2 p} M(2 x,-x)+\frac{K^{2 p}}{2^{p}} M(x, x)+K^{p} M(2 x, 0)+5^{p} M(x, 0) .
$$

Proof. Letting $y=x$ in (3.4), we have

$$
\begin{equation*}
\|f(3 x)-4 f(2 x)+5 f(x)\|_{Y} \leq \frac{1}{2} \varphi(x, x) \tag{3.7}
\end{equation*}
$$

for all $x \in X$. Replacing x by $2 x$ and y by $-x$ in (3.4), we have

$$
\begin{equation*}
\|f(3 x)-f(4 x)+5 f(2 x)-f(-2 x)-6 f(x)+5 f(-x)+f(0)\|_{Y} \leq \varphi(2 x,-x) \tag{3.8}
\end{equation*}
$$

Using (3.5), (3.7) and (3.8), we have

$$
\begin{equation*}
\|g(2 x)-2 g(x)-f(0)\|_{Y} \leq \phi(x) \tag{3.9}
\end{equation*}
$$

for all $x \in X$, where

$$
\phi(x)=K\left[K^{2} \varphi(2 x,-x)+\frac{K^{2}}{2} \varphi(x, x)+K \varphi(2 x, 0)+5 \varphi(x, 0)\right]
$$

and $g(x)=f(2 x)-8 f(x)$. By Lemma 3.1 and (3.3), we infer that

$$
\begin{equation*}
\sum_{i=0}^{\infty} \frac{1}{2^{i p}} \phi^{p}\left(2^{i} x\right)<\infty \tag{3.10}
\end{equation*}
$$

for all $x \in X$. Replacing x by $2^{n} x$ in (3.9) and dividing both sides of (3.9) by 2^{n+1}, we get

$$
\begin{equation*}
\left\|\frac{1}{2^{n+1}} g\left(2^{n+1} x\right)-\frac{1}{2^{n}} g\left(2^{n} x\right)-\frac{1}{2^{n+1}} f(0)\right\|_{Y} \leq \frac{1}{2^{n+1}} \phi\left(2^{n} x\right) \tag{3.11}
\end{equation*}
$$

for all $x \in X$ and all non-negative integers n. Since Y is a p-Banach space, we have

$$
\begin{align*}
& \left\|\frac{1}{2^{n+1}} g\left(2^{n+1} x\right)-\frac{1}{2^{m}} g\left(2^{m} x\right)-\sum_{i=m}^{n} \frac{1}{2^{i+1}} f(0)\right\|_{Y}^{p} \tag{3.12}\\
& \quad \leq \sum_{i=m}^{n}\left\|\frac{1}{2^{i+1}} g\left(2^{i+1} x\right)-\frac{1}{2^{i}} g\left(2^{i} x\right)-\frac{1}{2^{i+1}} f(0)\right\|_{Y}^{p} \\
& \quad \leq \frac{1}{2^{p}} \sum_{i=m}^{n} \frac{1}{2^{i p}} \phi^{p}\left(2^{i} x\right)
\end{align*}
$$

for all $x \in X$ and all non-negative integers n and m with $n \geq m$. Therefore we conclude from (3.10) and 3.12) that the sequence $\left\{\frac{1}{2^{n}} g\left(2^{n} x\right)\right\}$ is a Cauchy sequence in Y for all $x \in X$. Since
Y is complete, the sequence $\left\{\frac{1}{2^{n}} g\left(2^{n} x\right)\right\}$ converges in Y for all $x \in X$. So we can define the function $A: X \rightarrow Y$ by

$$
\begin{equation*}
A(x):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} g\left(2^{n} x\right) \tag{3.13}
\end{equation*}
$$

for all $x \in X$. Letting $m=0$ and passing the limit when $n \rightarrow \infty$ in (3.12), we get 3.6. Now, we show that A is an additive function. It follows from (3.10), (3.11) and (3.13) that

$$
\begin{aligned}
& \|A(2 x)-2 A(x)\|_{Y} \\
& \quad=\lim _{n \rightarrow \infty}\left\|\frac{1}{2^{n}} g\left(2^{n+1} x\right)-\frac{1}{2^{n-1}} g\left(2^{n} x\right)\right\|_{Y} \\
& \quad \leq 2 K \lim _{n \rightarrow \infty}\left(\left\|\frac{1}{2^{n+1}} g\left(2^{n+1} x\right)-\frac{1}{2^{n}} g\left(2^{n} x\right)-\frac{1}{2^{n+1}} f(0)\right\|_{Y}+\frac{1}{2^{n+1}}\|f(0)\|_{Y}\right) \\
& \quad \leq \lim _{n \rightarrow \infty} \frac{K}{2^{n}} \phi\left(2^{n} x\right)=0
\end{aligned}
$$

for all $x \in X$. So

$$
\begin{equation*}
A(2 x)=2 A(x) \tag{3.14}
\end{equation*}
$$

for all $x \in X$. On the other hand, it follows from (3.2), (3.4) and (3.13) that

$$
\begin{aligned}
\|D A(x, y)\|_{Y} & =\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left\|D g\left(2^{n} x, 2^{n} y\right)\right\|_{Y} \\
& \leq \lim _{n \rightarrow \infty} \frac{K}{2^{n}}\left\{\left\|D f\left(2^{n+1} x, 2^{n+1} y\right)\right\|_{Y}+8\left\|D f\left(2^{n} x, 2^{n} y\right)\right\|_{Y}\right\} \\
& \leq \lim _{n \rightarrow \infty} \frac{K}{2^{n}}\left[\varphi\left(2^{n+1} x, 2^{n+1} y\right)+8 \varphi\left(2^{n} x, 2^{n} y\right)\right]=0
\end{aligned}
$$

for all $x, y \in X$. Hence the function A satisfies (1.4). So by Lemma 2.1, the function $x \mapsto$ $A(2 x)-8 A(x)$ is additive. Therefore $(\sqrt{3.14})$ implies that the function A is additive.

