ON THE MAXIMUM ROW AND COLUMN SUM NORM OF GCD AND RELATED MATRICES

PENTTI HAUKKANEN
Department of Mathematics, Statistics and Philosophy, FIN-33014 University of Tampere, Finland
mapehau@uta.fi

Received 11 July, 2007; accepted 27 October, 2007
Communicated by L. Tóth

AbSTRACT. We estimate the maximum row and column sum norm of the $n \times n$ matrix, whose $i j$ entry is $(i, j)^{s} /[i, j]^{r}$, where $r, s \in \mathbb{R},(i, j)$ is the greatest common divisor of i and j and $[i, j]$ is the least common multiple of i and j.

Key words and phrases: GCD matrix, LCM matrix, Smith's determinant, Maximum row sum norm, Maximum column sum norm, O-estimate.

2000 Mathematics Subject Classification. 11C20; 15A36; 11A25.

1. Introduction

Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of distinct positive integers, and let f be an arithmetical function. Let $(S)_{f}$ denote the $n \times n$ matrix having f evaluated at the greatest common divisor $\left(x_{i}, x_{j}\right)$ of x_{i} and x_{j} as its $i j$ entry, that is, $(S)_{f}=\left(f\left(\left(x_{i}, x_{j}\right)\right)\right)$. Analogously, let $[S]_{f}$ denote the $n \times n$ matrix having f evaluated at the least common multiple $\left[x_{i}, x_{j}\right]$ of x_{i} and x_{j} as its $i j$ entry, that is, $[S]_{f}=\left(f\left(\left[x_{i}, x_{j}\right]\right)\right)$. The matrices $(S)_{f}$ and $[S]_{f}$ are referred to as the GCD and LCM matrices on S associated with f. H. J. S. Smith [15] calculated $\operatorname{det}(S)_{f}$ when S is a factor-closed set and $\operatorname{det}[S]_{f}$ in a more special case. Since Smith, a large number of results on GCD and LCM matrices have been presented in the literature. For general accounts see e.g. [8, 9, 12, 14].

Norms of GCD matrices have not been discussed much in the literature. Some results for the ℓ_{p} norm are reported in [1, 6, 7], see also the references in [6]. In this paper we consider the maximum row sum norm in a similar way as we considered the ℓ_{p} norm in [6]. Since the matrices in this paper are symmetric, all the results also hold for the maximum column sum norm.

The maximum row sum norm of an $n \times n$ matrix M is defined as

$$
\left\|\left|M \|_{\infty}=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\right| m_{i j} \mid .\right.
$$

[^0]Let $r, s \in \mathbb{R}$. Let A denote the $n \times n$ matrix, whose i, j entry is given as

$$
\begin{equation*}
a_{i j}=\frac{(i, j)^{s}}{[i, j]^{r}} \tag{1.1}
\end{equation*}
$$

where (i, j) is the greatest common divisor of i and j and $[i, j]$ is the least common multiple of i and j. For $s=1, r=0$ and $s=0, r=-1$, respectively, the matrix A is the GCD and the LCM matrix on $\{1,2, \ldots, n\}$. For $s=1, r=1$ the matrix A is the Hadamard product of the GCD matrix and the reciprocal LCM matrix on $\{1,2, \ldots, n\}$. In this paper we estimate the maximum row sum norm of the matrix A given in (1.1) for all $r, s \in \mathbb{R}$.

2. Preliminaries

In this section we review the basic results on arithmetical functions needed in this paper. For more comprehensive treatments of arithmetical functions we refer to [2, 13, 14].

The Dirichlet convolution $f * g$ of two arithmetical functions f and g is defined as

$$
(f * g)(n)=\sum_{d \mid n} f(d) g(n / d) .
$$

Let $N^{u}, u \in \mathbb{R}$, denote the arithmetical function defined as $N^{u}(n)=n^{u}$ for all $n \in \mathbb{Z}^{+}$, and let E denote the arithmetical function defined as $E(n)=1$ for all $n \in \mathbb{Z}^{+}$. The divisor function $\sigma_{u}, u \in \mathbb{R}$, is defined as

$$
\begin{equation*}
\sigma_{u}(n)=\sum_{d \mid n} d^{u}=\left(N^{u} * E\right)(n) \tag{2.1}
\end{equation*}
$$

