THE COUNTERPART OF FAN'S INEQUALITY AND ITS RELATED RESULTS

WAN-LAN WANG
College of Mathematics and Information Science
Chengdu University, Chengdu
Sichuan Province, 610106, P.R. China
EMail: wanlanwang@163.com

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.

Key words:

Abstract:

Acknowledgements.

14 August, 2008
16 October, 2008
S.S. Dragomir

26D15, 26E60.
Inequality, counterpart, Sándor-Szabò’s idea, refinement, converse.
In the present paper we give the new proofs for the counterpart of Fan's inequality, and establish several refinements and converses of it. The method is based on an idea of J. Sándor and V.E.S. Szabò in [19]. It must be noted that the technique has been replaced by a more effective one.

The authors would like to acknowledge the support No.2005A201 from the NSF of Sichuan Education Office.

The authors are deeply indebted to anonymous referees and conscientious editors for useful comments, corrections and reasonable polish which led to the present improved version of the paper as it stands.

Title Page
Contents
Fan's Inequality
Wan-lan Wang
vol. 9, iss. 4, art. 109, 2008

$\uparrow 4$	
$\boldsymbol{4}$	
Page 1 of 18	
Go Back	

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-575b

Contents

1 Notation and Introduction 3
2 Proofs of the Counterpart and Related Results 5

Prooss of the Counterpart and Related Results 5
3 An Application 13

3 An Application 13
4 Concluding Remarks 15

4 Concluding Remarks 15

Fan's Inequality
Wan-lan Wang
vol. 9, iss. 4, art. 109, 2008

Title Page

Contents

Page 2 of 18

Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: l443-575b

1. Notation and Introduction

We need the following notation and symbols used in the papers [18], [22], [4], [21], [15], [1], [2], [9], [23]:
$a_{i} \in(0,1 / 2], p_{i}>0, i=1, \ldots, n, \quad P:=p_{1}+\cdots+p_{n}, \quad \mathbb{N}:=$ the natural numbers set,

$$
\begin{gathered}
A:=A(a):=P^{-1} \cdot \sum p_{i} a_{i}, G:=G(a):=\prod a_{i}^{p_{i} / P}, H:=H(a):=P\left(\sum p_{i} a_{i}^{-1}\right)^{-1}, \\
A^{\prime}:=A(1-a):=P^{-1} \cdot \sum p_{i}\left(1-a_{i}\right), \quad G^{\prime}:=G(1-a), \quad H^{\prime}:=H(1-a) \\
m:=\min \left\{a_{1}, \ldots, a_{n}\right\}, \quad M:=\max \left\{a_{1}, \ldots, a_{n}\right\}, \quad \exp \{x\}:=e^{x} .
\end{gathered}
$$

Here and in what follows \sum and \prod are used to indicate $\sum_{i=1}^{n}$ and $\prod_{i=1}^{n}$, respectively.
In 1996, J.Sándor and V.E.S. Szabò [19] discovered an interesting method of establishing inequalities, that is, they established inequalities by means of the following:

$$
\begin{equation*}
\sum \inf _{x \in E} F_{i}(x) \leq \inf _{x \in E} \sum F_{i}(x) \tag{1.1}
\end{equation*}
$$

Since 1999 [21], the present authors have been studying the following inequalities:

$$
\begin{equation*}
\frac{H}{H^{\prime}} \leq \frac{G}{G^{\prime}} \leq \frac{A}{A^{\prime}} \tag{1.2}
\end{equation*}
$$

The second inequality in (1.2) was published in 1961 and is due to Ky Fan [7, p. 5]; the first inequality with equal weights was established by W.-1.Wang and P.-F.Wang [22] in 1984. Clearly, the first is a counterpart of Fan's inequality. It seems that the counterpart is called Wang-Wang's inequality in the current literature [15], [1], [8], [11], [12]. The inequalities in (1.2) have evoked the interest of several mathematicians, and many new proofs as well as some generalizations and refinements
J

Fan's Inequality
Wan-lan Wang
vol. 9, iss. 4, art. 109, 2008

Title Page
Contents

Page 3 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
have been published (see [8], [11], [12], [13], [3], [10], [14], [16], [17], [5], [20], [6], etc.). We refer to H. Alzer's brilliant exposition [4] for the inequalities (1.2) and some related subjects. In this paper we improve the Sándor-Szabò technique. We shall apply the inequality (1.1) and the following facts:

$$
\begin{equation*}
\inf _{x \in E} F_{i}(x) \leq F_{i}(y) \tag{1.3}
\end{equation*}
$$

