Journal of Inequalities in Pure and Applied Mathematics

Volume 6, Issue 2, Article 34, 2005

ON A CONVOLUTION CONJECTURE OF BOUNDED FUNCTIONS

KRZYSZTOF PIEJKO, JANUSZ SOKÓŁ, AND JAN STANKIEWICZ
Department of Mathematics
Rzeszów University of Technology
UL. W. Pola 2, 35-959 Rzeszów, Poland.
piejko@prz.rzeszow.pl
Department of Mathematics
Rzeszów University of Technology ul. W. Pola 2, 35-959 Rzeszów, Poland.
jsokol@prz.rzeszow.pl
Institute of Mathematics
University of Rzeszów
ul. Rejtana 16A
35-959 Rzeszów, Poland.
jan.stankiewicz@prz.rzeszow.pl

Received 30 November, 2004; accepted 03 March, 2005
Communicated by K. Nikodem

Abstract. We consider the convolution $P(A, B) \star P(C, D)$ of the classes of analytic functions subordinated to the homographies $\frac{1+A z}{1-B z}$ and $\frac{1+C z}{1-D z}$ respectively, where A, B, C, D are some complex numbers. In 1988 J. Stankiewicz and Z. Stankiewicz [11] showed that for certain A, B, C, D there exist X, Y such that $P(A, B) \star P(C, D) \subset P(X, Y)$. In this paper we verify the conjecture that $P(X, Y) \subset(A, B) \star P(C, D)$ for some A, B, C, D, X, Y.

Key words and phrases: Hadamard product, Convolution, Subordination, Bounded functions.
2000 Mathematics Subject Classification Primary 30C45; Secondary 30C55.

1. Introduction

Let $\Delta=\{z \in \mathbb{C}:|z|<1\}$ denote the open unit disc and let \mathcal{H} be the class of functions regular in Δ. We will denote by \mathcal{N} the class of functions $f \in \mathcal{H}$ normalized by $f(0)=1$. The class of Schwarz functions Ω is the class of functions $\omega \in \mathcal{H}$, such that $\omega(0)=0$ and $|\omega(z)|<1$ for $z \in \Delta$. We say that a function f is subordinate to a function g in Δ (and write $f \prec g$ or $f(z) \prec g(z)$) if there exists a function $\omega \in \Omega$ such that $f(z)=g(\omega(z)) ; z \in \Delta$. If the function g is univalent in Δ, then $f \prec g$ if and only if $f(0)=g(0)$ and $f(\Delta) \subset g(\Delta)$. In this case we have $\omega(z)=g^{-1}(f(z))$.

[^0]Let the functions f and g be of the form

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, \quad g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}, \quad z \in \Delta .
$$

We say that the Hadamard product of f and g is the function $f \star g$ if

$$
(f \star g)(z)=f(z) \star g(z)=\sum_{n=0}^{\infty} a_{n} b_{n} z^{n} .
$$

J. Hadamard [2] proved, that the radius of convergence of $f \star g$ is the product of the radii of convergence of the corresponding series f and g. The function $f \star g$ is also called the convolution of the functions f and g.

For the classes $Q_{1} \subset \mathcal{H}$ and $Q_{2} \subset \mathcal{H}$ the convolution $Q_{1} \star Q_{2}$ is defined as

$$
Q_{1} \star Q_{2}=\left\{h \in \mathcal{H} ; h=f \star g, f \in Q_{1}, g \in Q_{2}\right\}
$$

The problem of connections between functions f, g and their convolution $f \star g$ or between Q_{1}, Q_{2} and $Q_{1} \star Q_{2}$ has often been investigated. Many conjectures have been given, however, many of them have still not been verified.

In 1958, G. Pólya and I.J. Schoenberg [7] conjectured that the Hadamard product of two convex mappings is a convex mapping. In 1961 H.S. Wilf [12] gave the more general supposition that if F and G are convex mappings in Δ and f is subordinate to F, then the convolution $f \star G$ is subordinate to $F \star G$.

