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Abstract

We establish connections between invariant means and set ideals. As an appli-
cation, we obtain a necessary and sufficient condition for the separation almost
everywhere of two functions by an additive function. We also derive the stability
results for Cauchy’s functional equation.
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1. Introduction
Let M be an invariant mean on the spaceB(S,R) of all real bounded functions
on a semigroupS. We say that the subsetA of S is a zero set forM if M(χA) =
0, whereχA denotes the characteristic function of a setA. Zero sets for an
invariant meanM are regarded as small sets. On the other hand, in literature we
can find the axiomatic definition of a family, named set ideal, of a small subset
of a semigroupS. In the first part we study connections between families of
zero sets and set ideals. As a consequence, we obtain, for every set idealJ of
subsets ofS the existence of such an invariant meanM on B(S,R) for which
elements ofJ are zero sets forM .

In the second part of this paper we consider some functional inequalities.
We give a necessary and sufficient condition for the existence of an additive
function which separates almost everywhere two functions. As an application
of our result, we derive a generalization of the Gajda-Kominek theorem on a
separation of subadditive and superadditive functionals by an additive function.
We also give stability properties of the Cauchy functional equation.
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2. Invariant Means and Set Ideals
In this section we assume that(S, +) is a semigroup.

Definition 2.1. A non-empty familyJ of subsets ofS will be called a proper
set ideal if

S 6∈ J ;(2.1)

A, B ∈ J =⇒ A ∪B ∈ J ;(2.2)

A ∈ J ∧B ⊂ A =⇒ B ∈ J .(2.3)

Moreover, if the setaA = {x ∈ S : a + x ∈ A} belongs to the familyJ
whenevera ∈ S andA ∈ J then the set idealJ is called proper left quasi-
invariant (in short p.l.q.i.). Analogously, the set idealJ is said to be proper
right quasi-invariant (p.r.q.i.) if the setAa = {x ∈ S : x + a ∈ A} belongs
to the familyJ whenevera ∈ S andA ∈ J . In the case where the set ideal
satisfies both these conditions we shall call it proper quasi-invariant (p.q.i.).

The sets belonging to the set ideal are regarded as, in a sense, small sets
(see Kuczma [13]). For example, ifS is a second category subsemigroup of a
topological groupG then the family of all first category subsets ofS is a p.q.i.
ideal. IfG is a locally compact topological group equipped with the left or right
Haar measureµ and if S is a subsemigroup ofG with positive measureµ then
the family of all subsets ofS which have zero measureµ is a p.q.i. ideal. Also,
if S is a normed space (dim S ≥ 1) then the family of all bounded subsets ofS
is p.q.i. ideal.

LetJ be a set ideal of subsets ofS. For a real functionf onS we defineJf

to be the family of all setsA ∈ J such thatf is bounded on the complement
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of A. A real functionf on S is calledJ -essentially boundedif and only if the
family Jf is non-empty. The space of allJ -essentially bounded functions onS
will be denoted byBJ (S,R).

For every elementf of the spaceBJ (S,R) the real numbers

J − essinf
x∈S

f(x) = sup
A∈Jf

inf
x∈S\A

f(x),(2.4)

J − esssup
x∈S

f(x) = inf
A∈Jf

sup
x∈S\A

f(x)(2.5)

are correctly defined and are referred to as theJ -essential infimumand the
J -essential supremumof the functionf , respectively.

Definition 2.2. A linear functionalM on the spaceB(S,R) is called a left
(right) invariant mean if and only if

inf
x∈S

f(x) ≤ M(f) ≤ sup
x∈S

f(x);(2.6)

M(af) = M(f) (M(fa) = M(f))(2.7)

for all f ∈ B(S,R) anda ∈ S, whereaf andfa are the left and right translates
of f defined by

af(x) = f(a + x), fa(x) = f(x + a), x ∈ S.

A semigroupS which admits a left (right) invariant mean onB(S,R) will be
termed left (right) amenable. If on the spaceB(S,R) there exists a real linear
functional which is simultaneously a left and right invariant mean then we say
thatS is two-sided amenable or just amenable.
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One can prove that every Abelian semigroup is amenable. For the theory of
amenability see, for example, Greenleaf [12].

Remark 1. In this paper, in the proofs of our theorems we restrict ourselves to
the "left-hand side versions". The proofs of the "right-hand side versions" and
"two-sided versions" are literally the same.

Let us start with the following observation.