To prove the uniqueness of A, let $T: X \rightarrow Y$ be another additive function satisfying (3.6). It follows from (3.3) that

$$
\lim _{n \rightarrow \infty} \frac{1}{2^{n p}} M\left(2^{n} x, 2^{n} y\right)=\lim _{n \rightarrow \infty} \sum_{i=n}^{\infty} \frac{1}{2^{i p}} \varphi^{p}\left(2^{i} x, 2^{i} y\right)=0
$$

for all $x \in X$ and all $y \in\{0, x,-x / 2\}$. Hence $\lim _{n \rightarrow \infty} \frac{1}{2^{n p}} \widetilde{\varphi}\left(2^{n} x\right)=0$ for all $x \in X$. So it follows from (3.6) and (3.13) that

$$
\begin{aligned}
\|A(x)-T(x)\|_{Y}^{p} & =\lim _{n \rightarrow \infty} \frac{1}{2^{n p}}\left\|g\left(2^{n} x\right)-T\left(2^{n} x\right)+f(0)\right\|_{Y}^{p} \\
& \leq \frac{K^{p}}{2^{p}} \lim _{n \rightarrow \infty} \frac{1}{2^{n p}} \widetilde{\varphi}\left(2^{n} x\right)=0
\end{aligned}
$$

for all $x \in X$. So $A=T$.
Corollary 3.3. Let θ be non-negative real number. Suppose that a function $f: X \rightarrow Y$ satisfies the inequalities

$$
\begin{equation*}
\|D f(x, y)\|_{Y} \leq \theta, \quad\|f(x)+f(-x)\|_{Y} \leq \theta \tag{3.15}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique additive function $A: X \rightarrow Y$ satisfying

$$
\|f(2 x)-8 f(x)-A(x)\|_{Y} \leq \frac{K^{2} \theta}{2}\left\{\frac{\left(2 K^{2}\right)^{p}+(2 K)^{p}+K^{2 p}+10^{p}}{2^{p}-1}\right\}^{\frac{1}{p}}+\frac{K \theta}{4}
$$

for all $x \in X$.

Proof. It follows from (3.15) that $\|f(0)\|_{Y} \leq \theta / 4$. So the result follows from Theorem 3.2.
Theorem 3.4. Let $\varphi: X \times X \rightarrow[0, \infty)$ be a function such that

$$
\lim _{n \rightarrow \infty} 2^{n} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)=0
$$

for all $x, y \in X$, and

$$
\begin{equation*}
M(x, y):=\sum_{i=1}^{\infty} 2^{i p} \varphi^{p}\left(\frac{x}{2^{i}}, \frac{y}{2^{i}}\right)<\infty \tag{3.16}
\end{equation*}
$$

for all $x \in X$ and all $y \in\{0, x,-x / 2\}$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequalities

$$
\|D f(x, y)\|_{Y} \leq \varphi(x, y), \quad\|f(x)+f(-x)\|_{Y} \leq \varphi(x, 0)
$$

for all $x, y \in X$. Then the limit

$$
A(x)=\lim _{n \rightarrow \infty} 2^{n}\left[f\left(\frac{x}{2^{n-1}}\right)-8 f\left(\frac{x}{2^{n}}\right)\right]
$$

exists for all $x \in X$ and the function $A: X \rightarrow Y$ is a unique additive function satisfying

$$
\begin{equation*}
\|f(2 x)-8 f(x)-A(x)\|_{Y} \leq \frac{K}{2}[\widetilde{\varphi}(x)]^{\frac{1}{p}} \tag{3.17}
\end{equation*}
$$

for all $x \in X$, where

$$
\widetilde{\varphi}(x)=K^{2 p} M(2 x,-x)+\frac{K^{2 p}}{2^{p}} M(x, x)+K^{p} M(2 x, 0)+5^{p} M(x, 0) .
$$

Proof. It follows from (3.16) that $\varphi(0,0)=0$ and so $f(0)=0$. We introduce the same definitions for $g: X \rightarrow Y$ and $\phi(x)$ as in the proof of Theorem 3.2. Similar to the proof of Theorem 3.2. we have

$$
\begin{equation*}
\|g(2 x)-2 g(x)\|_{Y} \leq \phi(x) \tag{3.18}
\end{equation*}
$$

for all $x \in X$. By Lemma 3.1 and 3.16), we infer that

$$
\begin{equation*}
\sum_{i=1}^{\infty} 2^{i p} \phi^{p}\left(\frac{x}{2^{i}}\right)<\infty \tag{3.19}
\end{equation*}
$$

for all $x \in X$. Replacing x by $\frac{x}{2^{n+1}}$ in (3.18) and multiplying both sides of 3.18) by 2^{n}, we get

$$
\left\|2^{n+1} g\left(\frac{x}{2^{n+1}}\right)-2^{n} g\left(\frac{x}{2^{n}}\right)\right\|_{Y} \leq 2^{n} \phi\left(\frac{x}{2^{n+1}}\right)
$$

for all $x \in X$ and all non-negative integers n. Since Y is a p-Banach space, we have

$$
\begin{align*}
\left\|2^{n+1} g\left(\frac{x}{2^{n+1}}\right)-2^{m} g\left(\frac{x}{2^{m}}\right)\right\|_{Y}^{p} & \leq \sum_{i=m}^{n}\left\|2^{i+1} g\left(\frac{x}{2^{i+1}}\right)-2^{i} g\left(\frac{x}{2^{i}}\right)\right\|_{Y}^{p} \tag{3.20}\\
& \leq \sum_{i=m}^{n} 2^{i p} \phi^{p}\left(\frac{x}{2^{i+1}}\right)
\end{align*}
$$

for all $x \in X$ and all non-negative integers n and m with $n \geq m$. Therefore we conclude from (3.19) and (3.20) that the sequence $\left\{2^{n} g\left(x / 2^{n}\right)\right\}$ is a Cauchy sequence in Y for all $x \in X$. Since Y is complete, the sequence $\left\{2^{n} g\left(x / 2^{n}\right)\right\}$ converges in Y for all $x \in X$. So we can define the function $A: X \rightarrow Y$ by

$$
A(x):=\lim _{n \rightarrow \infty} 2^{n} g\left(\frac{x}{2^{n}}\right)
$$

for all $x \in X$. Letting $m=0$ and passing the limit when $n \rightarrow \infty$ in (3.20) and applying Lemma 3.1, we get (3.17).

