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ABSTRACT. We give a reverse inequality to the most standard rearrangement inequality for
sequences and we emphasize the usefulness of matrix methods to study classical inequalities.
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1. REVERSE REARRANGEMENT INEQUALITIES

We have the following reverse inequality to the most basic rearrangement inequality. Down
arrows mean nonincreasing rearrangements.

Theorem 1.1.Let{a;}?, and{b;}"_, ben-tuples of positive numbers with

a.
pZ#Zq, i=1,..
7

"n7

for somep, ¢ > 0. Then,

n + n

i=1 i=1

The proof uses matrix arguments. Indeed, Thedrerh 1.1 is a byproduct of some matrix in-
equalities which are given in Sectipp 2.

For the convenience of readers we recall some facts about the trace norm. Capital letters
A, B,...,Z, denoten-by-n matrices or operators on andimensional Hilbert spackl. Let
X = U|X]| be the polar decomposition of, soU is unitary and X | = (X*X)'/2. The trace
norm of X is || X||; = Tr|X|. One may easily check that the trace norm is a norm: Forany
Y, consider the polar decompositich+ Y = U|X + Y|. Then,

(1.1) IX+Y|[i=Tr|X+Y|=TrU(X+Y)=TeUX + Tr U*Y.
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2 JEAN-CHRISTOPHEBOURIN

On the other hand, for al,
(1.2) |Tr A| < Tr|A],

as it is shown by computin{fr A in a basis of eigenvectors afi|. From [1.]) and[(1]2) we
infer that|| - ||; is a norm.

We need a simple fact: Given two diagonal positive matri€es- diag(z;), Y = diag(y;)
and a permutation matriX acting on the canonical basfs;} by Ve; = e,(;), we have
(1.3) IXVY = 2o,
Indeed, sinceXVY|?e; = YV*X?*VYe; = (22,47 )e;, We obtain X VYle; = (2,z)yi)e; SO
that [1.3) holds.

Proof of Theorerm I]1Introduce the diagonal matrices= diag(a;) andB = diag(b;). By the
above discussion, we have

n n

> aibi=|ABll;  and Y ajbl = |AVB]|;

i=1 =1

for some permutation matriX. Hence we have to show that

P+q
14V Bl < £ 1 AB

To this end consider the spectral representaltioa ) . v;h; ® h; wherev; are the eigenvalues
andh; the corresponding unit eigenvectors. We have

|AVBy <> ||A-v;hi ® hi - By

i=1

=D IR [|Bh|
i=1

P+a <
< P79 N Ah,, Bhs
_zﬁghf )

p+qn
2 V =1

p+q
=22 apy,,
-

where we have used the triangle inequality for the trace norm and Lémina 1.4 below. (J
The following example shows that equality can occur.

Example 1.1. Consider couples; = 2, a; = 1 andb; = 1/2, b, = 1; then withp =4, ¢ =1,
P+q _ 5 _ a1by 4 agzby

2P0 4 aiby + asby’
From the above, one easily derives:
Corollary 1.2. Let{a;} , and{b;}_, ben-tuples of positive numbers with
b <a; <pb, i=1,...,n,
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for somep > 0. Then,

Moreover, for evem and eacty, there aren-tuples for which equality occurs.

To obtain equality, consider antuple {a,} for which the first half terms equg)p and the
second half ones equa) and ann-tuple {b;} for which the first half terms equal and the
second half ones equa//p.

We turn to the lemmas necessary to complete the proof of Theorem 1.1. Given a subspace
£ C 'H, denote byZ. the compression of onto F, that is the restriction of/Z to £ whereFE
is the orthoprojection onts.