Theorem 2.1. If S is a semigroup andM is a left (right) invariant mean on
B(S,R) thenµM : 2S → R defined by the following formulae

(2.8) µM(A) = M(χA), A ⊂ S,

whereχA denotes the characteristic function of a setA, is an additive normed
measure defined on the family of all subsets ofS invariant with respect to the
left (right) translations.

Proof. From (2.6) it follows immediately thatµM(∅) = 0. The linearity ofM
shows thatµM is additive:

µM(A) + µM(B) = M(χA) + M(χB) = M(χA∪B) = µM(A ∪B),

for all A, B ⊂ S, A∩B = ∅. The left invariance ofM implies the left invariance
of µM :

µM(aA) = M(χaA) = M(χA) = µM(A),

for all A ⊂ S anda ∈ S. Finally, from (2.6) we infer thatµM(S) = M(χS) =
1.
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If M is an left (right) invariant mean onB(S,R) then byJM we denote the
family of all subsets ofS which have zero measureµM ,

(2.9) JM = {A ⊂ S : µM(A) = M(χA) = 0}.

Theorem 2.2. If S is a semigroup andM is a left (right) invariant mean on
B(S,R) then the familyJM is a proper left (right) quasi-invariant ideal of
subsets ofS.

Proof. By (2.6), µM(S) = 1. Hence,S 6∈ JM .
Next we choose arbitraryf, g ∈ B(S,R) such thatf ≤ g. The additivity of

M and (2.6) yields

0 ≤ M(g − f) = M(g)−M(f).

So, we get the monotonicity ofM :

(2.10) f, g ∈ B(S,R) ∧ f ≤ g =⇒ M(f) ≤ M(g).

Therefore, ifA ∈ JM andB ⊂ A then

0 ≤ M(χB) ≤ M(χA) = 0,

which means thatB ∈ JM and forA, B ∈ JM we have

0 ≤ M(χA∪B) ≤ M(χA + χB) = M(χA) + M(χB) = 0,

whenceA ∪B ∈ JM . Moreover, forA ∈ JM anda ∈ S, by the left invariance
of M we obtain

0 ≤ M(χaA) = M(χA) = 0,

which implies thataA ∈ JM and the proof is finished.
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Hence, the familyJM of all zero sets for every invariant meanM forms a
proper set ideal of subsets ofS. The following question arises: it is true that
for every proper set idealJ of subsets ofS there exists an invariant meanM
on B(S,R) for which elements ofJ are zero sets (J ⊂ JM )? To answer
to this question first we quote the following theorem which was proved using
Silverman’s extension theorem by Gajda in [9].

Theorem 2.3. If (S, +) is a left (right) amenable semigroup andJ is a p.l.q.i.
(p.r.q.i.) ideal of subsets ofS, then there exists a real linear functionalMJ on
the spaceBJ (S,R) such that

(2.11) J − essinf
x∈S

f(x) ≤ MJ (f) ≤ J − esssup
x∈S

f(x)

and

(2.12) MJ (af) = MJ (f) (MJ (fa) = MJ (f)),

for all f ∈ BJ (S,R) and alla ∈ S.

We can find an elementary and short proof of this fact in [1] (see also [3]).

Remark 2. We already know that for every p.l.q.i. (p.r.q.i.) idealJ of subsets of
the left (right) amenable semigroupS there exists a left (right) invariant mean
MJ on the spaceBJ (S,R). Of course, the restriction ofMJ to the space
B(S,R) is a left (right) invariant mean on this space. Moreover, by (2.11) we
have

MJ (χA) = 0, A ∈ J ,
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which means that for every p.l.q.i. (p.r.q.i.) idealJ of subsets of the left
(right) amenable semigroupS there exists a left (right) invariant meanM
(M = MJ |B(S,R)) on the spaceB(S,R) such that

(2.13) J ⊂ JM .

As simple applications of our observation we obtain the following known
facts.

Example 2.1. Let (Z, +) be a group of integers and letN denote the set of
positive integers. The familyJ of all subsetsA of Z for which there exists
K ∈ Z such thatA ⊂ {k ∈ Z : k ≥ K} forms a p.q.i. ideal of subsets ofZ.
Hence, there exists an additive normed measureµ (µ = µM , for some invariant
meanM ) defined on the family of all subsets ofZ invariant with respect to
translations such that

µ(N) = 0.