The rest of the proof is similar to the proof of Theorem 3.2 and we omit the details.
Corollary 3.5. Let θ, r, s be non-negative real numbers such that $r, s>1$ or $0<r, s<1$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequalities

$$
\begin{equation*}
\|D f(x, y)\|_{Y} \leq \theta\left(\|x\|_{X}^{r}+\|y\|_{X}^{s}\right), \quad\|f(x)+f(-x)\|_{Y} \leq \theta\|x\|_{X}^{r} \tag{3.21}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique additive function $A: X \rightarrow Y$ satisfying

$$
\begin{aligned}
& \|f(2 x)-8 f(x)-A(x)\|_{Y} \\
& \quad \leq \frac{K \theta}{2}\left\{\frac{\left(2^{r+1} K^{2}\right)^{p}+K^{2 p}+\left(2^{r+1} K\right)^{p}+10^{p}}{\left|2^{p}-2^{r p}\right|}\|x\|_{X}^{r p}+\frac{\left(2 K^{2}\right)^{p}+K^{2 p}}{\left|2^{p}-2^{s p}\right|}\|x\|_{X}^{s p}\right\}^{\frac{1}{p}}
\end{aligned}
$$

for all $x \in X$.
Proof. It follows from (3.21) that $f(0)=0$. Hence the result follows from Theorems 3.2 and 3.4

Corollary 3.6. Let $\theta \geq 0$ and $r, s>0$ be real numbers such that $\lambda:=r+s \neq 1$. Suppose that an odd function $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\|D f(x, y)\|_{Y} \leq \theta\|x\|_{X}^{r}\|y\|_{Y}^{s} \tag{3.22}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique additive function $A: X \rightarrow Y$ satisfying

$$
\|f(2 x)-8 f(x)-A(x)\|_{Y} \leq \frac{K^{3} \theta}{2}\left\{\frac{1+2^{p(r+1)}}{\left|2^{p}-2^{\lambda p}\right|}\right\}^{\frac{1}{p}}\|x\|_{X}^{\lambda}
$$

for all $x \in X$.
Proof. $f(0)=0$, since f is odd. Hence the result follows from Theorems 3.2 and 3.4.
Theorem 3.7. Let $\psi: X \times X \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{8^{n}} \psi\left(2^{n} x, 2^{n} y\right)=0 \tag{3.23}
\end{equation*}
$$

for all $x, y \in X$, and

$$
\begin{equation*}
M(x, y):=\sum_{i=0}^{\infty} \frac{1}{8^{i p}} \psi^{p}\left(2^{i} x, 2^{i} y\right)<\infty \tag{3.24}
\end{equation*}
$$

for all $x \in X$ and all $y \in\{0, x,-x / 2\}$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequalities

$$
\begin{equation*}
\|D f(x, y)\|_{Y} \leq \psi(x, y), \quad\|f(x)+f(-x)\|_{Y} \leq \psi(x, 0) \tag{3.25}
\end{equation*}
$$

for all $x, y \in X$. Then the limit

$$
C(x)=\lim _{n \rightarrow \infty} \frac{1}{8^{n}}\left[f\left(2^{n+1} x\right)-2 f\left(2^{n} x\right)\right]
$$

exists for all $x \in X$, and $C: X \rightarrow Y$ is a unique cubic function satisfying

$$
\begin{equation*}
\left\|f(2 x)-2 f(x)-C(x)+\frac{1}{7} f(0)\right\|_{Y} \leq \frac{K}{8}[\widetilde{\psi}(x)]^{\frac{1}{p}} \tag{3.26}
\end{equation*}
$$

for all $x \in X$, where

$$
\widetilde{\psi}(x):=K^{2 p} M(2 x,-x)+\frac{K^{2 p}}{2^{p}} M(x, x)+K^{p} M(2 x, 0)+5^{p} M(x, 0) .
$$

Proof. Similar to the proof of Theorem 3.2, we have

$$
\begin{equation*}
\|f(4 x)-10 f(2 x)+16 f(x)-f(0)\|_{Y} \leq \phi(x) \tag{3.27}
\end{equation*}
$$

for all $x \in X$, where

$$
\phi(x)=K\left[K^{2} \psi(2 x,-x)+\frac{K^{2}}{2} \psi(x, x)+K \psi(2 x, 0)+5 \psi(x, 0)\right] .
$$

Let $h: X \rightarrow Y$ be a function defined by $h(x)=f(2 x)-2 f(x)$. Hence (3.27) means

$$
\begin{equation*}
\|h(2 x)-8 h(x)-f(0)\|_{Y} \leq \phi(x) \tag{3.28}
\end{equation*}
$$

for all $x \in X$. By Lemma 3.1 and 3.24 , we infer that

$$
\begin{equation*}
\sum_{i=0}^{\infty} \frac{1}{8^{i p}} \phi^{p}\left(2^{i} x\right)<\infty \tag{3.29}
\end{equation*}
$$

for all $x \in X$. Replacing x by $2^{n} x$ in 3.28 and dividing both sides of 3.28 by 8^{n+1}, we get

$$
\begin{equation*}
\left\|\frac{1}{8^{n+1}} h\left(2^{n+1} x\right)-\frac{1}{8^{n}} h\left(2^{n} x\right)-\frac{1}{8^{n+1}} f(0)\right\|_{Y} \leq \frac{1}{8^{n+1}} \phi\left(2^{n} x\right) \tag{3.30}
\end{equation*}
$$

for all $x \in X$ and all non-negative integers n. Since Y is a p-Banach space, we have