Fan's Inequality
Wan-lan Wang

$$
\begin{equation*}
\sum \inf _{x \in E} F_{i}(x) \leq \inf _{x \in E} \sum F_{i}(x) \leq \sum F_{i}(y) \quad \text { for all } y \in E \tag{1.4}
\end{equation*}
$$

vol. 9, iss. 4, art. 109, 2008

Title Page
Contents proofs. As an application of the new results, in Section 3, we discuss a connection between the results of [23] and our result (2.3). In Section 4, we give some concluding remarks.
to two proofs of the counterpart (i.e., (2.1) below), and establish several refinements and converses. Indeed, the following process will reveal the simplicity, adaptability and reliability of using (1.3) and (1.4). In Section 2, we give theorems and their

Page 4 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics

2. Proofs of the Counterpart and Related Results

First we reprove the first inequality in (1.2).
Theorem 2.1. If $a_{i} \in(0,1 / 2],(i=1, \ldots, n)$, then the first inequality in (1.2) holds, that is, the following result holds:

$$
\begin{equation*}
\frac{H}{H^{\prime}} \leq \frac{G}{G^{\prime}} \tag{2.1}
\end{equation*}
$$

First Proof. We first choose the function in the argument of Theorem 3 of [21], namely, $\phi_{i}:(0,1 / 2] \rightarrow \mathbb{R}(i=1, \ldots, n)$ defined by

$$
\phi_{i}(x):=p_{i}\left(\frac{x}{a_{i}}-\frac{1-x}{1-a_{i}}+\log \frac{1-x}{x}\right) .
$$

Since ϕ_{i} is strictly convex and $x_{i, 0}=a_{i}$ is the unique critical point in ($0,1 / 2$], then for every ϕ_{i} and any $y \in(0,1 / 2]$, using the inequality (1.3) we have

$$
\phi_{i}\left(a_{i}\right)=\log \left(\frac{1-a_{i}}{a_{i}}\right)^{p_{i}} \leq \phi_{i}(y)=p_{i}\left(\frac{y}{a_{i}}-\frac{1-y}{1-a_{i}}+\log \frac{1-y}{y}\right) .
$$

Summing up over i from 1 to n we get

$$
\log \prod\left(\frac{1-a_{i}}{a_{i}}\right)^{p_{i}} \leq\left(\sum \frac{p_{i}}{a_{i}}\right) y-\left(\sum \frac{p_{i}}{1-a_{i}}\right)(1-y)+P \log \frac{1-y}{y}
$$

Dividing both sides by P, we have

$$
\begin{equation*}
\log \prod\left(\frac{1-a_{i}}{a_{i}}\right)^{p_{i} / P} \leq \frac{y}{H}-\frac{1-y}{H^{\prime}}+\log \frac{1-y}{y} \tag{2.2}
\end{equation*}
$$

Fan's Inequality
Wan-lan Wang
vol. 9, iss. 4, art. 109, 2008

Title Page
Contents

Page 5 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Taking $y=H /\left(H+H^{\prime}\right)$, clearly $y \in(0,1 / 2]$, a simple calculation yields that

$$
\log \frac{G^{\prime}}{G} \leq \log \frac{H^{\prime}}{H}
$$

which is equivalent to (2.1). This completes the first proof of Theorem 2.1.
Second Proof. Along the same lines of the first proof, we obtain (2.2). If we take $y=G /\left(G+G^{\prime}\right)$ in (2.2), clearly $y \in(0,1 / 2]$, then

$$
\log \frac{G^{\prime}}{G} \leq \frac{G}{\left(G+G^{\prime}\right) H}-\frac{G^{\prime}}{\left(G+G^{\prime}\right) H^{\prime}}+\log \frac{G^{\prime}}{G}
$$

