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We estimate the maximum row and column sum norm ofitle: matrix, whose
ijentryis(z,5)°/[i,j]", wherer, s € R, (i, j) is the greatest common divisor of
i andj and([z, j] is the least common multiple efand;.
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1. Introduction

Let S = {x1,x9,...,2,} be a set of distinct positive integers, and fdbe an arith-
metical function. Let.S) ; denote the: x n matrix havingf evaluated at the greatest
common divisor(x;, z;) of z; andz; as itsij entry, that is,(S)s = (f((z;, z;))).
Analogously, letS]; denote the: x n matrix havingf evaluated at the least com-

mon multiple[z;, z;] of z; andx; as itsij entry, that is,[S]; = (f([z:, z;])). The
matrices(S); and[S]; are referred to as the GCD and LCM matrices$associ-

ated withf. H. J. S. Smith15] calculatedlet(S); whenS is a factor-closed set and
det[S]; in @ more special case. Since Smith, a large number of results on GCD and
LCM matrices have been presented in the literature. For general accounts see e.g.
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[8, 9,12 14]- Title Page
Norms of GCD matrices have not been discussed much in the literature. Some
results for the/, norm are reported irlf 6, 7], see also the references ].[ In this Gz
paper we consider the maximum row sum norm in a similar way as we considered <« »
the/, normin [6]. Since the matrices in this paper are symmetric, all the results also
hold for the maximum column sum norm. 4 >
The maximum row sum norm of anx n matrix M is defined as Page 3 of 15
_ N Go Back
131l = e 3 fmy .
J=1 Full Screen
Letr, s € R. Let A denote the: x n matrix, whose, j entry is given as Close
(1.1) a;; = (Z_’? ) 7 journal of inequalities
[i, j]" in pure and applied
mathematics

where(i, 7) is the greatest common divisor ©&nd;j and[, j] is the least common

multiple of i andj. Fors = 1, = 0 ands = 0,r = —1, respectively, the matrix 1esn AHETeTS
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A is the GCD and the LCM matrix ofil,2,...,n}. Fors = 1,r = 1 the matrix
A is the Hadamard product of the GCD matrix and the reciprocal LCM matrix on

{1,2,...,n}. In this paper we estimate the maximum row sum norm of the matrix
Aqgivenin(l.1) forall r,s € R.
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2. Preliminaries

In this section we review the basic results on arithmetical functions needed in this
paper. For more comprehensive treatments of arithmetical functions we refer to

[2, 13, 14].
The Dirichlet convolutionf x g of two arithmetical functiong andg is defined

as
= f(d)g(n/d).

dn

Let N*, v € R, denote the arithmetical function defined &&(n) = n* for all
n € Z7*, and letE denote the arithmetical function defined B¢n) = 1 for all
n € Z*. The divisor functiorr,, © € R, is defined as

(2.1) ou(n) =) d"=(N"xE)(n).
din

It is known that if0 < u < 1, then

(2.2) ou(n) = O(n"™)
forall e > 0 (see p)]),

(2.3) o1(n) = O(nloglogn)
(see g, 11, 13)), and ifu > 1, then

(2.4) 0u(n) = O(n")

(see B, 4, 13).
The Jordan totient functiot,(n), k € Z*, is defined as the number bftuples
ai,as, . ..,ar (mod m) such that the greatest common divisougfas,, . .., a; and
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n is 1. By convention,J,(1) = 1. The M0bius function. is the inverse o under

the Dirichlet convolution. It is well known thaf, = N* x . This suggests we
defineJ, = N* x p for all u € R. Sincey is the inverse o under the Dirichlet
convolution, we have

(2.5) n* =" Ju(d).
in Norm of GCD and Related Matrices
It is easy to see that Pentti Haukkanen
Ju(n) =n" H(l —p ). vol. 8, iss. 4, art. 97, 2007
pln

We thus have Title Page
(2.6) 0 < Jy(n) <n" foru>0. Contents
The following estimates for the summatory functiondf are well known (see?]): 4« 4
2.7) Skt =0(1) ifu>1, ¢ >

k<n Page 6 of 15
(2.8) > kTt =0(logn), Go Back

k<n
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k<n Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:mapehau@uta.fi
http://jipam.vu.edu.au

3. Results

In Theorems3.1 — 3.5 we estimate the maximum row sum norm of the maitix
givenin(1.1). Their proofs are based on the formulas in Sectiamd the following
observations.

Since(i, 7)[i, j| = ij, we have for all, s

(31) H|AH|OO = max & (Z’ j)s — max (Z ]).TJFS . Norm of GCD aTnd Related Matrices
1<i<n — [’L, j]r 1<i<n I ZTJT Pentti Haukkanen
= 7= vol. 8, iss. 4, art. 97, 2007
From(2.5) we obtain

= — Title Page
Al = max = Z > Jrisld
=17 d(i-j) Contents
_ L - «“ >
s 5 2 el le 7
i i) < >
(3.2) B 1 Z Jris(d) [nf 1 Page 7 of 15
' RN TR T
dli j=1 Go Back
Theorem 3.1. Suppose that > 1. Full Screen
1. If s > r, then||A||, = O(n*™"). .

2. If s < r, then||A||, = O(1).
, lof i It
Proof. Letr > 1 ands > 0. Then, by 8.2) and(2.7), :r?g:?e angeaqpusi;lgs

1 Z Jrts(d) mathematics

|||A|||oo = 0(1) 11“2?;% i a issn: 1443-575k
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Sincer + s > 0, according tg2.6) and(2.1),

Al = O(1) max 29

1<i<n 9"

Now, if s > r > 1, then on the basis @P.1),

Al o = O(1) max *™" = O(n*"").

1<i<n
If 0 < s < r,then
1Al = O(1) max i*~" = O(1).