$$
\begin{align*}
& \left\|\frac{1}{8^{n+1}} h\left(2^{n+1} x\right)-\frac{1}{8^{m}} h\left(2^{m} x\right)-\sum_{i=m}^{n} \frac{1}{8^{i+1}} f(0)\right\|_{Y}^{p} \tag{3.31}\\
& \quad \leq \sum_{i=m}^{n}\left\|\frac{1}{8^{i+1}} h\left(2^{i+1} x\right)-\frac{1}{8^{i}} h\left(2^{i} x\right)-\frac{1}{8^{i+1}} f(0)\right\|_{Y}^{p} \\
& \quad \leq \frac{1}{8^{p}} \sum_{i=m}^{n} \frac{1}{8^{i p}} \phi^{p}\left(2^{i} x\right)
\end{align*}
$$

for all $x \in X$ and all non-negative integers n and m with $n \geq m$. Therefore we conclude from (3.29) and (3.31) that the sequence $\left\{\frac{1}{8^{n}} h\left(2^{n} x\right)\right\}$ is a Cauchy sequence in Y for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{1}{8^{n}} h\left(2^{n} x\right)\right\}$ converges for all $x \in X$. So we can define the function $C: X \rightarrow Y$ by:

$$
\begin{equation*}
C(x)=\lim _{n \rightarrow \infty} \frac{1}{8^{n}} h\left(2^{n} x\right) \tag{3.32}
\end{equation*}
$$

for all $x \in X$. Letting $m=0$ and passing the limit when $n \rightarrow \infty$ in (3.31), we get 3.26). Now, we show that the function C is cubic. It follows from (3.29), (3.30) and (3.32) that

$$
\begin{aligned}
& \|C(2 x)-8 C(x)\|_{Y} \\
& \quad=\lim _{n \rightarrow \infty}\left\|\frac{1}{8^{n}} h\left(2^{n+1} x\right)-\frac{1}{8^{n-1}} h\left(2^{n} x\right)\right\|_{Y} \\
& \quad \leq 8 K \lim _{n \rightarrow \infty}\left(\left\|\frac{1}{8^{n+1}} h\left(2^{n+1} x\right)-\frac{1}{8^{n}} h\left(2^{n} x\right)-\frac{1}{8^{n+1}} f(0)\right\|_{Y}+\frac{1}{8^{n+1}}\|f(0)\|_{Y}\right) \\
& \quad \leq \lim _{n \rightarrow \infty} \frac{K}{8^{n}} \phi\left(2^{n} x\right)=0
\end{aligned}
$$

for all $x \in X$. Therefore we have

$$
\begin{equation*}
C(2 x)=8 C(x) \tag{3.33}
\end{equation*}
$$

for all $x \in X$. On the other hand, it follows from (3.23), (3.25) and (3.32) that

$$
\begin{aligned}
\|D C(x, y)\|_{Y} & =\lim _{n \rightarrow \infty} \frac{1}{8^{n}}\left\|D h\left(2^{n} x, 2^{n} y\right)\right\|_{Y} \\
& =\lim _{n \rightarrow \infty} \frac{1}{8^{n}}\left\{\left\|D f\left(2^{n+1} x, 2^{n+1} y\right)-2 D f\left(2^{n} x, 2^{n} y\right)\right\|_{Y}\right\} \\
& \leq \lim _{n \rightarrow \infty} \frac{K}{8^{n}}\left\{\left\|D f\left(2^{n+1} x, 2^{n+1} y\right)\right\|_{Y}+2\left\|D f\left(2^{n} x, 2^{n} y\right)\right\|_{Y}\right\} \\
& \leq \lim _{n \rightarrow \infty} \frac{K}{8^{n}}\left[\psi\left(2^{n+1} x, 2^{n+1} y\right)+2 \psi\left(2^{n} x, 2^{n} y\right)\right]=0
\end{aligned}
$$

for all $x, y \in X$. Hence the function C satisfies (1.4). So by Lemma 2.2, the function $x \mapsto$ $C(2 x)-2 C(x)$ is cubic. Hence (3.33) implies that the function C is cubic. To prove the uniqueness of C, let $T: X \rightarrow Y$ be another cubic function satisfying (3.26). It follows from (3.24) that

$$
\lim _{n \rightarrow \infty} \frac{1}{8^{n p}} M\left(2^{n} x, 2^{n} y\right)=\lim _{n \rightarrow \infty} \sum_{i=n}^{\infty} \frac{1}{8^{i p}} \psi^{p}\left(2^{i} x, 2^{i} y\right)=0
$$

for all $x \in X$ and $y \in\{0, x,-x / 2\}$. Hence $\lim _{n \rightarrow \infty} \frac{1}{8^{n p}} \widetilde{\psi}\left(2^{n} x\right)=0$ for all $x \in X$. So it follows from (3.26) and (3.32) that

$$
\begin{aligned}
\|C(x)-T(x)\|_{Y}^{p} & =\lim _{n \rightarrow \infty} \frac{1}{8^{n p}}\left\|h\left(2^{n} x\right)-T\left(2^{n} x\right)+\frac{1}{7} f(0)\right\|_{Y}^{p} \\
& \leq \frac{K^{p}}{8^{p}} \lim _{n \rightarrow \infty} \frac{1}{8^{n p}} \widetilde{\psi}\left(2^{n} x\right)=0
\end{aligned}
$$

for all $x \in X$. So $C=T$.
Corollary 3.8. Let θ be non-negative real number. Suppose that a function $f: X \rightarrow Y$ satisfies the inequalities (3.15). Then there exists a unique cubic function $C: X \rightarrow Y$ satisfying

$$
\|f(2 x)-2 f(x)-C(x)\|_{Y} \leq \frac{K^{2} \theta}{2}\left\{\frac{\left(2 K^{2}\right)^{p}+(2 K)^{p}+K^{2 p}+10^{p}}{8^{p}-1}\right\}^{\frac{1}{p}}+\frac{K \theta}{28}
$$