or,

$$
0 \leq \frac{G}{H}-\frac{G^{\prime}}{H^{\prime}}
$$

which is equivalent to (2.1). This completes the second proof of Theorem 2.1.
Remark 1. We can also give an equality condition from the argument in the first proof. In fact, we have known that all these functions are strictly convex in $(0,1 / 2]$, so the equality condition of (2.1) should be "if and only if $a_{1}=\cdots=a_{n}$ ".
Remark 2. There are already at least eight proofs of (2.1) (see [22], [4], [15], [1], [2], [9], [23], [12]). The author believes that the proofs of this paper are extremely simple, interesting and elementary.
Remark 3. By a procedure analogous to [22], [4], [21], we can deduce the wellknown inequality $H \leq G$. In fact, if we choose $t / 2 \geq M=\max \left\{a_{1}, \ldots, a_{n}\right\}$, then $a_{i} / t \in(0,1 / 2](i=1, \ldots, n)$. Replacing successively a_{i} by a_{i} / t in (2.1), and then simplifying the resulting inequality, we have

$$
\frac{\left(\sum p_{i} a_{i}^{-1}\right)^{-1}}{\left[\sum p_{i}\left(1-a_{i} / t\right)^{-1}\right]^{-1}} \leq \frac{\prod a_{i}^{p_{i} / P}}{\Pi\left(1-a_{i} / t\right)^{p_{i} / P}}
$$

Fan's Inequality
Wan-lan Wang
vol. 9, iss. 4, art. 109, 2008

Title Page
Contents

Page 6 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Now passing to the limit as $t \rightarrow+\infty$, the desired $H \leq G$ can be deduced.
Theorem 2.2. If $a_{i} \in(0,1 / 2], \quad(i=1, \ldots, n)$, then we have the following refinement of (2.1):

$$
\begin{equation*}
\frac{H}{H^{\prime}} \leq \frac{x_{0}}{1-x_{0}} \exp \left[\frac{1}{H^{\prime}}-\left(\frac{1}{H}+\frac{1}{H^{\prime}}\right) x_{0}\right] \leq \frac{G}{G^{\prime}} \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{0}=\frac{1}{2}-\frac{\sqrt{\left(H+H^{\prime}\right)\left(H+H^{\prime}-4 H H^{\prime}\right)}}{2\left(H+H^{\prime}\right)} \tag{2.4}
\end{equation*}
$$

Fan's Inequality
Wan-lan Wang
vol. 9, iss. 4, art. 109, 2008

Title Page
Contents

$$
\sum \inf _{x \in(0,1 / 2]} \phi_{i}(x)=\log \prod\left(\frac{1-a_{i}}{a_{i}}\right)^{p_{i}}
$$

Let $\Phi:=\sum \phi_{i}$. Then

$$
\Phi(x)=\sum \phi_{i}(x)=P\left(\frac{x}{H}-\frac{1-x}{H^{\prime}}+\log \frac{1-x}{x}\right) .
$$

By Theorem 3 in [21], Φ has minimum at

$$
\begin{equation*}
x_{0}=\frac{1}{2}-\frac{1}{2} \sqrt{1-4 P\left[\sum \frac{p_{i}}{a_{i}\left(1-a_{i}\right)}\right]^{-1}} . \tag{2.5}
\end{equation*}
$$

Combining (2.5) with the following relationship

$$
\left[\sum \frac{p_{i}}{a_{i}\left(1-a_{i}\right)}\right]^{-1}=P^{-1}\left[\frac{1}{H}+\frac{1}{H^{\prime}}\right]^{-1}
$$ in pure and applied mathematics

we can obtain the expression (2.4).
As to $x_{0} \in[m, M]$, this is also a conclusion of Theorem 3 in [21].
Using the inequality (1.4), for any $y \in(0,1 / 2]$ we get

$$
\begin{equation*}
\log \prod\left(\frac{1-a_{i}}{a_{i}}\right)^{p_{i}} \leq \Phi\left(x_{0}\right) \leq \Phi(y) \tag{2.6}
\end{equation*}
$$

Taking $y=H /\left(H+H^{\prime}\right)$ and dividing both sides by $P,(2.6)$ gives

$$
\log \frac{G^{\prime}}{G} \leq \frac{x_{0}}{H}-\frac{1-x_{0}}{H^{\prime}}+\log \frac{1-x_{0}}{x_{0}} \leq \log \frac{H^{\prime}}{H}
$$