Analogously, if(S, +) = (R, +) andA ∈ J iff there existsK ∈ R such that
A ⊂ {x ∈ R : x ≥ K} thenJ is a p.q.i. ideal of subsets ofR and there exists
an additive normed measureµ defined on the family of all subsets ofR invariant
with respect to translations such that

µ((a, +∞) = 0,

for all a ∈ R.

Now we formulate the theorem which generalized Cabello Sánchez’s Lemma
6 from [6].
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Theorem 2.4. LetJ be a p.l.q.i. (p.r.q.i.) ideal of subsets of a semigroupS. If
the set idealJ satisfies the following condition

for every elementA of the set idealJ there exists an elementa of S

such that A ∩a A = ∅(A ∩ Aa = ∅),(2.14)

then
J ⊂ JM ,

for every left (right) invariant meanM on the spaceB(S,R).

Proof. Let A ∈ J be fixed and letM be a left invariant mean on the space
B(S,R). Suppose to the contrary that

M(χA) 6= 0.

PuttingA0 = A andf0 = χA0 , by our hypothesis and condition (2.6) we have

0 = inf
x∈S

f0(x) < M(f0) ≤ sup
x∈S

f0(x) = 1.

Now, let f1 be the real function onS defined byf1 = f0 +a0 f0, where the
elementa0 ∈ S is associated with the setA0 by condition (2.14). Then the set
A1 = A0 ∪a0 A0 is inJ . Moreover, applying the properties of the left invariant
mean we have

M(f1) = M(f0 +a0 f0) = M(f0) + M(a0f0) = M(f0) + M(f0) = 2M(f0)

and
0 = inf

x∈S
f1(x) < M(f1) ≤ sup

x∈S
f1(x) = 1.
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Next, letf2 = f1 +a1 f1, where the elementa1 ∈ S is associated with the setA1

by condition (2.14). ThenA2 = A1 ∪a1 A1 ∈ J and

M(f2) = M(f1 +a1 f1) = 2M(f1) = 22M(f0),

0 = inf
x∈S

f2(x) < M(f2) ≤ sup
x∈S

f2(x) = 1.

Inductively we construct the sequence of real functionsfn onS such that

0 = inf
x∈S

fn(x) < M(fn) = 2nM(f0) ≤ sup
x∈S

f2(x) = 1, n ∈ N

which is false. Hence,M(f0) = M(χA) = 0, which means thatA ∈ JM and
thus ends the proof.

Remark 3. Observe that the familyJb of all bounded sets of a normed space
S (dim S ≥ 1) yields an example of a p.q.i. ideal of subsets ofS fulfilling
condition (2.14). Therefore,

Jb ⊂ JM ,

for every invariant meanM on B(S,R). Moreover, the familyJf of all finite
subsets ofS also forms a p.q.i. ideal of subsets ofS andJf  Jb. Hence

Jf  Jb ⊂ JM

for every invariant meanM on B(S,R) which shows that in (2.13) we have
only inclusion. This answers the question posed by Zs. Páles on the equality in
(2.13).

Finally, to summarize the results just obtained, we note the following.
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Remark 4. LetS be a left amenable semigroup and letA be a subset ofS.
If

a1A ∪a2 A ∪ . . . ∪an A 6= S,

for all a1, a2, . . . , an ∈ S andn ∈ N, then the setA generates a p.l.q.i. ideal of
subsets ofS. Hence, using Remark2, the setA is a zero set for some invariant
meanM on the spaceB(S,R) (A ∈ JM ).

If there existn ∈ N anda1, a2, . . . , an ∈ S such that

a1A ∪a2 A ∪ . . . ∪an A = S,

then for every invariant meanM on the spaceB(S,R) we have

1 = M(χS) = M(χa1A ∪a2 A ∪ . . . ∪an A)

≤ M(χa1A + χa2A + . . . + χa1A)

= M(χa1A) + M(χa2A) + . . . + M(χa1A)

= nM(χA),

which means thatA 6∈ JM .
The "right-hand side version" of this observation is analogous to the one

presented above.
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3. Separation Theorems
Let S be a semigroup and letJ be a proper ideal of subsets ofS. Then we say
that a given condition is satisfiedJ -almost everywhere onS (writtenJ -a.e. on
S) if there exists a setA ∈ J such that the condition in question is satisfied for
everyx ∈ S \ A.

Moreover, the symbolΩ(J ) will stand for the family of all setsN ⊂ S × S
with the property that

N [x] = {y ∈ S : (x, y) ∈ N} ∈ J J − a.e. onG.

