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ABSTRACT. We estimate the maximum row and column sum norm of then× n matrix, whose
ij entry is(i, j)s/[i, j]r, wherer, s ∈ R, (i, j) is the greatest common divisor ofi andj and
[i, j] is the least common multiple ofi andj.
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1. I NTRODUCTION

Let S = {x1, x2, . . . , xn} be a set of distinct positive integers, and letf be an arithmetical
function. Let(S)f denote then × n matrix havingf evaluated at the greatest common divisor
(xi, xj) of xi andxj as itsij entry, that is,(S)f = (f((xi, xj))). Analogously, let[S]f denote
then × n matrix havingf evaluated at the least common multiple[xi, xj] of xi andxj as its
ij entry, that is,[S]f = (f([xi, xj])). The matrices(S)f and [S]f are referred to as the GCD
and LCM matrices onS associated withf . H. J. S. Smith [15] calculateddet(S)f whenS is
a factor-closed set anddet[S]f in a more special case. Since Smith, a large number of results
on GCD and LCM matrices have been presented in the literature. For general accounts see e.g.
[8, 9, 12, 14].

Norms of GCD matrices have not been discussed much in the literature. Some results for
the `p norm are reported in [1, 6, 7], see also the references in [6]. In this paper we consider
the maximum row sum norm in a similar way as we considered the`p norm in [6]. Since the
matrices in this paper are symmetric, all the results also hold for the maximum column sum
norm.

The maximum row sum norm of ann× n matrixM is defined as

|||M |||∞ = max
1≤i≤n

n∑
j=1

|mij|.
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Let r, s ∈ R. Let A denote then× n matrix, whosei, j entry is given as

(1.1) aij =
(i, j)s

[i, j]r
,

where(i, j) is the greatest common divisor ofi andj and [i, j] is the least common multiple
of i andj. For s = 1, r = 0 ands = 0, r = −1, respectively, the matrixA is the GCD and
the LCM matrix on{1, 2, . . . , n}. For s = 1, r = 1 the matrixA is the Hadamard product of
the GCD matrix and the reciprocal LCM matrix on{1, 2, . . . , n}. In this paper we estimate the
maximum row sum norm of the matrixA given in(1.1) for all r, s ∈ R.

2. PRELIMINARIES

In this section we review the basic results on arithmetical functions needed in this paper. For
more comprehensive treatments of arithmetical functions we refer to [2, 13, 14].

The Dirichlet convolutionf ∗ g of two arithmetical functionsf andg is defined as

(f ∗ g)(n) =
∑
d|n

f(d)g(n/d).

Let Nu, u ∈ R, denote the arithmetical function defined asNu(n) = nu for all n ∈ Z+, and let
E denote the arithmetical function defined asE(n) = 1 for all n ∈ Z+. The divisor function
σu, u ∈ R, is defined as

(2.1) σu(n) =
∑
d|n

du = (Nu ∗ E)(n).

It is known that if0 ≤ u < 1, then

(2.2) σu(n) = O(nu+ε)

for all ε > 0 (see [5]),

(2.3) σ1(n) = O(n log log n)

(see [4, 11, 13]), and ifu > 1, then

(2.4) σu(n) = O(nu)

(see [3, 4, 13]).
The Jordan totient functionJk(n), k ∈ Z+, is defined as the number ofk-tuplesa1, a2, . . . , ak

(mod n) such that the greatest common divisor ofa1, a2, . . . , ak andn is 1. By convention,
Jk(1) = 1. The Möbius functionµ is the inverse ofE under the Dirichlet convolution. It is well
known thatJk = Nk ∗ µ. This suggests we defineJu = Nu ∗ µ for all u ∈ R. Sinceµ is the
inverse ofE under the Dirichlet convolution, we have

(2.5) nu =
∑
d|n

Ju(d).

It is easy to see that

Ju(n) = nu
∏
p|n

(1− p−u).

We thus have

(2.6) 0 ≤ Ju(n) ≤ nu for u ≥ 0.
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The following estimates for the summatory function ofNu are well known (see [2]):∑
k≤n

k−u = O(1) if u > 1,(2.7)

∑
k≤n

k−1 = O(log n),(2.8)

∑
k≤n

k−u = O(n1−u) if u < 1.(2.9)

3. RESULTS

In Theorems 3.1 – 3.7 we estimate the maximum row sum norm of the matrixA given in
(1.1). Their proofs are based on the formulas in Section 2 and the following observations.

Since(i, j)[i, j] = ij, we have for allr, s

(3.1) |||A|||∞ = max
1≤i≤n

n∑
j=1

(i, j)s

[i, j]r
= max

1≤i≤n

n∑
j=1

(i, j)r+s

irjr
.