Fan's Inequality
Wan-lan Wang
vol. 9, iss. 4, art. 109, 2008
which is equivalent to (2.3). The proof of Theorem 2.2 is therefore complete.
Remark 4. Clearly, the inequality (2.1) is a natural consequence of (2.3). We may give a numerical example of (2.3): In $n=5$, we take

$$
\begin{array}{ll}
a_{1}=0.1, & a_{2}=0.15, \quad a_{3}=0.2, \quad a_{4}=0.35, \quad a_{5}=0.4, \\
p_{1}=0.1, & p_{2}=0.3, \quad p_{3}=0.2, \quad p_{4}=0.25, \quad p_{5}=0.15,
\end{array}
$$

arbitrarily. The results are generated via use of Mathematica, and as expected:

$$
\begin{aligned}
\frac{H}{H^{\prime}} & =0.265001 \\
& <\frac{x_{0}}{1-x_{0}} \exp \left[\frac{1}{H^{\prime}}-\left(\frac{1}{H}+\frac{1}{H^{\prime}}\right) x_{0}\right] \\
& =0.265939<\frac{G}{G^{\prime}}=0.291434 .
\end{aligned}
$$

Proposition 2.3. If $a_{i} \in(0,1 / 2],(i=1, \ldots, n)$, we have $\frac{A}{1-A}=\frac{A}{A^{\prime}}, \frac{H}{1-H} \leq \frac{H}{H^{\prime}}$ and $\frac{G}{1-G} \leq \frac{G}{G^{\prime}}$.

Title Page
Contents

Page 8 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

In fact, we can obtain the desired result from the inequalities

$$
H+H^{\prime} \leq G+G^{\prime} \leq A+A^{\prime}=1
$$

Theorem 1 of [21] uses (1.1) and some functions to prove Fan's inequality and its generalization. The functions chosen in the argument are $f_{i}:(0,1 / 2] \rightarrow \mathbb{R}, \quad(i=$ $1, \ldots, n)$ defined by

$$
\begin{equation*}
f_{i}(x):=p_{i}\left(\frac{a_{i}}{x}-\frac{1-a_{i}}{1-x}-\log \frac{1-x}{x}\right) . \tag{2.7}
\end{equation*}
$$

Fan's Inequality
Wan-lan Wang
vol. 9, iss. 4, art. 109, 2008

Title Page
Contents

$$
\begin{equation*}
\frac{G}{G^{\prime}} \leq \frac{A}{A^{\prime}} \leq \frac{H}{H^{\prime}} \exp \left[\left(1+\frac{H^{\prime}}{H}\right) A-\left(1+\frac{H}{H^{\prime}}\right) A^{\prime}\right] ; \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
\frac{G}{G^{\prime}} \leq \frac{A}{A^{\prime}} \leq \frac{G}{G^{\prime}} \exp \left[\left(1+\frac{G^{\prime}}{G}\right) A-\left(1+\frac{G}{G^{\prime}}\right) A^{\prime}\right] \tag{2.9}
\end{equation*}
$$

Page 9 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof. Choose the above functions in (2.7). Since f_{i} has a minimum at $x_{i, 0}=a_{i}$ and its value is $f_{i}\left(a_{i}\right)=-\log \left[\left(1-a_{i}\right) / a_{i}\right]^{p_{i}}$, then

$$
\sum \inf _{x \in(0,1 / 2]} f_{i}(x)=\sum f_{i}\left(a_{i}\right)=\log \prod\left[\frac{a_{i}}{1-a_{i}}\right]^{p_{i}}
$$

Similarly, the function

$$
f(x):=\sum f_{i}(x)=P\left(\frac{A}{x}-\frac{1-A}{1-x}-\log \frac{1-x}{x}\right)
$$

Fan's Inequality
Wan-lan Wang
vol. 9, iss. 4, art. 109, 2008
has a minimum at $x_{0}=A$ and its value is $f\left(x_{0}\right)=f(A)=P \log \frac{A}{A^{\prime}}$.
Using (1.4) we get

$$
\begin{equation*}
\log \prod\left(\frac{a_{i}}{1-a_{i}}\right)^{p_{i}} \leq P \log \frac{A}{A^{\prime}} \leq P\left(\frac{A}{y}-\frac{1-A}{1-y}-\log \frac{1-y}{y}\right) \tag{2.12}
\end{equation*}
$$

where $y \in(0,1 / 2]$. Taking $y=H /\left(H+H^{\prime}\right)$ in (2.12), we have

$$
\begin{aligned}
\log \prod\left(\frac{a_{i}}{1-a_{i}}\right)^{p_{i}} & \leq P \log \frac{A}{A^{\prime}} \\
& \leq P \log \frac{H}{H^{\prime}}+P\left[\left(1+\frac{H^{\prime}}{H}\right) A-\left(1+\frac{H}{H^{\prime}}\right) A^{\prime}\right]
\end{aligned}
$$

