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1. Notation and Introduction

We need the following notation and symbols used in the papers [18], [22], [4], [21],
[15], [1], [2], [9], [23]:

ai ∈ (0, 1/2], pi > 0, i = 1, . . . , n, P := p1+· · ·+pn, N := the natural numbers set,

A := A(a) := P−1·
∑

piai, G := G(a) :=
∏

a
pi/P
i , H := H(a) := P

(∑
pia

−1
i

)−1

,

A′ := A(1− a) := P−1 ·
∑

pi(1− ai), G′ := G(1− a), H ′ := H(1− a),

m := min{a1, . . . , an}, M := max{a1, . . . , an}, exp{x} := ex.

Here and in what follows
∑

and
∏

are used to indicate
∑n

i=1 and
∏n

i=1, respectively.
In 1996, J.Sándor and V.E.S. Szabò [19] discovered an interesting method of

establishing inequalities, that is, they established inequalities by means of the fol-
lowing:

(1.1)
∑

inf
x∈E

Fi(x) ≤ inf
x∈E

∑
Fi(x).

Since 1999 [21], the present authors have been studying the following inequalities:

(1.2)
H

H ′ ≤
G

G′ ≤
A

A′ .

The second inequality in (1.2) was published in 1961 and is due to Ky Fan [7, p. 5];
the first inequality with equal weights was established by W.-l.Wang and P.-F.Wang
[22] in 1984. Clearly, the first is a counterpart of Fan’s inequality. It seems that
the counterpart is called Wang-Wang’s inequality in the current literature [15], [1],
[8], [11], [12]. The inequalities in (1.2) have evoked the interest of several math-
ematicians, and many new proofs as well as some generalizations and refinements
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have been published (see [8], [11], [12], [13], [3], [10], [14], [16], [17], [5], [20],
[6], etc.). We refer to H. Alzer’s brilliant exposition [4] for the inequalities (1.2) and
some related subjects. In this paper we improve the Sándor-Szabò technique. We
shall apply the inequality (1.1) and the following facts:

(1.3) inf
x∈E

Fi(x) ≤ Fi(y),

(1.4)
∑

inf
x∈E

Fi(x) ≤ inf
x∈E

∑
Fi(x) ≤

∑
Fi(y) for all y ∈ E

to two proofs of the counterpart (i.e., (2.1) below), and establish several refinements
and converses. Indeed, the following process will reveal the simplicity, adaptability
and reliability of using (1.3) and (1.4). In Section2, we give theorems and their
proofs. As an application of the new results, in Section3, we discuss a connec-
tion between the results of [23] and our result (2.3). In Section4, we give some
concluding remarks.
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2. Proofs of the Counterpart and Related Results

First we reprove the first inequality in (1.2).

Theorem 2.1. If ai ∈ (0, 1/2], (i = 1, . . . , n), then the first inequality in (1.2) holds,
that is, the following result holds:

(2.1)
H

H ′ ≤
G

G′ .

First Proof. We first choose the function in the argument of Theorem 3 of [21],
namely,φi : (0, 1/2] → R (i = 1, . . . , n) defined by

φi(x) := pi

(
x

ai

− 1− x

1− ai

+ log
1− x

x

)
.

Sinceφi is strictly convex andxi, 0 = ai is the unique critical point in(0, 1/2], then
for everyφi and anyy ∈ (0, 1/2], using the inequality (1.3) we have

φi(ai) = log

(
1− ai

ai

)pi

≤ φi(y) = pi

(
y

ai

− 1− y

1− ai

+ log
1− y

y

)
.

Summing up overi from 1 ton we get

log
∏(

1− ai

ai

)pi

≤
(∑ pi

ai

)
y −

(∑ pi

1− ai

)
(1− y) + P log

1− y

y
.

Dividing both sides byP , we have

(2.2) log
∏(

1− ai

ai

)pi/P

≤ y

H
− 1− y

H ′ + log
1− y

y
.
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Takingy = H/(H + H ′), clearlyy ∈ (0, 1/2], a simple calculation yields that

log
G′

G
≤ log

H ′

H
,

which is equivalent to (2.1). This completes the first proof of Theorem2.1.