for all $x \in X$.
Proof. We get from (3.15) that $\|f(0)\| \leq \theta / 4$. So the result follows from Theorem 3.7 .
Theorem 3.9. Let $\psi: X \times X \rightarrow[0, \infty)$ be a function such that

$$
\lim _{n \rightarrow \infty} 8^{n} \psi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)=0
$$

for all $x, y \in X$, and

$$
\begin{equation*}
M(x, y):=\sum_{i=1}^{\infty} 8^{i p} \psi^{p}\left(\frac{x}{2^{i}}, \frac{y}{2^{i}}\right)<\infty \tag{3.34}
\end{equation*}
$$

for all $x \in X$ and all $y \in\{0, x,-x / 2\}$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequalities

$$
\|D f(x, y)\|_{Y} \leq \psi(x, y), \quad\|f(x)+f(-x)\|_{Y} \leq \psi(x, 0)
$$

for all $x, y \in X$. Then the limit

$$
C(x)=\lim _{n \rightarrow \infty} 8^{n}\left[f\left(\frac{x}{2^{n-1}}\right)-2 f\left(\frac{x}{2^{n}}\right)\right]
$$

exists for all $x \in X$ and the function $C: X \rightarrow Y$ is a unique cubic function satisfying

$$
\begin{equation*}
\|f(2 x)-2 f(x)-C(x)\|_{Y} \leq \frac{K}{8}[\widetilde{\psi}(x)]^{\frac{1}{p}} \tag{3.35}
\end{equation*}
$$

for all $x \in X$, where

$$
\widetilde{\psi}(x)=K^{2 p} M(2 x,-x)+\frac{K^{2 p}}{2^{p}} M(x, x)+K^{p} M(2 x, 0)+5^{p} M(x, 0) .
$$

Proof. It follows from (3.34) that $\psi(0,0)=0$ and so $f(0)=0$. We introduce the same definitions for $h: X \rightarrow Y$ and $\phi(x)$ as in the proof of Theorem 3.7. Similar to the proof of Theorem 3.7. we have

$$
\begin{equation*}
\|h(2 x)-8 h(x)\|_{Y} \leq \phi(x) \tag{3.36}
\end{equation*}
$$

for all $x \in X$. By Lemma 3.1 and (3.34), we infer that

$$
\begin{equation*}
\sum_{i=1}^{\infty} 8^{i p} \phi^{p}\left(\frac{x}{2^{i}}\right)<\infty \tag{3.37}
\end{equation*}
$$

for all $x \in X$. Replacing x by $\frac{x}{2^{n+1}}$ in (3.36) and multiplying both sides of (3.36) to 8^{n}, we get

$$
\left\|8^{n+1} h\left(\frac{x}{2^{n+1}}\right)-8^{n} h\left(\frac{x}{2^{n}}\right)\right\|_{Y} \leq 8^{n} \phi\left(\frac{x}{2^{n+1}}\right)
$$

for all $x \in X$ and all non-negative integers n. Since Y is a p-Banach space, we have

$$
\begin{align*}
\left\|8^{n+1} h\left(\frac{x}{2^{n+1}}\right)-8^{m} h\left(\frac{x}{2^{m}}\right)\right\|_{Y}^{p} & \leq \sum_{i=m}^{n}\left\|8^{i+1} h\left(\frac{x}{2^{i+1}}\right)-8^{i} h\left(\frac{x}{2^{i}}\right)\right\|_{Y}^{p} \tag{3.38}\\
& \leq \sum_{i=m}^{n} 8^{i p} \phi^{p}\left(\frac{x}{2^{i+1}}\right)
\end{align*}
$$

for all $x \in X$ and all non-negative integers n and m with $n \geq m$. Therefor we conclude from (3.37) and (3.38) that the sequence $\left\{8^{n} h\left(x / 2^{n}\right)\right\}$ is a Cauchy sequence in Y for all $x \in X$. Since Y is complete, the sequence $\left\{8^{n} h\left(x / 2^{n}\right)\right\}$ converges in Y for all $x \in X$. So we can define the function $C: X \rightarrow Y$ by

$$
C(x):=\lim _{n \rightarrow \infty} 8^{n} h\left(\frac{x}{2^{n}}\right)
$$

for all $x \in X$. Letting $m=0$ and passing the limit when $n \rightarrow \infty$ in (3.38) and applying Lemma 3.1, we get (3.35).

The rest of the proof is similar to the proof of Theorem 3.7 and we omit the details.
Corollary 3.10. Let θ, r, s be non-negative real numbers such that $r, s>3$ or $0<r, s<3$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequalities (3.21). Then there exists a unique cubic function $C: X \rightarrow Y$ satisfying

$$
\begin{aligned}
\| f(2 x)- & 2 f(x)-C(x) \|_{Y} \\
& \leq \frac{K \theta}{2}\left\{\frac{\left(2^{r+1} K^{2}\right)^{p}+K^{2 p}+\left(2^{r+1} K^{2}\right)^{p}+10^{p}}{\mid 8^{p}-2^{r p \mid}}\|x\|_{X}^{r p}+\frac{\left(2 K^{2}\right)^{p}+K^{2 p}}{\left|8^{p}-2^{s p}\right|}\|x\|_{X}^{s p}\right\}^{\frac{1}{p}}
\end{aligned}
$$

for all $x \in X$.
Proof. It follows from (3.21) that $f(0)=0$. Hence the result follows from Theorems 3.7 and 3.9 .