From(2.5) we obtain

|||A|||∞ = max
1≤i≤n

1

ir

n∑
j=1

1

jr

∑
d|(i,j)

Jr+s(d)

= max
1≤i≤n

1

ir

∑
d|i

Jr+s(d)
n∑

j=1
d|j

1

jr

= max
1≤i≤n

1

ir

∑
d|i

Jr+s(d)

dr

[n/d]∑
j=1

1

jr
.(3.2)

Theorem 3.1.Suppose thatr > 1.

(1) If s ≥ r, then|||A|||∞ = O(ns−r).
(2) If s < r, then|||A|||∞ = O(1).

Proof. Let r > 1 ands ≥ 0. Then, by (3.2) and(2.7),

|||A|||∞ = O(1) max
1≤i≤n

1

ir

∑
d|i

Jr+s(d)

dr
.

Sincer + s ≥ 0, according to(2.6) and(2.1),

|||A|||∞ = O(1) max
1≤i≤n

σs(i)

ir
.

Now, if s ≥ r > 1, then on the basis of(2.4),

|||A|||∞ = O(1) max
1≤i≤n

is−r = O(ns−r).

If 0 ≤ s < r, then
|||A|||∞ = O(1) max

1≤i≤n
is−r+ε = O(1).

Let r > 1 ands < 0. Then

|||A|||∞ ≤ max
1≤i≤n

n∑
j=1

1

jr
= O(1).
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�

Theorem 3.2.Suppose thatr = 1.

(1) If s > 1, then|||A|||∞ = O(ns−1 log n).
(2) If s = 1, then|||A|||∞ = O(log n log log n).
(3) If s < 1, then|||A|||∞ = O(log n).

Proof. From (3.2) withr = 1 we obtain

|||A|||∞ = max
1≤i≤n

1

i

∑
d|i

Js+1(d)

d

[n/d]∑
j=1

1

j
.

By (2.8),

|||A|||∞ = O(log n) max
1≤i≤n

1

i

∑
d|i

Js+1(d)

d
.

Sinces ≥ 0, on the basis of(2.6) and(2.1),

|||A|||∞ = O(log n) max
1≤i≤n

σs(i)

i
.

If s > 1, then according to(2.4),

|||A|||∞ = O(log n) max
1≤i≤n

is−1 = O(ns−1 log n).

If s = 1, then according to(2.3),

|||A|||∞ = O(log n)O(log log n) = O(log n log log n).

If 0 ≤ s < 1, then according to(2.2),

|||A|||∞ = O(log n) max
1≤i≤n

is−1+ε = O(log n).

If s < 0, then according to(3.1),

|||A|||∞ ≤ max
1≤i≤n

n∑
j=1

1

j
= O(log n).

�

Remark 3.3. Let ‖M‖1 denote the sum norm (or`1 norm) of ann× n matrixM , that is

‖M‖1 =
n∑

i=1

n∑
j=1

|mij|.

It is known [6, Theorem 3.2(1)] that

(3.3)
∥∥∥(

(i, j)s/[i, j]
)∥∥∥

1
= O(ns log2 n), s ≥ 1.

Since‖M‖1 ≤ n |||M |||∞ for all n×n matricesM (see [10]), we obtain from Theorem 3.2(1,2)
an improvement on(3.3) as∥∥∥(

(i, j)s/[i, j]
)∥∥∥

1
= O(ns log n), s > 1,(3.4) ∥∥∥(

(i, j)/[i, j]
)∥∥∥

1
= O(n log n log log n).(3.5)

Theorem 3.4.Suppose thatr < 1.

(1) If s > 2− r, then|||A|||∞ = O(ns−r).
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(2) If s = 2− r, then|||A|||∞ = O(n2−2r log log n).
(3) If max{1− r, 1} ≤ s < 2− r, then|||A|||∞ = O(ns−r+ε) for all ε > 0.
(4) If 1− r ≤ s < 1, then|||A|||∞ = O(n1−r).

Proof. Let r < 1. By (3.2) and(2.9),

|||A|||∞ = O(n1−r) max
1≤i≤n

1

ir

∑
d|i

Jr+s(d)

d
.

Sincer + s ≥ 0, by (2.6) and(2.1),

|||A|||∞ = O(n1−r) max
1≤i≤n

σr+s−1(i)

ir
.

If s > 2− r or r + s− 1 > 1, then according to(2.4),

|||A|||∞ = O(n1−r) max
1≤i≤n

is−1.

Sinces− 1 ≥ 0, we have
|||A|||∞ = O(ns−r).