Lemma 1.3. LetZ > 0 with extremal eigenvaluesandb. Then, for every norm one vectbhy
a+b
2V/ab

Proof. Let £ be any subspace @{ and leta’ and?d’ be the extremal eigenvalues . Then
a>dad >V >band, setting = \/a/b, t' = \/a'/b/, we havet > t' > 1. Sincet — ¢t + 1/t
increases ofil, co) and

a+b—1(t_|_1) M—l(t’+l)
2ab 2 t)’ a2 t)’

[Zh]] < (h, Zh).

we infer
a+b S a +b
2/ab — 2Vl

Therefore, it suffices to prove the lemma f¢r with £ = span{h, Zh}. Hence, we may assume
dimH =2, Z = ae; ®@ 1 + bey ® ey andh = ze; + (v/1 — x2)e,. Settingz? = y we have

1Zh]] _ ey +0(1—y)

(h,Zh) — ay+b(1—y)
The right hand side attains its maximum@n1] aty = b/(a + b), and then

|Zh|]  a+b
(h.Zh)  2v/ab’
proving the lemma. O

Lemmal.4.LetA, B > 0with AB = BAandpl > AB~! > ¢I for somep, ¢ > 0. Then, for
every vectoh,

ptq
Ah| ||Bh|| < =—— (Ah, Bh).
JAnl 1Bal < 522 (an, B
Proof. Write h = B~! f and apply Lemma 1]3. O

Remark 1.5. Lemma[1.B is nothing but a rephrasing of a Kantorovich inequality and Lemma
[1.4 a rephrasing of Cassel's Inequality:
Cassel’s inequalityFor nonnegative-tuples{a; },, {b;}1, and{w;}, with

a; .
p>p>q i=1l...mn

)

for somep, ¢ > 0; it holds that

! !
i=1 2 pq
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Of course it is a reverse inequality to the Cauchy-Schwarz inequality. To obtain it from Lemma
[1.4, one simply takesl = diag(ay, ..., a,), B = diag(by,...,b,) andh = (\/wy, ..., /wy).

If one letsa = (a4, ...,a,) andb = (by,...,b,) then Cassel’s inequality can be written as
p+q

14 b b

(1.4) la IIHII_Q\/_<a,>

for a suitable inner produgt, -). It is then natural to search for conditions @rb ensuring that
the above inequality remains valid witha, Ub for all orthogonal matrice&’. This motivates a
remarkable extension of Cassel’s inequality:

tDragomir’s inequality For real vectors, b such thata — ¢b, pb — a) > 0 for some scalars
p, ¢ with pg > 0, inequality (I.4) holds. For this inequality and its complex version|se€ [4], [5],

6.

Taking squares in Cassel's inequality and using the convexity\wé obtain:

szaZZw b; \/_j;l/_) szaibi

=1

for all nonnegativer-tuples{a;}7_,, {b;}1-, and{w;}I, with >  w; = L andp > a;/b; > q
for somep, ¢ > 0. Though weaker than Cassels mequallty, this is also a sharp inequality:
Takingb; = 1/a; we get the (sharp) Kantorovich inequality:plf> a; > ¢ > 0 and}"" | w; =

1, then
Zw,aZsz —1 < —p—l-q) .

4pq
Let (€2, P) be a probability space. The above discussions shows a sharp result:

Proposition 1.6. Let f(w) andg(w) be measurable functions éhsuch thatp > f(w)/g(w) >
g for somep, ¢ > 0. Then,

/Qf(w)dP/Q W) dP < f+f /f

2. RELATED MATRIX INEQUALITIES AND COMMENTS

We dicovered the statements of Theorem 1.1 and its corollaries while investigating some
matrix inequalities. Among those are inequalities for symmetric norms. Such a|hofins
characterized by the property that|| = ||[UAV|| for all A and all unitaried/, V. The most
basic inequality for symmetric norms is

|AB|| < || BA,
whenever the product B is normal. In[1] (see also [2]) we established:
Theorem 2.1.Let A, B such thatAB > 0 and letZ > 0 with extremal eigenvaluesandb.
Then, for every symmetric norm, the following sharp inequality holds
a-+b
2 ab