The familyΩ(J ) forms a proper ideal of subsets ofS × S (see Kuczma [13]).
We are now in a position to formulate and prove the main result of this sec-

tion which is the "almost everywhere version" of the result proved by Páles in
[14] (see also [4]).

Theorem 3.1.Let(S, +) be a left (right) amenable semigroup, letJ be a p.l.q.i.
(p.r.q.i.) ideal of subsets ofS and letp, q : S → R . Then there exists a map
a : S → R such that

(3.1) a(x + y) = a(x) + a(y) Ω(J )− a.e. onS × S

and

(3.2) p(x) ≤ a(x) ≤ q(x) J − a.e. onS

if and only if there exists a functionϕ : S → R such that

(3.3) p(x) ≤ ϕ(x + y)− ϕ(y) ≤ q(x) Ω(J )− a.e. onS × S.
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Proof. Assume thata satisfies (3.1) and (3.2) and letϕ = a. Condition (3.1)
implies that there exists a setM ∈ Ω(J ) such that

(3.4) ϕ(x + y)− ϕ(y) = a(x + y)− a(y) = a(x), (x, y) ∈ S2 \M.

Now, chooseU ∈ J such thatM [x] ∈ J , for all x ∈ S \ U . Next, by (3.2) we
get the existence of a setV ∈ J such that

(3.5) p(x) ≤ a(x) ≤ q(x), x ∈ S \ V.

By W we denote the set of all pairs(x, y) ∈ S2 such that

p(x) ≤ ϕ(x + y)− ϕ(y) ≤ q(x)

do not hold. Putting (3.4) and (3.5) together, we infer thatW [x] ⊆ M [x] ∈ J ,
for all x ∈ S \ (U ∪ V ), which impliesW ∈ Ω(J ). So, the functionϕ satisfies
(3.3).

Assume that (3.3) is valid with a certain functionϕ : S → R. Then there
exists a setM ∈ Ω(J ) such that

p(x) ≤ ϕ(x + y)− ϕ(y) ≤ q(x), (x, y) ∈ S2 \M.

SinceM ∈ Ω(J ), one can find a setU ∈ J such thatM [x] ∈ J , for all
x ∈ S \ U . Now, given an elementx ∈ S \ U we have

(3.6) p(x) ≤ ϕ(x + y)− ϕ(y) ≤ q(x), y ∈ S \M [x]

which means that for any fixedx ∈ S \ U the function

S 3 y −→ ϕ(x + y)− ϕ(y) ∈ R
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mailto:robadora@ux2.math.us.edu.pl
http://jipam.vu.edu.au/


Invariant Means, Set Ideals and
Separation Theorems

Roman Badora

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 15 of 21

J. Ineq. Pure and Appl. Math. 6(1) Art. 18, 2005

http://jipam.vu.edu.au

belongs to the spaceBJ (S,R).
Let MJ represent a left invariant mean on the spaceBJ (S,R), whose ex-

istence results from Theorem2.3. The functiona : S → R is defined by the
formula

a(x) =

{
MJ

y (ϕ(x + y)− ϕ(y)), for x ∈ S \ U

0, for x ∈ U ,

where the subscripty indicates that the meanMJ is applied to a function of the
variabley.

If we chooseu, v ∈ S \ U in such a manner thatu + v ∈ S \ U too, then by
the left invariance and linearity ofMJ , we get

a(u) + a(v) = MJ
y (ϕ(u + y)− ϕ(y)) + MJ

y (ϕ(v + y)− ϕ(y))

= MJ
y (ϕ(u + v + y)− ϕ(v + y)) + MJ

y (ϕ(v + y)− ϕ(y))

= MJ
y (ϕ(u + v + y)− ϕ(y)) = a(u + v).

This means thata(u + v) = a(u) + a(v), for all (u, v) ∈ S2 \W , where

W = (U × S) ∪ (S × U) ∪ {(u, v) ∈ S2 : u + v ∈ U}.

It is clear thatW ∈ Ω(J ) and we get (3.1). Moreover, condition (2.11) jointly
with the definition ofa and (3.6) implies (3.2) and completes the proof.