Title Page
Contents

Page 10 of 18
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

By a similar argument to the above, taking $y=G /\left(G+G^{\prime}\right)$ in (2.12), we can obtain (2.9); taking $y=H$ and $y=G$ in (2.12) respectively, and then combining the resulting inequalities with Proposition 2.3, we respectively obtain (2.10) and (2.11). The proof of Theorem 2.4 is therefore complete.

Remark 5. The data in Remark 4 is used below so as to save space. Using those values, we have

$$
\begin{gathered}
\frac{G}{G^{\prime}}=0.291434 \leq \frac{A}{A^{\prime}}=0.320132 \\
\leq \frac{H}{H^{\prime}} \exp \left[\left(1+\frac{H^{\prime}}{H}\right) A-\left(1+\frac{H}{H^{\prime}}\right) A^{\prime}\right]=0.323423 ; \\
\frac{G}{G^{\prime}}=0.291434 \leq \frac{A}{A^{\prime}}=0.320132 \\
\leq \frac{G}{G^{\prime}} \exp \left[\left(1+\frac{G^{\prime}}{G}\right) A-\left(1+\frac{G}{G^{\prime}}\right) A^{\prime}\right]=0.320905 ; \\
\frac{G}{G^{\prime}}=0.291434 \leq \frac{A}{A^{\prime}}=0.320132 \leq \frac{H}{H^{\prime}} \exp \left[\frac{A}{H}-\frac{A^{\prime}}{1-H}\right]=0.332691 ; \\
\frac{G}{G^{\prime}}=0.291434 \leq \frac{A}{A^{\prime}}=0.320132 \leq \frac{G}{G^{\prime}} \exp \left[\frac{A}{G}-\frac{A^{\prime}}{1-G}\right]=0.438724
\end{gathered}
$$

Fan's Inequality
Wan-lan Wang
vol. 9, iss. 4, art. 109, 2008

Title Page
Contents

Page 11 of 18
Go Back
Full Screen
Close
journal of inequalities

$$
m \leq H \leq M, m \leq A \leq M, 1-M \leq H^{\prime} \leq 1-m, 1-M \leq A^{\prime} \leq 1-m
$$

$$
\frac{1-M}{M} \leq \frac{H^{\prime}}{H} \leq \frac{1-m}{m}, \quad \frac{m}{1-m} \leq \frac{H}{H^{\prime}} \leq \frac{M}{1-M}
$$

It follows from the above that

$$
\begin{align*}
\left(1+\frac{H^{\prime}}{H}\right) & A-\left(1+\frac{H}{H^{\prime}}\right) A^{\prime} \tag{2.13}\\
& \leq\left(1+\frac{1-m}{m}\right) M-\left(1+\frac{m}{1-m}\right)(1-M) \\
& =\frac{M-m}{m(1-m)} .
\end{align*}
$$

Combining (2.13) with (2.8), (2.8) can also be rewritten as

$$
\begin{equation*}
\frac{G}{G^{\prime}} \leq \frac{A}{A^{\prime}} \leq \frac{H}{H^{\prime}} \exp \left[\left(1+\frac{H^{\prime}}{H}\right) A-\left(1+\frac{H}{H^{\prime}}\right) A^{\prime}\right] \tag{2.14}
\end{equation*}
$$

$$
\begin{equation*}
\leq \frac{M}{1-M} \exp \left[\frac{M-m}{m(1-m)}\right] . \tag{2.15}
\end{equation*}
$$

Similarly, we can obtain several estimations for (2.9), (2.10) and (2.11) that are similar to (2.14).

Fan's Inequality
Wan-lan Wang
vol. 9, iss. 4, art. 109, 2008

Title Page
Contents

Page 12 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

3. An Application

We shall consider a connection between the above inequalities (2.3) and a useful result which is due to G.-S. Yang and C.-S.Wang.