By sharpness, we mean that we can fihdnd B such that equality occurs. Note that letting
A = B be arank one projectioh @ h we recapture Lemnja 1.3 which is the starting point of
Theorenj 1J1. From this theorem we derived several known Kantorovich type inequalities and
also a sharp operator inequality:

|ZAB] <

IBZA]|.
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Corollary 2.2. Let0 < A < I and letZ > 0 with extremal eigenvaluesandb. Then,
(a+ b)?
a
Next, let us note that an immediate consequence of Theorgm 1.1 is:

Corollary 2.3. LetZ > 0 and letA, B > 0 with AB = BA andpl > AB~! > ¢I for some
p, ¢ > 0. Then, for all symmetric norms,

AZA <L Z.

ptaq
lAZB] < |ZAB].
SN
Proof. From Theorem 2]1 we get
- Ptq ptaq
1AZB|| = |[AB"Y(BZ - B)|| < S—= |ABZ] = 1ZAB].
N N
by the simple fact tha|ST'|| = ||7'S|| for all HermitiansS, T, since|| X || = | X*| for all
X. O

The previous theorem cannot be extended to normal operdtoegcept in the case of the
trace norm:

Theorem 2.4.Let A, B > 0 with AB = BAandpl > AB~! > ¢I for somep, ¢ > 0 and let

Z be normal. Then,

|AZB], < §+ 4

|1ZAB|,.
The proof is quite similar to that of Theorgm [1.1. Clearly Theofem 1.1 is a corollary of
Theorem Z}.
Some comments.One aim of the paper is to place stress on the power of matrix methods in
dealing with classical inequalities. This is apparent in the quite natural statement and proof of
Cassel’s inequality via Lemmja 1.4. We also note that from the matrix inequality of Theorem
[2.4 we infer our reverse rearrangement inequality stated in Thegorém 1.1. Having now at our
disposal the good statement, it remains to find a direct proof without matrix arguments (in
particular without using complex numbers via the spectral decomposition). A first immediate
simplification consists in noting that we can assume that

al,...,an:a{,...ai and bl,...,bn:bi,(l),...,bl

» n a(n)
for a permutatior. By decomposing in cycles we may assume thats a cycle. Equivalently
we may assume that

al,...,an:ai(l),...,ai(n) and  by,... z)_z)l2),...z)l bt

» Yo(n) Yo(1)
for a permutatiorr. However, does it really simplify the problem ?

It is tempting to try to reduce the problem to the case- 2. We have no idea of how to
proceed. The case = 2 can be easily solved by elementary methods as it is shown in the
next proposition. The proof shows that the inequality of Thedrein 1.1 is sharp (and equality can
occur whem is even).

Proposition 2.5. Leta* > a, > 0 andb* > b, > 0 with

a* Ay

pzy- and 0 2>g

for somep, ¢ > 0. Then,
a*b* + a.b, < p+q

a*b, + a,b* — 2./pq’
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Proof. First, fix a*, a, and renamed*, b, by z, y respectively. We want to maximize

on the domain

that is, . .
AI{(SL’,y):ny,%SxS%,a—éyéa—}.
p

ThusA is a triangle (more precisely a half-square) with vertices

(a*/p,a*/p)  (av/q,ac/q)  (a/q,a"/p).
On A we havedf/ox > 0 anddf/0y < 0. This shows thaff takes its maximun im\ at
(a./q,a*/p). The value is then ) )
a*a* + Ax Qs *
Next, observe that in our inequality we can tak*e_ 1. Hence, lettingz, = ¢, we have to
check that

1 1
(,;+5)t_p+q
ot L4+ 2  2pg
A3 7 pq

Considering the derivative, we see that the maximum is attaineé ay/ ¢/p and we obtain the
expected value. O

We close with two open problems:
Problem 2.1. Find a direct proof of Theorefm 1.1.

Problem 2.2. Let {a;}"_, and{b;}"_, ben-tuples of positive numbers. Find a suitable bound

for the difference
Zalbl > o

=1
In the research/survey papéer [3] we consider matrix proofs and several extensions of some
classical inequalities of Chebyshev, Griss and Kantorovich type.
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