1<
Letr > 1 ands < 0. Then

n

1
14l < max 3" = = 0(1).
1<i<n = ]r

Theorem 3.2. Suppose that = 1.
1. If s > 1, then||A]|, = O(n*"!logn).
2. If s =1, then||Al| ., = O(logn loglogn).
3. If s < 1, then||A||, = O(logn).

Proof. From (3.2) with » = 1 we obtain

[n/ d]

AN oo —maX—Z SH Z—-
1<i<n 7 i
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By (2.8), X i)
_ -\ L@
4l = Oog ) e 3 3245

Sinces > 0, on the basis of2.6) and(2.1),

IAIL. = O(logn) max 2.

1<i<n 1

If s > 1, then according t§2.4),
_ s—1 s—1
14]loc = Ologn) max *=" = O(n"" logn).

If s =1, then according tg2.3),
| All.. = O(logn)O(loglogn) = O(logn loglogn).
If 0 < s < 1, then according t¢2.2),
— s—1te
Al = O(logn) max ¢ = O(logn).

If s <0, then according t@§3.1),

n

1
Al < max » — = O(logn).
1<i<n = ]

]

Remarkl. Let || M||; denote the sum norm (& norm) of ann x n matrix M, that

is
1M =Y [myl.

i=1 j=1

Norm of GCD and Related Matrices
Pentti Haukkanen

vol. 8, iss. 4, art. 97, 2007

Title Page
Contents
44 44
< >
Page 9 of 15
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:mapehau@uta.fi
http://jipam.vu.edu.au

It is known [6, Theorem 3.2(1)] that

(3.3) )K@ﬁﬁhﬂﬂhzO@ﬂ%%mszL

Since||M|; < n||M]|, forall n x n matrices)M (see [L0]), we obtain from Theo-

rem3.2(1,2) an improvement of8.3) as
(3.4) |(Gar/i) | = om ogn), s > 1,
(3.5) H <(Z,])/[’L,j]> H1 = O(nlogn loglogn).
Theorem 3.3. Suppose that < 1.
1. 1f s > 2 — r, then|A|| L = O(n*").
2. If s =2 —r, then||4]], = O(n* * loglogn).
3. fmax{l —r 1} < s <2—r, then||A||, = O(n°") forall e > 0.
4161 —r < s <1, then|| Al = O(n'").

Proof. Letr < 1. By (3.2 and(2.9),

—r 1 Jr s d
4]l = O(') max 3 Zreeld)

1<i<n 7" d
dfi

Sincer + s > 0, by (2.6) and(2.1),

_ 1—r Orys—1(1)
141l = 00 puas 210
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If s>2—rorr+s—1>1,thenaccording t¢2.1),

. 1—r -s—1
141l = O max .

Sinces — 1 > 0, we have
Al = On*™").

If s=2—rorr+s—1=1,thenaccording t92.3),

Al = O(n'™") 1H<11;a<);i1”" log log .

Sincel — r > 0, we have
IAll. = O(n*~*" loglog n).
fl1—-r<s<2-ror0<r+s—1<1,thenaccording t¢2.2),

(3.6) Al = O(n'~") max &=+,

1<i<n

If s > 1in (3.6), we obtain||A]|, = O(n*"). If s < 1in (3.6), we obtain
14l = O(n'™). 0

Corollary 3.4. Suppose that = 0.
1. If s > 2, then||A]| . = O(n°).
2. If s = 2, then|| 4|, = O(n*loglogn).

3.1f 1 <s < 2, then||4||, = O(n**) for all ¢ > 0. In particular, fors = 1,

(3.7) ‘H( i,] >)H n'*¢) for all € > 0.
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Remarlk2. Let | M|, denote thes norm of ann x n matrix M, that is
2
IMlla =3 > mi;
i=1 j=1

It is known [6, Theorem 3.2(1)] that
(3:8) | (G2 /1.412)||, = 0108 m).

Since|| M|l < /n||M]|, for all n x n matricesM (see [L0]), we obtain from
Theorem3.3(2) an improvement of3.8) as

(3.9) | (G210, 3172) | = 02108 10gm).

In Theorem3.5 we treat the remaining casesofnds in the most elementary
way.

Theorem 3.5.
1.1f0<r < 1lands <0,then||A]l, =O(®n'™).
2. Ifr <0ands <0, then|| A = O(n'~").
3.1f0<r<1,s>0andr+s < 1,then||4]| = On'*tsT).
4.1fr <0,s>0andr+ s < 1, then|| 4[|, = O(n't572").
Proof. Let0 < r < 1 ands < 0. Then, according to3( 1) and(2.9)

"1
[l < max » — =O(n'™").
1<i<n e ]T
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Letr < 0 ands < 0. Then, according to3( 1) and the inequalityi, j] < n?

n n

< s 1T —2r — 1-2r
AL < e 300l < s D57 = 0™,
J= J=

Let0 <r < 1,s>0andr+ s < 1. Then, according to¥ 1) and(2.9)

n

1

< ns — 1+s—1

IIAll, < n max 1 - O(n ).
]:

Letr < 0, s > 0andr + s < 1. Then, according to3(1) and the inequality
[i, 4] < n?
- ns _ 14+s—2r
llAllee < max o = O(n )-
]:

]

Remark3. Applying [6, Theorem 3.3] and the inequality\/ || ., < /n||M]|, for all
n x n matricesM (see [LQ]) a partial improvement on Theoretn5(4) of the present
paper as

(@) if r <0,s>0andl/2 <r+s < 1, then||A]| , = O(n'T*),
(b) if r <0,s >0andr+ s =1/2, then||A]|_ = O(n=2+3/2 log!/? n),
(c) if r <0,s>1/2andr + s < 1/2, then|| A||, = O(n=2"+3/2),
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