The first part in Theorem 2 of [23] is the following
Proposition 3.1. Given a sequence $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ with $a_{i} \in(0,1 / 2], i=1, \ldots, n$, which do not all coincide. Let

$$
\begin{equation*}
p(t)=\prod_{i=1}^{n}\left[\frac{1}{a_{i}}+t \sum_{j=1}^{n}\left(\frac{1}{a_{j}}-\frac{1}{a_{i}}\right)-1\right]^{-\frac{1}{n}}, t \in\left[0, \frac{1}{n}\right] . \tag{3.1}
\end{equation*}
$$

Then $p(t)$ is continuous, strictly decreasing, and

$$
\frac{H}{1-H}=p\left(\frac{1}{n}\right) \leq p(t) \leq p(0)=\frac{G}{G^{\prime}}
$$

on $[0,1 / n]$.
Theorem 3.2. Under the hypotheses of Proposition 3.1 and $p_{1}=\cdots=p_{n}=1$ in (2.3), there exist three points $0, \xi, t_{0} \in[0,1 / n], 0 \leq \xi \leq t_{0}$ such that

$$
\begin{align*}
p\left(t_{0}\right) & =\frac{H}{H^{\prime}} \\
& \leq p(\xi)=\frac{x_{0}}{1-x_{0}} \exp \left[\frac{1}{H^{\prime}}\left(\frac{1}{H}+\frac{1}{H^{\prime}}\right) x_{0}\right] \\
& \leq p(0)=\frac{G}{G^{\prime}}, \tag{3.2}
\end{align*}
$$

where

$$
H=\frac{n}{\sum \frac{1}{a_{i}}}, \quad H^{\prime}=\frac{n}{\sum \frac{1}{1-a_{i}}}, \quad G=\prod a_{i}^{1 / n}, \quad G^{\prime}=\prod\left(1-a_{i}\right)^{1 / n}
$$

and $p(t)$ is defined by (2.15).

Fan's Inequality
Wan-lan Wang
vol. 9, iss. 4, art. 109, 2008

Title Page
Contents
J
\square

Page 13 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof. On the one hand, by Proposition 2.3 and Theorem 2.1 we get $H /(1-H) \leq$ $H / H^{\prime} \leq G / G^{\prime}$. On the other hand, by Proposition 3.1, we know that $p(t)$ is a strictly decreasing and continuous function on $[0,1 / n]$ and $p(0)=G / G^{\prime}, p(1 / n)=$ $H /(1-H)$. Based on these facts and the intermediate value theorem of continuous functions, there exists a unique $t_{0} \in[0,1 / n]$ such that $p\left(t_{0}\right)=H / H^{\prime}$.

Combining the above facts and Proposition 3.1 with (2.3) in Theorem 2.2, the intermediate value theorem implies the existence of a ξ on the interval $\left[0, t_{0}\right]$ with the property that

$$
p(\xi)=\frac{x_{0}}{1-x_{0}} \exp \left[\frac{1}{H^{\prime}}\left(\frac{1}{H}+\frac{1}{H^{\prime}}\right) x_{0}\right] .
$$

In conclusion, there exist three points $0, \xi, t_{0} \in[0,1 / n], 0 \leq \xi \leq t_{0}$ such that (3.1) holds. Thus the proof of Theorem 3.2 is completed.

Fan's Inequality
Wan-lan Wang
vol. 9, iss. 4, art. 109, 2008

Title Page
Contents

Page 14 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics

4. Concluding Remarks

The result given above as well as those in [21] have revealed that inequalities (1.1), (1.3) and (1.4) are based on the same idea. However, their roles are different in applying these inequalities. Inequalities that can be established by (1.1) cannot necessarily be established by (1.3) and/or (1.4). We have noticed that using (1.3) and/or (1.4) is more convenient for proving or discovering the refinements of some inequalities. For these reasons, they can be applied in a wider scope. Several advantages that the technique has are its simplicity, adaptability and reliability. In other words, the method of using (1.3) and/or (1.4) provided in this paper is superior to the original approach that only uses (1.1).