Second Proof.Along the same lines of the first proof, we obtain (2.2). If we take
y = G/(G + G′) in (2.2), clearlyy ∈ (0, 1/2], then

log
G′

G
≤ G

(G + G′)H
− G′

(G + G′)H ′ + log
G′

G

or,

0 ≤ G

H
− G′

H ′ ,

which is equivalent to (2.1). This completes the second proof of Theorem2.1.

Remark1. We can also give an equality condition from the argument in the first
proof. In fact, we have known that all these functions are strictly convex in(0, 1/2],
so the equality condition of (2.1) should be “if and only ifa1 = · · · = an ”.

Remark2. There are already at least eight proofs of (2.1) (see [22], [4], [15], [1],
[2], [9], [23], [12]). The author believes that the proofs of this paper are extremely
simple, interesting and elementary.

Remark3. By a procedure analogous to [22], [4], [21], we can deduce the well-
known inequalityH ≤ G. In fact, if we chooset/2 ≥ M = max{a1, . . . , an}, then
ai/t ∈ (0, 1/2] (i = 1, . . . , n). Replacing successivelyai by ai/t in (2.1), and then
simplifying the resulting inequality, we have(∑

pia
−1
i

)−1

[
∑

pi(1− ai/t)−1]−1 ≤
∏

a
pi/P
i∏

(1− ai/t)pi/P
.
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Now passing to the limit ast → +∞, the desiredH ≤ G can be deduced.

Theorem 2.2. If ai ∈ (0, 1/2], (i = 1, . . . , n), then we have the following refine-
ment of (2.1):

(2.3)
H

H ′ ≤
x0

1− x0

exp

[
1

H ′ −
(

1

H
+

1

H ′

)
x0

]
≤ G

G′ ,

where

(2.4) x0 =
1

2
−

√
(H + H ′)(H + H ′ − 4HH ′)

2(H + H ′)

andx0 ∈ [m, M ].

Proof. Choose the above functionsφi, (i = 1, . . . , n) in the argument of Theorem
2.1. We observe that∑

inf
x∈(0,1/2]

φi(x) = log
∏(

1− ai

ai

)pi

.

Let Φ :=
∑

φi. Then

Φ(x) =
∑

φi(x) = P

(
x

H
− 1− x

H ′ + log
1− x

x

)
.

By Theorem 3 in [21], Φ has minimum at

(2.5) x0 =
1

2
− 1

2

√
1− 4P

[∑ pi

ai(1− ai)

]−1

.

Combining (2.5) with the following relationship[∑ pi

ai(1− ai)

]−1

= P−1

[
1

H
+

1

H ′

]−1

,
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we can obtain the expression (2.4).
As tox0 ∈ [m, M ], this is also a conclusion of Theorem 3 in [21].
Using the inequality (1.4), for anyy ∈ (0, 1/2] we get

(2.6) log
∏(

1− ai

ai

)pi

≤ Φ(x0) ≤ Φ(y).

Takingy = H/(H + H ′) and dividing both sides byP , (2.6) gives

log
G′

G
≤ x0

H
− 1− x0

H ′ + log
1− x0

x0

≤ log
H ′

H

which is equivalent to (2.3). The proof of Theorem2.2 is therefore complete.

Remark4. Clearly, the inequality (2.1) is a natural consequence of (2.3). We may
give a numerical example of (2.3): In n = 5, we take

a1 = 0.1, a2 = 0.15, a3 = 0.2, a4 = 0.35, a5 = 0.4,

p1 = 0.1, p2 = 0.3, p3 = 0.2, p4 = 0.25, p5 = 0.15,

arbitrarily. The results are generated via use of Mathematica, and as expected:

H

H ′ = 0.265001

<
x0

1− x0

exp

[
1

H ′ −
(

1

H
+

1

H ′

)
x0

]
= 0.265939 <

G

G′ = 0.291434.