It is known that if $0 \leq u<1$, then

$$
\begin{equation*}
\sigma_{u}(n)=O\left(n^{u+\epsilon}\right) \tag{2.2}
\end{equation*}
$$

for all $\epsilon>0$ (see [5]),

$$
\begin{equation*}
\sigma_{1}(n)=O(n \log \log n) \tag{2.3}
\end{equation*}
$$

(see [4, 11, 13]), and if $u>1$, then

$$
\begin{equation*}
\sigma_{u}(n)=O\left(n^{u}\right) \tag{2.4}
\end{equation*}
$$

(see [3, 4, 13]).
The Jordan totient function $J_{k}(n), k \in \mathbb{Z}^{+}$, is defined as the number of k-tuples $a_{1}, a_{2}, \ldots, a_{k}$ $(\bmod n)$ such that the greatest common divisor of $a_{1}, a_{2}, \ldots, a_{k}$ and n is 1 . By convention, $J_{k}(1)=1$. The Möbius function μ is the inverse of E under the Dirichlet convolution. It is well known that $J_{k}=N^{k} * \mu$. This suggests we define $J_{u}=N^{u} * \mu$ for all $u \in \mathbb{R}$. Since μ is the inverse of E under the Dirichlet convolution, we have

$$
\begin{equation*}
n^{u}=\sum_{d \mid n} J_{u}(d) \tag{2.5}
\end{equation*}
$$

It is easy to see that

$$
J_{u}(n)=n^{u} \prod_{p \mid n}\left(1-p^{-u}\right)
$$

We thus have

$$
\begin{equation*}
0 \leq J_{u}(n) \leq n^{u} \quad \text { for } u \geq 0 \tag{2.6}
\end{equation*}
$$

The following estimates for the summatory function of N^{u} are well known (see [2]):

$$
\begin{align*}
& \sum_{k \leq n} k^{-u}=O(1) \quad \text { if } u>1, \tag{2.7}\\
& \sum_{k \leq n} k^{-1}=O(\log n), \tag{2.8}\\
& \sum_{k \leq n} k^{-u}=O\left(n^{1-u}\right) \quad \text { if } u<1 . \tag{2.9}
\end{align*}
$$

3. Results

In Theorems 3.1-3.7 we estimate the maximum row sum norm of the matrix A given in (1.1). Their proofs are based on the formulas in Section 2 and the following observations.

Since $(i, j)[i, j]=i j$, we have for all r, s

$$
\begin{equation*}
\|A\|_{\infty}=\max _{1 \leq i \leq n} \sum_{j=1}^{n} \frac{(i, j)^{s}}{[i, j]^{r}}=\max _{1 \leq i \leq n} \sum_{j=1}^{n} \frac{(i, j)^{r+s}}{i^{r} j^{r}} . \tag{3.1}
\end{equation*}
$$

From (2.5) we obtain

$$
\begin{align*}
\|A\|_{\infty} & =\max _{1 \leq i \leq n} \frac{1}{i^{r}} \sum_{j=1}^{n} \frac{1}{j^{r}} \sum_{d \mid(i, j)} J_{r+s}(d) \\
& =\max _{1 \leq i \leq n} \frac{1}{i^{r}} \sum_{d \mid i} J_{r+s}(d) \sum_{\substack{j=1 \\
d \mid j}}^{n} \frac{1}{j^{r}} \\
& =\max _{1 \leq i \leq n} \frac{1}{i^{r}} \sum_{d \mid i} \frac{J_{r+s}(d)}{d^{r}} \sum_{j=1}^{[n / d]} \frac{1}{j^{r}} . \tag{3.2}
\end{align*}
$$

Theorem 3.1. Suppose that $r>1$.
(1) If $s \geq r$, then $\|A\|_{\infty}=O\left(n^{s-r}\right)$.
(2) If $s<r$, then $\|A\|_{\infty}=O(1)$.