Corollary 3.11. Let θ and $r, s>0$ be non-negative real numbers such that $\lambda:=r+s \neq 3$. Suppose that an odd function $f: X \rightarrow Y$ satisfies the inequality (3.22). Then there exists a unique cubic function $C: X \rightarrow Y$ satisfying

$$
\|f(2 x)-2 f(x)-C(x)\|_{Y} \leq \frac{K^{3} \theta}{2}\left\{\frac{1+2^{(r+1) p}}{\left|8^{p}-2^{\lambda p}\right|}\right\}^{\frac{1}{p}}\|x\|_{X}^{\lambda}
$$

for all $x \in X$.
Proof. $f(0)=0$, since f is odd. Hence the result follows from Theorems 3.7 and 3.9.
Theorem 3.12. Let $\varphi: X \times X \rightarrow[0, \infty)$ be a function such that

$$
\lim _{n \rightarrow \infty} \frac{1}{2^{n}} \varphi\left(2^{n} x, 2^{n} y\right)=0
$$

for all $x, y \in X$, and

$$
M_{a}(x, y):=\sum_{i=0}^{\infty} \frac{1}{2^{i p}} \varphi^{p}\left(2^{i} x, 2^{i} y\right)<\infty
$$

for all $x \in X$ and all $y \in\{0, x,-x / 2\}$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequalities

$$
\|D f(x, y)\|_{Y} \leq \varphi(x, y) \quad\|f(x)+f(-x)\|_{Y} \leq \varphi(x, 0)
$$

for all $x, y \in X$. Then there exist a unique additive function $A: X \rightarrow Y$ and a unique cubic function $C: X \rightarrow Y$ such that

$$
\begin{equation*}
\left\|f(x)-A(x)-C(x)-\frac{1}{7} f(0)\right\|_{Y} \leq \frac{K^{2}}{48}\left\{4\left[\widetilde{\varphi_{a}}(x)\right]^{\frac{1}{p}}+\left[\widetilde{\varphi}_{c}(x)\right]^{\frac{1}{p}}\right\} \tag{3.39}
\end{equation*}
$$

for all $x \in X$, where

$$
\begin{aligned}
M_{c}(x, y) & :=\sum_{i=0}^{\infty} \frac{1}{8^{i p}} \varphi^{p}\left(2^{i} x, 2^{i} y\right) \\
\widetilde{\varphi_{c}}(x) & :=K^{2 p} M_{c}(2 x,-x)+\frac{K^{2 p}}{2^{p}} M_{c}(x, x)+K^{p} M_{c}(2 x, 0)+5^{p} M_{c}(x, 0), \\
\widetilde{\varphi_{a}}(x) & :=K^{2 p} M_{a}(2 x,-x)+\frac{K^{2 p}}{2^{p}} M_{a}(x, x)+K^{p} M_{a}(2 x, 0)+5^{p} M_{a}(x, 0) .
\end{aligned}
$$

Proof. By Theorems 3.2 and 3.7, there exists an additive function $A_{0}: X \rightarrow Y$ and a cubic function $C_{0}: X \rightarrow Y$ such that

$$
\begin{aligned}
\left\|A_{0}(x)-f(2 x)+8 f(x)-f(0)\right\|_{Y} & \leq \frac{K}{2}\left[\widetilde{\varphi_{a}}(x)\right]^{\frac{1}{p}} \\
\left\|C_{0}(x)-f(2 x)+2 f(x)-\frac{1}{7} f(0)\right\|_{Y} & \leq \frac{K}{8}\left[\widetilde{\varphi}_{c}(x)\right]^{\frac{1}{p}}
\end{aligned}
$$

for all $x \in X$. Therefore it follows from the last inequalities that

$$
\left\|f(x)+\frac{1}{6} A_{0}(x)-\frac{1}{6} C_{0}(x)-\frac{1}{7} f(0)\right\|_{Y} \leq \frac{K^{2}}{48}\left\{4\left[\widetilde{\varphi_{a}}(x)\right]^{\frac{1}{p}}+\left[\widetilde{\varphi}_{c}(x)\right]^{\frac{1}{p}}\right\}
$$

for all $x \in X$. So we obtain 3.39 by letting $A(x)=-\frac{1}{6} A_{0}(x)$ and $C(x)=\frac{1}{6} C_{0}(x)$ for all $x \in X$.
To prove the uniqueness of A and C, let $A_{1}, C_{1}: X \rightarrow Y$ be further additive and cubic functions satisfying (3.39). Let $A^{\prime}=A-A_{1}$ and $C^{\prime}=C-C_{1}$. Then

$$
\begin{align*}
& \left\|A^{\prime}(x)+C^{\prime}(x)\right\|_{Y} \tag{3.40}\\
& \leq K\left[\left\|f(x)-A(x)-C(x)-\frac{1}{7} f(0)\right\|_{Y}+\left\|f(x)-A_{1}(x)-C_{1}(x)-\frac{1}{7} f(0)\right\|_{Y}\right] \\
& \leq \frac{K^{3}}{24}\left\{4\left[\widetilde{\varphi_{a}}(x)\right]^{\frac{1}{p}}+\left[\widetilde{\varphi}_{c}(x)\right]^{\frac{1}{p}}\right\}
\end{align*}
$$

for all $x \in X$. Since

$$
\lim _{n \rightarrow \infty} \frac{1}{8^{n p}} \widetilde{\varphi_{c}}\left(2^{n} x\right)=\lim _{n \rightarrow \infty} \frac{1}{2^{n p}} \widetilde{\varphi_{a}}\left(2^{n} x\right)=0
$$

for all $x \in X$, then (3.40) implies that

$$
\lim _{n \rightarrow \infty} \frac{1}{8^{n}}\left\|A^{\prime}\left(2^{n} x\right)+C^{\prime}\left(2^{n} x\right)\right\|_{Y}=0
$$

for all $x \in X$. Since A^{\prime} is additive and C^{\prime} is cubic, we get $C^{\prime}=0$. So it follows from (3.40) that

$$
\left\|A^{\prime}(x)\right\|_{Y} \leq \frac{5 K^{3}}{24}\left[\widetilde{\varphi_{a}}(x)\right]^{\frac{1}{p}}
$$

for all $x \in X$. Therefore $A^{\prime}=0$.
Corollary 3.13. Let θ be a non-negative real number. Suppose that a function $f: X \rightarrow Y$ satisfies the inequalities (3.15). Then there exist a unique additive function $A: X \rightarrow Y$ and a unique cubic function $C: X \rightarrow Y$ satisfying

$$
\|f(x)-A(x)-C(x)\|_{Y} \leq \frac{K}{6}\left(\delta_{a}+\delta_{c}\right)
$$

for all $x \in X$, where

$$
\begin{aligned}
& \delta_{a}=\frac{K^{2} \theta}{2}\left\{\frac{\left(2 K^{2}\right)^{p}+(2 K)^{p}+k^{2 p}+10^{p}}{2^{p}-1}\right\}^{\frac{1}{p}}+\frac{K \theta}{4} \\
& \delta_{c}=\frac{K^{2} \theta}{2}\left\{\frac{\left(2 K^{2}\right)^{p}+(2 K)^{p}+K^{2 p}+10^{p}}{8^{p}-1}\right\}^{\frac{1}{p}}+\frac{K \theta}{28} .
\end{aligned}
$$