Proposition 2.3. If ai ∈ (0, 1/2], (i = 1, . . . , n), we have A
1−A

= A
A′ ,

H
1−H

≤ H
H′

and G
1−G

≤ G
G′ .
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In fact, we can obtain the desired result from the inequalities

H + H ′ ≤ G + G′ ≤ A + A′ = 1.

Theorem 1 of [21] uses (1.1) and some functions to prove Fan’s inequality and its
generalization. The functions chosen in the argument arefi : (0, 1/2] → R, (i =
1, . . . , n) defined by

(2.7) fi(x) := pi

(
ai

x
− 1− ai

1− x
− log

1− x

x

)
.

By using (1.4) and (2.7), we shall renew our efforts to further establish the con-
verses ofH/H ′ ≤ G/G′ andH/H ′ ≤ A/A′ as follows:

Theorem 2.4. If ai ∈ (0, 1/2], (i = 1, . . . , n), we have

(2.8)
G

G′ ≤
A

A′ ≤
H

H ′ exp

[(
1 +

H ′

H

)
A−

(
1 +

H

H ′

)
A′

]
;

(2.9)
G

G′ ≤
A

A′ ≤
G

G′ exp

[(
1 +

G′

G

)
A−

(
1 +

G

G′

)
A′

]
;

(2.10)
G

G′ ≤
A

A′ ≤
H

H ′ exp

[
A

H
− A′

1−H

]
;

(2.11)
G

G′ ≤
A

A′ ≤
G

G′ exp

[
A

G
− A′

1−G

]
.
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Proof. Choose the above functions in (2.7). Sincefi has a minimum atxi, 0 = ai

and its value isfi(ai) = − log[(1− ai)/ai]
pi, then∑

inf
x∈(0,1/2]

fi(x) =
∑

fi(ai) = log
∏ [

ai

1− ai

]pi

.

Similarly, the function

f(x) :=
∑

fi(x) = P

(
A

x
− 1− A

1− x
− log

1− x

x

)
has a minimum atx0 = A and its value isf(x0) = f(A) = P log A

A′ .
Using (1.4) we get

(2.12) log
∏(

ai

1− ai

)pi

≤ P log
A

A′ ≤ P

(
A

y
− 1− A

1− y
− log

1− y

y

)
,

wherey ∈ (0, 1/2]. Takingy = H/(H + H ′) in (2.12), we have

log
∏(

ai

1− ai

)pi

≤ P log
A

A′

≤ P log
H

H ′ + P

[(
1 +

H ′

H

)
A−

(
1 +

H

H ′

)
A′

]
.

Dividing both sides byP , we get

log
G

G′ ≤ log
A

A′ ≤ log
H

H ′ +

(
1 +

H ′

H

)
A−

(
1 +

H

H ′

)
A′,

which is equivalent to (2.8).
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By a similar argument to the above, takingy = G/(G + G′) in (2.12), we can
obtain (2.9); takingy = H andy = G in (2.12) respectively, and then combining the
resulting inequalities with Proposition2.3, we respectively obtain (2.10) and (2.11).
The proof of Theorem2.4 is therefore complete.

Remark5. The data in Remark4 is used below so as to save space. Using those
values, we have

G

G′ = 0.291434 ≤ A

A′ = 0.320132

≤ H

H ′ exp

[(
1 +

H ′

H

)
A−

(
1 +

H

H ′

)
A′

]
= 0.323423;

G

G′ = 0.291434 ≤ A

A′ = 0.320132

≤ G

G′ exp

[(
1 +

G′

G

)
A−

(
1 +

G

G′

)
A′

]
= 0.320905;

G

G′ = 0.291434 ≤ A

A′ = 0.320132 ≤ H

H ′ exp

[
A

H
− A′

1−H

]
= 0.332691;

G

G′ = 0.291434 ≤ A

A′ = 0.320132 ≤ G

G′ exp

[
A

G
− A′

1−G

]
= 0.438724.