Proof. Let $r>1$ and $s \geq 0$. Then, by (3.2) and (2.7),

$$
\|A\|_{\infty}=O(1) \max _{1 \leq i \leq n} \frac{1}{i^{r}} \sum_{d \mid i} \frac{J_{r+s}(d)}{d^{r}} .
$$

Since $r+s \geq 0$, according to (2.6) and (2.1),

$$
\|A\|_{\infty}=O(1) \max _{1 \leq i \leq n} \frac{\sigma_{s}(i)}{i^{r}}
$$

Now, if $s \geq r>1$, then on the basis of (2.4),

$$
\|A\|_{\infty}=O(1) \max _{1 \leq i \leq n} i^{s-r}=O\left(n^{s-r}\right)
$$

If $0 \leq s<r$, then

$$
\|A\|_{\infty}=O(1) \max _{1 \leq i \leq n} i^{s-r+\epsilon}=O(1)
$$

Let $r>1$ and $s<0$. Then

$$
\|A\|_{\infty} \leq \max _{1 \leq i \leq n} \sum_{j=1}^{n} \frac{1}{j^{r}}=O(1) .
$$

Theorem 3.2. Suppose that $r=1$.
(1) If $s>1$, then $\|A\|_{\infty}=O\left(n^{s-1} \log n\right)$.
(2) If $s=1$, then $\|A\|_{\infty}=O(\log n \log \log n)$.
(3) If $s<1$, then $\|A\|_{\infty}=O(\log n)$.

Proof. From (3.2) with $r=1$ we obtain

$$
\|A\|_{\infty}=\max _{1 \leq i \leq n} \frac{1}{i} \sum_{d \mid i} \frac{J_{s+1}(d)}{d} \sum_{j=1}^{[n / d]} \frac{1}{j} .
$$

By (2.8),

$$
\|A\|_{\infty}=O(\log n) \max _{1 \leq i \leq n} \frac{1}{i} \sum_{d \mid i} \frac{J_{s+1}(d)}{d} .
$$

Since $s \geq 0$, on the basis of (2.6) and (2.1),

$$
\|A\|_{\infty}=O(\log n) \max _{1 \leq i \leq n} \frac{\sigma_{s}(i)}{i}
$$

If $s>1$, then according to (2.4),

$$
\|A\|_{\infty}=O(\log n) \max _{1 \leq i \leq n} i^{s-1}=O\left(n^{s-1} \log n\right)
$$

If $s=1$, then according to 2.3 ,

$$
\|A\|_{\infty}=O(\log n) O(\log \log n)=O(\log n \log \log n) .
$$

If $0 \leq s<1$, then according to 2.2 ,

$$
\|A\|_{\infty}=O(\log n) \max _{1 \leq i \leq n} i^{s-1+\epsilon}=O(\log n)
$$

If $s<0$, then according to (3.1),

$$
\|A A\|_{\infty} \leq \max _{1 \leq i \leq n} \sum_{j=1}^{n} \frac{1}{j}=O(\log n)
$$

Remark 3.3. Let $\|M\|_{1}$ denote the sum norm (or ℓ_{1} norm) of an $n \times n$ matrix M, that is

$$
\|M\|_{1}=\sum_{i=1}^{n} \sum_{j=1}^{n}\left|m_{i j}\right| .
$$

It is known [6, Theorem 3.2(1)] that

$$
\begin{equation*}
\left\|\left((i, j)^{s} /[i, j]\right)\right\|_{1}=O\left(n^{s} \log ^{2} n\right), s \geq 1 \tag{3.3}
\end{equation*}
$$

Since $\|M\|_{1} \leq n\|M\|_{\infty}$ for all $n \times n$ matrices M (see [10]), we obtain from Theorem 3.2(1,2) an improvement on (3.3) as

$$
\begin{align*}
\left\|\left((i, j)^{s} /[i, j]\right)\right\|_{1} & =O\left(n^{s} \log n\right), s>1 \tag{3.4}\\
\|((i, j) /[i, j])\|_{1} & =O(n \log n \log \log n) . \tag{3.5}
\end{align*}
$$

Theorem 3.4. Suppose that $r<1$.
(1) If $s>2-r$, then $\|A\|_{\infty}=O\left(n^{s-r}\right)$.
(2) If $s=2-r$, then $\|A\|_{\infty}=O\left(n^{2-2 r} \log \log n\right)$.
(3) If $\max \{1-r, 1\} \leq s<2-r$, then $\|A\|_{\infty}=O\left(n^{s-r+\epsilon}\right)$ for all $\epsilon>0$.
(4) If $1-r \leq s<1$, then $\|A\|_{\infty}=O\left(n^{1-r}\right)$.