Theorem 3.14. Let $\psi: X \times X \rightarrow[0, \infty)$ be a function such that

$$
\lim _{n \rightarrow \infty} 8^{n} \psi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)=0
$$

for all $x, y \in X$, and

$$
M_{c}(x, y):=\sum_{i=1}^{\infty} 8^{i p} \psi^{p}\left(\frac{x}{2^{i}}, \frac{y}{2^{i}}\right)<\infty
$$

for all $x \in X$ and all $y \in\{0, x,-x / 2\}$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequalities

$$
\|D f(x, y)\|_{Y} \leq \psi(x, y) \quad\|f(x)+f(-x)\|_{Y} \leq \psi(x, 0)
$$

for all $x, y \in X$. Then there exist a unique additive function $A: X \rightarrow Y$ and a unique cubic function $C: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)-C(x)\|_{Y} \leq \frac{K^{2}}{48}\left\{4\left[\widetilde{\psi_{a}}(x)\right]^{\frac{1}{p}}+\left[\widetilde{\psi}_{c}(x)\right]^{\frac{1}{p}}\right\} \tag{3.41}
\end{equation*}
$$

for all $x \in X$, where

$$
\begin{aligned}
M_{a}(x, y) & :=\sum_{i=1}^{\infty} 2^{i p} \psi^{p}\left(\frac{x}{2^{i}}, \frac{y}{2^{i}}\right) \\
\widetilde{\psi_{c}}(x) & :=K^{2 p} M_{c}(2 x,-x)+\frac{K^{2 p}}{2^{p}} M_{c}(x, x)+K^{p} M_{c}(2 x, 0)+5^{p} M_{c}(x, 0), \\
\widetilde{\psi_{a}}(x) & :=K^{2 p} M_{a}(2 x,-x)+\frac{K^{2 p}}{2^{p}} M_{a}(x, x)+K^{p} M_{a}(2 x, 0)+5^{p} M_{a}(x, 0) .
\end{aligned}
$$

Proof. Applying Theorems 3.4 and 3.9, we get (3.41).

Corollary 3.15. Let θ, r, s be non-negative real numbers such that $r, s>3$ or $0<r, s<1$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequalities (3.27). Then there exist a unique additive function $A: X \rightarrow Y$ and a unique cubic function $C: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)-C(x)\|_{Y} \leq \frac{K^{2} \theta}{12}\left[\delta_{a}(x)+\delta_{c}(x)\right] \tag{3.42}
\end{equation*}
$$

for all $x \in X$, where

$$
\begin{aligned}
& \delta_{a}(x)=\left\{\frac{\left(2^{r+1} K^{2}\right)^{p}+K^{2 p}+\left(2^{r+1} K^{2}\right)^{p}+10^{p}}{\left|2^{p}-2^{r p}\right|}\|x\|_{X}^{r p}+\frac{\left(2 K^{2}\right)^{p}+K^{2 p}}{\left|2^{p}-2^{s p}\right|}\|x\|_{X}^{s p}\right\}^{\frac{1}{p}}, \\
& \delta_{c}(x)=\left\{\frac{\left(2^{r+1} K^{2}\right)^{p}+K^{2 p}+\left(2^{r+1} K^{2}\right)^{p}+10^{p}}{\left|8^{p}-2^{r p}\right|}\|x\|_{X}^{r p}+\frac{\left(2 K^{2}\right)^{p}+K^{2 p}}{\left|8^{p}-2^{s p}\right|}\|x\|_{X}^{s p}\right\}^{\frac{1}{p}} .
\end{aligned}
$$

Corollary 3.16. Let $\theta \geq 0$ and $r, s>0$ be real numbers such that $\lambda:=r+s \in(0,1) \cup(3,+\infty)$. Suppose that an odd function $f: X \rightarrow Y$ satisfies the inequality (3.22). Then there exist a unique additive function $A: X \rightarrow Y$ and a unique cubic function $C: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)-C(x)\|_{Y} \leq \frac{K^{4} \theta}{12}\left[\left\{\frac{1+2^{p(r+1)}}{\left|2^{p}-2^{\lambda p}\right|}\right\}^{\frac{1}{p}}+\left\{\frac{1+2^{p(r+1)}}{\left|8^{p}-2^{\lambda p}\right|}\right\}^{\frac{1}{p}}\right]\|x\|_{X}^{\lambda} \tag{3.43}
\end{equation*}
$$

for all $x \in X$.
Theorem 3.17. Let $\varphi: X \times X \rightarrow[0, \infty)$ be a function such that

$$
\lim _{n \rightarrow \infty} \frac{1}{8^{n}} \varphi\left(2^{n} x, 2^{n} y\right)=0, \quad \lim _{n \rightarrow \infty} 2^{n} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)=0
$$

for all $x, y \in X$, and

$$
M_{a}(x, y):=\sum_{i=1}^{\infty} 2^{i p} \varphi^{p}\left(\frac{x}{2^{i}}, \frac{y}{2^{i}}\right)<\infty, \quad M_{c}(x, y):=\sum_{i=0}^{\infty} \frac{1}{8^{i p}} \varphi^{p}\left(2^{i} x, 2^{i} y\right)<\infty
$$