Remark6. Notice that the given inequalities0 < m ≤ ai ≤ M ≤ 1/2 imply the
following:

m ≤ H ≤ M, m ≤ A ≤ M, 1−M ≤ H ′ ≤ 1−m, 1−M ≤ A′ ≤ 1−m,

1−M

M
≤ H ′

H
≤ 1−m

m
,

m

1−m
≤ H

H ′ ≤
M

1−M
.
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It follows from the above that(
1 +

H ′

H

)
A−

(
1 +

H

H ′

)
A′(2.13)

≤
(

1 +
1−m

m

)
M −

(
1 +

m

1−m

)
(1−M)

=
M −m

m(1−m)
.

Combining (2.13) with (2.8), (2.8) can also be rewritten as

G

G′ ≤
A

A′ ≤
H

H ′ exp

[(
1 +

H ′

H

)
A−

(
1 +

H

H ′

)
A′

]
(2.14)

≤ M

1−M
exp

[
M −m

m(1−m)

]
.(2.15)

Similarly, we can obtain several estimations for (2.9), (2.10) and (2.11) that are
similar to (2.14).
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3. An Application

We shall consider a connection between the above inequalities (2.3) and a useful
result which is due to G.-S.Yang and C.-S.Wang.

The first part in Theorem 2 of [23] is the following

Proposition 3.1. Given a sequence{a1, a2, . . . , an}with ai ∈ (0, 1/2], i = 1, . . . , n,
which do not all coincide. Let

(3.1) p(t) =
n∏

i=1

[
1

ai

+ t
n∑

j=1

(
1

aj

− 1

ai

)
− 1

]− 1
n

, t ∈
[
0,

1

n

]
.

Thenp(t) is continuous, strictly decreasing, and
H

1−H
= p

(
1

n

)
≤ p(t) ≤ p(0) =

G

G′

on [0, 1/n].

Theorem 3.2. Under the hypotheses of Proposition3.1 andp1 = · · · = pn = 1 in
(2.3), there exist three points0, ξ, t0 ∈ [0, 1/n], 0 ≤ ξ ≤ t0 such that

p(t0) =
H

H ′

≤ p(ξ) =
x0

1− x0

exp

[
1

H ′

(
1

H
+

1

H ′

)
x0

]
≤ p(0) =

G

G′ ,(3.2)

where

H =
n∑

1
ai

, H ′ =
n∑

1
1−ai

, G =
∏

a
1/n
i , G′ =

∏
(1− ai)

1/n,

andp(t) is defined by (2.15).
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Proof. On the one hand, by Proposition2.3and Theorem2.1we getH/(1−H) ≤
H/H ′ ≤ G/G′. On the other hand, by Proposition3.1, we know thatp(t) is a
strictly decreasing and continuous function on[0, 1/n] andp(0) = G/G′, p(1/n) =
H/(1−H). Based on these facts and the intermediate value theorem of continuous
functions, there exists a uniquet0 ∈ [0, 1/n] such thatp(t0) = H/H ′.

Combining the above facts and Proposition3.1 with (2.3) in Theorem2.2, the
intermediate value theorem implies the existence of aξ on the interval[0, t0] with
the property that

p(ξ) =
x0

1− x0

exp

[
1

H ′

(
1

H
+

1

H ′

)
x0

]
.

In conclusion, there exist three points0, ξ, t0 ∈ [0, 1/n], 0 ≤ ξ ≤ t0 such that
(3.1) holds. Thus the proof of Theorem3.2 is completed.
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4. Concluding Remarks

The result given above as well as those in [21] have revealed that inequalities (1.1),
(1.3) and (1.4) are based on the same idea. However, their roles are different in
applying these inequalities. Inequalities that can be established by (1.1) cannot nec-
essarily be established by (1.3) and/or (1.4). We have noticed that using (1.3) and/or
(1.4) is more convenient for proving or discovering the refinements of some inequal-
ities. For these reasons, they can be applied in a wider scope. Several advantages that
the technique has are its simplicity, adaptability and reliability. In other words, the
method of using (1.3) and/or (1.4) provided in this paper is superior to the original
approach that only uses (1.1).
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