If s = 2− r or r + s− 1 = 1, then according to(2.3),

|||A|||∞ = O(n1−r) max
1≤i≤n

i1−r log log i.

Since1− r > 0, we have
|||A|||∞ = O(n2−2r log log n).

If 1− r ≤ s < 2− r or 0 ≤ r + s− 1 < 1, then according to(2.2),

(3.6) |||A|||∞ = O(n1−r) max
1≤i≤n

is−1+ε.

If s ≥ 1 in (3.6), we obtain|||A|||∞ = O(ns−r+ε). If s < 1 in (3.6), we obtain|||A|||∞ =
O(n1−r). �

Corollary 3.5. Suppose thatr = 0.
(1) If s > 2, then|||A|||∞ = O(ns).
(2) If s = 2, then|||A|||∞ = O(n2 log log n).
(3) If 1 ≤ s < 2, then|||A|||∞ = O(ns+ε) for all ε > 0. In particular, fors = 1,

(3.7)
∣∣∣∣∣∣∣∣∣((i, j)

)∣∣∣∣∣∣∣∣∣
∞

= O(n1+ε) for all ε > 0.

Remark 3.6. Let ‖M‖2 denote thè2 norm of ann× n matrixM , that is

‖M‖2 =
n∑

i=1

n∑
j=1

m2
ij.

It is known [6, Theorem 3.2(1)] that

(3.8)
∥∥∥(

(i, j)3/2/[i, j]1/2
)∥∥∥

2
= O(n3/2 log n).

Since‖M‖2 ≤
√

n |||M |||∞ for all n×n matricesM (see [10]), we obtain from Theorem 3.4(2)
an improvement on(3.8) as

(3.9)
∥∥∥(

(i, j)3/2/[i, j]1/2
)∥∥∥

2
= O(n3/2 log log n).

In Theorem 3.7 we treat the remaining cases ofr ands in the most elementary way.
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Theorem 3.7.
(1) If 0 ≤ r < 1 ands ≤ 0, then|||A|||∞ = O(n1−r).
(2) If r < 0 ands ≤ 0, then|||A|||∞ = O(n1−2r).
(3) If 0 ≤ r < 1, s > 0 andr + s < 1, then|||A|||∞ = O(n1+s−r).
(4) If r < 0, s > 0 andr + s < 1, then|||A|||∞ = O(n1+s−2r).

Proof. Let 0 ≤ r < 1 ands ≤ 0. Then, according to (3.1) and(2.9)

|||A|||∞ ≤ max
1≤i≤n

n∑
j=1

1

jr
= O(n1−r).

Let r < 0 ands ≤ 0. Then, according to (3.1) and the inequality[i, j] < n2

|||A|||∞ ≤ max
1≤i≤n

n∑
j=1

[i, j]−r < max
1≤i≤n

n∑
j=1

n−2r = O(n1−2r).

Let 0 ≤ r < 1, s > 0 andr + s < 1. Then, according to (3.1) and(2.9)

|||A|||∞ ≤ ns max
1≤i≤n

n∑
j=1

1

jr
= O(n1+s−r).

Let r < 0, s > 0 andr + s < 1. Then, according to (3.1) and the inequality[i, j] < n2

|||A|||∞ ≤ max
1≤i≤n

n∑
j=1

ns

n2r
= O(n1+s−2r).

�

Remark 3.8. Applying [6, Theorem 3.3] and the inequality|||M |||∞ ≤
√

n‖M‖2 for all n × n
matricesM (see [10]) a partial improvement on Theorem 3.7(4) of the present paper as

(a) if r < 0, s > 0 and1/2 < r + s < 1, then|||A|||∞ = O(n1+s−r),
(b) if r < 0, s > 0 andr + s = 1/2, then|||A|||∞ = O(n−2r+3/2 log1/2 n),
(c) if r < 0, s > 1/2 andr + s < 1/2, then|||A|||∞ = O(n−2r+3/2).
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[13] D.S. MITRINOVIĆ, J. SÁNDORAND B. CRSTICI,Handbook of Number Theory, Kluwer Aca-
demic Publishers, MIA Vol.351, 1996.

[14] J. SÁNDORAND B. CRSTICI, Handbook of Number Theory II, Kluwer Academic Publishers,
2004.

[15] H.J.S. SMITH, On the value of a certain arithmetical determinant,Proc. London Math. Soc.,7
(1875/76), 208–212.

J. Inequal. Pure and Appl. Math., 8(4) (2007), Art. 97, 7 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/

	1. Introduction
	2. Preliminaries
	3. Results
	References