for all $x \in X$ and all $y \in\{0, x,-x / 2\}$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequalities

$$
\|D f(x, y)\|_{Y} \leq \varphi(x, y) \quad\|f(x)+f(-x)\|_{Y} \leq \varphi(x, 0)
$$

for all $x, y \in X$. Then there exist a unique additive function $A: X \rightarrow Y$ and a unique cubic function $C: X \rightarrow Y$ such that

$$
\|f(x)-A(x)-C(x)\|_{Y} \leq \frac{K^{2}}{48}\left\{4\left[\widetilde{\varphi_{a}}(x)\right]^{\frac{1}{p}}+\left[\widetilde{\varphi}_{c}(x)\right]^{\frac{1}{p}}\right\}
$$

for all $x \in X$, where

$$
\begin{aligned}
& \widetilde{\varphi_{c}}(x):=K^{2 p} M_{c}(2 x,-x)+\frac{K^{2 p}}{2^{p}} M_{c}(x, x)+K^{p} M_{c}(2 x, 0)+5^{p} M_{c}(x, 0), \\
& \widetilde{\varphi_{a}}(x):=K^{2 p} M_{a}(2 x,-x)+\frac{K^{2 p}}{2^{p}} M_{a}(x, x)+K^{p} M_{a}(2 x, 0)+5^{p} M_{a}(x, 0) .
\end{aligned}
$$

Proof. By the assumption, we get $f(0)=0$. So the result follows from Theorem 3.4 and Theorem 3.7 .
Corollary 3.18. Let θ, r, s be non-negative real numbers such that $1<r, s<3$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequalities (3.21) for all $x, y \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ and a unique cubic mapping $C: X \rightarrow Y$ satisfying (3.42).

Proof. It follows from (3.21) that $f(0)=0$. Hence the result follows from Corollaries 3.5 and 3.10

Corollary 3.19. Let θ, r, s be non-negative real numbers such that $1<\lambda:=r+s<3$. Suppose that an odd function $f: X \rightarrow Y$ satisfies the inequality (3.22) for all $x, y \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ and a unique cubic mapping $C: X \rightarrow Y$ satisfying (3.43).

Proof. $f(0)=0$, since f is odd. Hence the result follows from Corollaries 3.6 and 3.11.

References

[1] J. ACZÉL AND J. DHOMBRES, Functional Equations in Several Variables, Cambridge University Press, 1989.
[2] T. AOKI, On the stability of the linear transformationin Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
[3] Y. BENYAMINI and J. LINDENSTRAUSS, Geometric Nonlinear Functional Analysis, vol. 1, Colloq. Publ., vol. 48, Amer. Math. Soc., Providence, RI, 2000.
[4] P.W. CHOLEWA, Remarks on the stability of functional equations, Aequationes Math., 27 (1984), 76-86.
[5] P. CZERWIK, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore and London, 2002.
[6] S. CZERWIK, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59-64.
[7] P. GĂVRUTA, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
[8] A. GRABIEC, The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen, 48 (1996), 217-235.
[9] D.H. HYERS, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., 27 (1941), 222-224.
[10] D.H. HYERS, G. ISAC AND Th.M. RASSIAS, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[11] G. ISAC and Th.M. RASSIAS, Stability of Ψ-additive mappings: applications to nonlinear analysis, Internat. J. Math. Math. Sci., 19 (1996), 219-228.
[12] K.-W. JUN and H.-M. KIM, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl., 274 (2002), 867-878.
[13] K. JUN and Y. LEE, On the Hyers-Ulam-Rassias stability of a Pexiderized quadratic inequality, Math. Inequal. Appl., 4 (2001), 93-118.
[14] S.-M. JUNG, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press lnc., Palm Harbor, Florida, 2001.
[15] S.-M. JUNG AND T.-S. KIM, A fixed point approach to stability of cubic functional equation, Bol. Soc. Mat. Mexicana, 12 (2006), 51-57.
[16] Pl. KANNAPPAN, Quadratic functional equation and inner product spaces, Results Math., 27 (1995), 368-372.
[17] M. MIRZAVAZIRI and M.S. MOSLEHIAN, A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc., 37 (2006), 361-376.
[18] M.S. MOSLEHIAN, On the orthogonal stability of the Pexiderized quadratic equation, J. Difference Equ. Appl., 11 (2005), 999-1004.
[19] M.S. MOSLEHIAN AND Th.M. RASSIAS, Stability of functional equations in non-Archimedian spaces, Appl. Anal. Disc. Math., 1 (2007), 325-334.
[20] A. NAJATI, Hyers-Ulam stability of an n-Apollonius type quadratic mapping, Bull. Belg. Math. Soc. Simon-Stevin, 14 (2007), 755-774.
[21] A. NAJATI AND C. PARK, The Pexiderized Apollonius-Jensen type additive mapping and isomorphisms between C^{*}-algebras, J. Difference Equ. Appl., 14 (2008), 459-479.
[22] A. NAJATI, On the stability of a quartic functional equation, J. Math. Anal. Appl., 340 (2008), 569-574.
[23] A. NAJATI AND M.B. MOGHIMI, Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl., 337 (2008), 399-415.
[24] A. NAJATI AND C. PARK, Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras associated to the Pexiderized Cauchy functional equation, J. Math. Anal. Appl., 335 (2007), 763-778.
[25] A. NAJATI AND G. ZAMANI ESKANDANI, Stability of a mixed additive and cubic functional equation in quasi-Banach spaces, J. Math. Anal. Appl., 342 (2008), 1318-1331.
[26] C. PARK, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl., 275 (2002), 711-720.
[27] Th.M. RASSIAS, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
[28] Th.M. RASSIAS, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers Co., Dordrecht, Boston, London, 2003.
[29] S. ROLEWICZ, Metric Linear Spaces, PWN-Polish Sci. Publ., Warszawa, Reidel, Dordrecht, 1984.
[30] S.M. ULAM, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.