Proof. Let $r<1$. By (3.2) and (2.9),

$$
\|A\|_{\infty}=O\left(n^{1-r}\right) \max _{1 \leq i \leq n} \frac{1}{i^{r}} \sum_{d \mid i} \frac{J_{r+s}(d)}{d} .
$$

Since $r+s \geq 0$, by (2.6) and (2.1),

$$
\|A\|_{\infty}=O\left(n^{1-r}\right) \max _{1 \leq i \leq n} \frac{\sigma_{r+s-1}(i)}{i^{r}}
$$

If $s>2-r$ or $r+s-1>1$, then according to (2.4),

$$
\|A\|_{\infty}=O\left(n^{1-r}\right) \max _{1 \leq i \leq n} i^{s-1}
$$

Since $s-1 \geq 0$, we have

$$
\|A\|_{\infty}=O\left(n^{s-r}\right)
$$

If $s=2-r$ or $r+s-1=1$, then according to 2.3),

$$
\|A\|_{\infty}=O\left(n^{1-r}\right) \max _{1 \leq i \leq n} i^{1-r} \log \log i
$$

Since $1-r>0$, we have

$$
\|A\|_{\infty}=O\left(n^{2-2 r} \log \log n\right)
$$

If $1-r \leq s<2-r$ or $0 \leq r+s-1<1$, then according to 2.2 ,

$$
\begin{equation*}
\|A\|_{\infty}=O\left(n^{1-r}\right) \max _{1 \leq i \leq n} i^{s-1+\epsilon} \tag{3.6}
\end{equation*}
$$

If $s \geq 1$ in (3.6), we obtain $\|A\|_{\infty}=O\left(n^{s-r+\epsilon}\right)$. If $s<1$ in (3.6), we obtain $\|A\|_{\infty}=$ $O\left(n^{1-r}\right)$.
Corollary 3.5. Suppose that $r=0$.
(1) If $s>2$, then $\|A\|_{\infty}=O\left(n^{s}\right)$.
(2) If $s=2$, then $\|A\|_{\infty}=O\left(n^{2} \log \log n\right)$.
(3) If $1 \leq s<2$, then $\|A\|_{\infty}=O\left(n^{s+\epsilon}\right)$ for all $\epsilon>0$. In particular, for $s=1$,

$$
\begin{equation*}
\|\|((i, j))\|\|_{\infty}=O\left(n^{1+\epsilon}\right) \text { for all } \epsilon>0 . \tag{3.7}
\end{equation*}
$$

Remark 3.6. Let $\|M\|_{2}$ denote the ℓ_{2} norm of an $n \times n$ matrix M, that is

$$
\|M\|_{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} m_{i j}^{2}
$$

It is known [6, Theorem 3.2(1)] that

$$
\begin{equation*}
\left\|\left((i, j)^{3 / 2} /[i, j]^{1 / 2}\right)\right\|_{2}=O\left(n^{3 / 2} \log n\right) . \tag{3.8}
\end{equation*}
$$

Since $\|M\|_{2} \leq \sqrt{n}\|M\|_{\infty}$ for all $n \times n$ matrices M (see [10]), we obtain from Theorem 3.4(2) an improvement on (3.8) as

$$
\begin{equation*}
\left\|\left((i, j)^{3 / 2} /[i, j]^{1 / 2}\right)\right\|_{2}=O\left(n^{3 / 2} \log \log n\right) \tag{3.9}
\end{equation*}
$$

In Theorem 3.7 we treat the remaining cases of r and s in the most elementary way.

Theorem 3.7.

(1) If $0 \leq r<1$ and $s \leq 0$, then $\|A\|_{\infty}=O\left(n^{1-r}\right)$.
(2) If $r<0$ and $s \leq 0$, then $\|A\|_{\infty}=O\left(n^{1-2 r}\right)$.
(3) If $0 \leq r<1, s>0$ and $r+s<1$, then $\|A\|_{\infty}=O\left(n^{1+s-r}\right)$.
(4) If $r<0, s>0$ and $r+s<1$, then $\|A\|_{\infty}=O\left(n^{1+s-2 r}\right)$.