For groups we have the following.
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Corollary 3.2. Let (S, +) be a left (right) amenable group, letJ be a p.l.q.i.
(p.r.q.i.) ideal of subsets ofS and letp, q : S → R. Then there exists an additive
functionA : S → R such that

(3.7) p(x) ≤ A(x) ≤ q(x) J − a.e. onS

if and only if there exists a functionϕ : S → R such that

(3.8) p(x) ≤ ϕ(x + y)− ϕ(y) ≤ q(x) Ω(J )− a.e. onS × S.

Proof. The proof of this theorem is a consequence of our previous result and the
Cabello Sánchez theorem ([6, Theorem 8]) which is a version of the celebrated
theorem of de Bruijn (see [5]) and its generalization given by Ger (see [10]) and
which shows that for a mapa : S → R fulfilling ( 3.1) there exists an additive
functionA : S → R such that

a(x) = A(x) J − a.e. onS.

As a consequence of this fact we obtain the following (see Gajda, Kominek
[8] and Cabello Sánchez [6]).

Theorem 3.3. Let (S, +) be an Abelian group and letJ be a p.l.q.i. (p.r.q.i.)
ideal of subsets ofS. If f, g : S → R satisfy

f(x + y) ≤ f(x) + f(y) Ω(J )− a.e. onS × S

g(x + y) ≥ g(x) + g(y) Ω(J )− a.e. onS × S
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and
g(x) ≤ f(x) J − a.e. onS

then there exists an additive functionA : S → R such that

g(x) ≤ a(x) ≤ f(x) J − a.e. onS.

Proof. Assume thatU1, V1 ∈ J satisfy: forx ∈ S \ U1

f(x + y) ≤ f(x) + f(y), y ∈ S \ V1

and letU2, V2 ∈ J satisfy: forx ∈ S \ U2

g(x + y) ≥ g(x) + g(y), y ∈ S \ V2.

Moreover, letU0 be such that

g(x) ≤ f(x), x ∈ S \ U0.

Then, forx ∈ S\U , whereU = U0∪U1∪U2 and fory ∈ S\(V1∪V2∪U0∪xU0)
we have

f(x + y)− g(y) ≥ g(x + y)− g(y) ≥ g(x).

Hence, one can define a functionϕ : S → R by ϕ(x) = 0, if x ∈ U and for
x ∈ S \ U by

ϕ(x) = essinf
t∈S

(xf − g)(t).

Suppose thatx andx + y are inS \ U . Then, as in [6], we can show that

g(x) ≤ ϕ(x + y)− ϕ(y) ≤ f(x).
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Now, takingN = (U × S) ∪ {(x, y) ∈ S2 : x + y ∈ U} we observe thatN ∈
Ω(J ) which means thatϕ satisfies condition (3.8) and an appeal to Corollary
3.2completes the proof.

The next application concerns the stability problem for Cauchy’s functional
equation. On account of similarity we restrict our considerations to the "Ger-
additive" functions.

Theorem 3.4. Let (S, +) be a left (right) amenable semigroup,J be a p.l.q.i.
(p.r.q.i.) ideal of subsets ofS and letρ : S → R. Moreover, letf : S → R be a
function such that for a certain setN ∈ Ω(J ), the inequality

|f(x + y)− f(x)− f(y)| ≤ ρ(x)

(|f(x + y)− f(x)− f(y)| ≤ ρ(y))

holds whenever(x, y) ∈ S × S \ N . Then there exists a mapa : S → R such
that

(3.9) a(x + y) = a(x) + a(y) Ω(J )− a.e. onS × S

and

(3.10) |f(x)− a(x)| ≤ ρ(x) J − a.e. onS.

Proof. The functionsp = f − ρ, q = f + ρ and ϕ = f satisfy condition
(3.3). Theorem3.1 yields a mapa fulfilling ( 3.9) and (3.10), and the proof is
complete.

For groups we have the following result.
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Corollary 3.5. Let (S, +) be a left (right) amenable group,J be a p.l.q.i.
(p.r.q.i.) ideal of subsets ofS and letρ : S → R . Moreover, letf : S → R be
a function such that for a certain setN ∈ Ω(J ), the inequality

|f(x + y)− f(x)− f(y)| ≤ ρ(x)

(|f(x + y)− f(x)− f(y)| ≤ ρ(y))

holds whenever(x, y) ∈ S×S \N . Then there exists an additive mapA : S →
R such that

|f(x)− A(x)| ≤ ρ(x) J − a.e. onS.

Remark 5. The vector-valued versions of the above results can be obtained
using the techniques presented in [4], [ 6] or [ 2].
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