Fan's Inequality
Wan-lan Wang
vol. 9, iss. 4, art. 109, 2008

Title Page
Contents

Page 15 of 18
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] H. ALZER, An inequality of W.-L. Wang and P.-F. Wang, Internat. J. Math. Sci, 13 (1990), 295-298.
[2] H. ALZER, Rado-type inequalities for geometric and harmonic means, J. Pure Appl. Math. Sci., 24 (1989), 125-130.
[3] H. ALZER, Refinements of Ky Fan's inequality, Proc. Amer. Math. Soc., 117 (1993), 159-165.

Fan's Inequality
Wan-lan Wang
vol. 9, iss. 4, art. 109, 2008

Title Page
Contents maticae, 36 (1988), 246-250.
[6] H. ALZER, S. RUSCHEWEYH AND L. SALINAS, On Ky Fan-type inequalities, Aequationes Mathematicae, 62(3) (2001), 310-320.
[7] E.F. BECKENBACH AND R. BELLMAN, Inequalities, Springer-Verlag, Berlin, 1961.
[8] K.-K. CHONG, Monotonic refinements of a Ky Fan inequality, J. Inequal. Pure and Appl. Math., 2(2) (2001), Art. 19. [ONLINE: http:// jipam.vu. edu.au/article.php?sid=135].
[9] K.-K. CHONG, On a Ky Fan's inequality and some related inequalities between means, SEAMS Bull. Math., 22 (1998), 363-372 .
[10] S.S. DRAGOMIR and F.P. SCARMOZZINO, On the Ky Fan inequality, J. Math. Anal. Appl., 269 (2002), 129-136.
[4] H. ALZER, The inequality of Ky Fan and related results, Acta Appl. Math., 38 (1995), 305-354.
[5] H. ALZER, Verschārfung einer Ungleichung von Ky Fan, Aequationes Mathe-

Page 16 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
[11] V. GOVEDARICA AND M. JOVANOVIĆ, On the inequalities of Ky Fan, Wang-Wang and Alzer, J. Math. Anal. Appl., 270 (2002), 709-712.
[12] E. HEUMAN AND J. SÁNDOR, On the Ky Fan's inequality and related inequalities I, Math. Inequal. Appl., 5(1) (2002), 49-56.
[13] E. HEUMAN and J. SÁNDOR, On the Ky Fan's inequality and related inequalities II, Bull. Austral. Math. Soc., 72(1) (2005), 87-107.
[14] HSU-TUNG KU, MEI-CHIN KU AND XIN-MIN ZHANG, Generalized power means and interpolating inequalities, Proc. Amer. Math. Soc., 127 (1999), 145154.
[15] M.I. MCGREGOR, On some inequalities of Ky Fan and Wang-Wang, J. Math. Anal. Appl., 180 (1993), 182-188.
[16] P.R. MERCER, Refined arithmetic, geometric and harmonic mean inequalities, Rocky Mountain J. Math., 33(4) (2003), 1459-1464.
[17] D.S. MITRINOVIĆ, J.E. PEČARIĆ AND A.M. FINK, Classic and New Inequalities in Analysis, Chap. IX, Kluwer Academic Publishers, 1993.
[18] J. PEČARIĆ AND S. VAROSANEC, A new proof of the arithmetic mean-the geometric mean inequality, J. Math. Anal. Appl., 215 (1997), 577-578.
[19] J. SÁNDOR AND V.E.S. SZABÓ, On an inequality for the sum infimums of functions, J. Math. Anal. Appl., 204 (1996), 646-654.
[20] J. SÁNDOR AND T. TRIF, A new refinement of the Ky Fan inequality, Math. Inequal. Appl., 2(4) (1999), 529-533.
[21] W.-L. WANG, Some inequalities involving means and their converses, J. Math. Anal. Appl., 238 (1999), 567-579.

Fan's Inequality
Wan-lan Wang
vol. 9, iss. 4, art. 109, 2008

Title Page
Contents

Page 17 of 18
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
[22] W.-L. WANG and P.-F. WANG, A class of inequalities for the symmetric functions, Acta Math. Sinica, 27 (1984), 485-497. (in Chinese)
[23] G.-S. YANG AND C.-S.WANG, Refinements on an inequality of Ky Fan, J. Math. Anal. Appl., 201 (1996), 955-965.

Fan's Inequality
Wan-lan Wang
vol. 9, iss. 4, art. 109, 2008

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 18 of 18	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