Proof. Let $0 \leq r<1$ and $s \leq 0$. Then, according to (3.1) and (2.9)

$$
\|A\|_{\infty} \leq \max _{1 \leq i \leq n} \sum_{j=1}^{n} \frac{1}{j^{r}}=O\left(n^{1-r}\right) .
$$

Let $r<0$ and $s \leq 0$. Then, according to 3.1 and the inequality $[i, j]<n^{2}$

$$
\left\|\|A\|_{\infty} \leq \max _{1 \leq i \leq n} \sum_{j=1}^{n}[i, j]^{-r}<\max _{1 \leq i \leq n} \sum_{j=1}^{n} n^{-2 r}=O\left(n^{1-2 r}\right) .\right.
$$

Let $0 \leq r<1, s>0$ and $r+s<1$. Then, according to (3.1) and (2.9)

$$
\|A\|_{\infty} \leq n^{s} \max _{1 \leq i \leq n} \sum_{j=1}^{n} \frac{1}{j^{r}}=O\left(n^{1+s-r}\right)
$$

Let $r<0, s>0$ and $r+s<1$. Then, according to 3.1) and the inequality $[i, j]<n^{2}$

$$
\|A\|_{\infty} \leq \max _{1 \leq i \leq n} \sum_{j=1}^{n} \frac{n^{s}}{n^{2 r}}=O\left(n^{1+s-2 r}\right)
$$

Remark 3.8. Applying [6, Theorem 3.3] and the inequality $\|\mid M\|_{\infty} \leq \sqrt{n}\|M\|_{2}$ for all $n \times n$ matrices M (see [10]) a partial improvement on Theorem 3.7, 4) of the present paper as
(a) if $r<0, s>0$ and $1 / 2<r+s<1$, then $\|A\|_{\infty}=O\left(n^{1+s-r}\right)$,
(b) if $r<0, s>0$ and $r+s=1 / 2$, then $\|A\|_{\infty}=O\left(n^{-2 r+3 / 2} \log ^{1 / 2} n\right)$,
(c) if $r<0, s>1 / 2$ and $r+s<1 / 2$, then $\|A\|_{\infty}=O\left(n^{-2 r+3 / 2}\right)$.

References

[1] E. ALTINISIK, N. TUGLU and P. HAUKKANEN, A note on bounds for norms of the reciprocal LCM matrix, Math. Inequal. Appl., 7(4) (2004), 491-496.
[2] T.M. APOSTOL, Introduction to Analytic Number Theory, UTM, Springer-Verlag, New York, 1976.
[3] E. COHEN, A theorem in elementary number theory, Amer. Math. Monthly, 71(7) (1964), 782-783.
[4] T.H. GRONWALL, Some asymptotic expressions in the theory of numbers, Trans. Amer. Math. Soc., 14(1) (1913), 113-122.
[5] G.H. HARDY and E.M. WRIGHT, An Introduction to the Theory of Numbers, Fifth edition. The Clarendon Press, Oxford University Press, New York, 1979.
[6] P. HAUKKANEN, On the ℓ_{p} norm of GCD and related matrices, J. Inequal. Pure Appl. Math., 5(3) (2004), Art. 61. [ONLINE: http://jipam.vu.edu.au/article.php?sid=421].
[7] P. HAUKKANEN, An upper bound for the ℓ_{p} norm of a GCD related matrix, J. Inequal. Appl. (2006), Article ID 25020, 6 p.
[8] P. HAUKKANEN AND J. SILLANPÄÄ, Some analogues of Smith's determinant, Linear and Multilinear Algebra, 41 (1996), 233-244.
[9] P. HAUKKANEN, J. WANG AND J. SILLANPÄÄ, On Smith's determinant, Linear Algebra Appl., 258 (1997), 251-269.
[10] R. HORN AND C. JOHNSON, Matrix Analysis, Cambridge University Press, Cambridge, 1990
[11] A. IVIĆ, Two inequalities for the sum of divisors functions. Univ. u Novom Sadu Zb. Rad. Prirod.Mat. Fak., 7 (1977), 17-22.
[12] I. KORKEE AND P. HAUKKANEN, On meet and join matrices associated with incidence functions, Linear Algebra Appl., 372 (2003), 127-153.
[13] D.S. MITRINOVIĆ, J. SÁNDOR AND B. CRSTICI, Handbook of Number Theory, Kluwer Academic Publishers, MIA Vol. 351, 1996.
[14] J. SÁNDOR AND B. CRSTICI, Handbook of Number Theory II, Kluwer Academic Publishers, 2004.
[15] H.J.S. SMITH, On the value of a certain arithmetical determinant, Proc. London Math. Soc., 7 (1875/76), 208-212.

[^0]: The author wishes to thank Pauliina Ilmonen for calculations which led to Remarks $3.3-3.8$
 231-07