In 1973, S. Rusheweyh and T. Sheil-Small [9] proved both conjectures and more results of this type. Their very important results we may write as:
Theorem A. If $f \in S^{c}$ and $g \in S^{c}$, then $f \star g \in S^{c}$, where S^{c} is the class of univalent and convex functions. Moreover $S^{c} \star S^{c}=S^{c}$.
Theorem B. If $F \in S^{c}, G \in S^{c}$ and $f \prec F$, then $f \star G \prec F \star G$.
In 1985, S. Ruscheweyh and J. Stankiewicz [10] proved some generalizations of Theorems A and B:
Theorem C. If the functions F and G are univalent and convex in Δ, then for all functions f and g, if $f \prec F$ and $g \prec G$ then $f \star g \prec F \star G$.

For the given complex numbers A, B such that $A+B \neq 0$ and $|B| \leq 1$ let us denote

$$
P(A, B)=\left\{f \in \mathcal{N}: f(z) \prec \frac{1+A z}{1-B z}\right\} .
$$

W. Janowski introduced the class $P(A, B)$ in [3] and considered it for some real A and B. If $A=B=1$ then the class $P(1,1)$ is the class of functions with positive real part (Carathéodory functions). Note, that for $|B|<1$ the class $P(A, B)$ is the class of bounded functions. In 1988 J. Stankiewicz and Z. Stankiewicz [11] investigated the convolution properties of the class $P(A, B)$ and proved the following theorem:
Theorem D. If A, B, C, D are some complex numbers such that $A+B \neq 0, C+D \neq 0$, $|B| \leq 1,|D| \leq 1$, then

$$
P(A, B) \star P(C, D) \subset P(A C+A D+B C, B D)
$$

moreover, if $|B|=1$ or $|D|=1$, then

$$
P(A, B) \star P(C, D)=P(A C+A D+B C, B D) .
$$

The equality between the class $P(A, B) \star P(C, D)$ and the class $P(A C+A D+B C, B D)$ for $|B|<1$ and $|D|<1$ was an open problem. In [5] K. Piejko, J. Sokół and J. Stankiewicz proved that the above mentioned classes are different. In this paper we give an extension of this result. First we need two theorems.

Theorem E (G. Eneström [1], S. Kakeya [4]). If $a_{0}>a_{1}>\cdots>a_{n}>0$, where $n \in \mathbb{N}$, then the polynomial $p(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}$ has no roots in $\Delta=\{z \in \mathbb{C}:|z| \leq 1\}$.

Theorem \mathbf{F} (W. Rogosinski [8]). If the function $f(z)=\sum_{n=0}^{\infty} \alpha_{n} z^{n}$ is subordinated to the function $F(z)=\sum_{n=0}^{\infty} \beta_{n} z^{n}$ in Δ, then $\sum_{n=0}^{\infty}\left|\alpha_{n}\right|^{2} \leq \sum_{n=0}^{\infty}\left|\beta_{n}\right|^{2}$.

2. Main Result

We prove the following theorem.
Theorem 2.1. Let A, B, C, D be some complex numbers such that $B+A \neq 0, C+D \neq 0$, $|B|<1,|D|<1$, then there are not complex numbers $X, Y, X+Y \neq 0,|Y| \leq 1$ such that $P(X, Y) \subset P(A, B) \star P(C, D)$.

Proof. As in [5], the proof will be divided into three steps. First we give a family of bounded functions $\omega^{\nu} ; \nu=1,2,3 \ldots$ having special properties of coefficients. Afterwards we construct, using ω^{ν}, a function belonging to the class $P(X, Y)$ and finally we will show that such a function is not in the class $P(A, B) \star P(C, D)$.
Now we use a method of E. Landau [6] and find some functions $\omega^{\nu}, \nu=1,2,3, \ldots$, which are basic in this proof. We observe that

$$
\frac{1}{1-z}=\left(\frac{1}{\sqrt{1-z}}\right)^{2}=\left(\sum_{k=0}^{\infty} p_{k} z^{k}\right)^{2}=1+z+z^{2}+z^{3}+\cdots
$$

where

$$
\begin{equation*}
p_{0}=1 \text { and } p_{k}=\frac{1 \cdot 3 \cdots \cdots(2 k-1)}{2 \cdot 4 \cdots \cdot 2 k} ; \quad k=1,2,3, \ldots \tag{2.1}
\end{equation*}
$$

For some $\nu \in \mathbb{N}$ we set

$$
K_{\nu}(z)=\sum_{k=0}^{\nu} p_{k} z^{k}=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots+p_{\nu} z^{\nu}
$$

and note that

$$
K_{\nu}^{2}(z)=1+z+z^{2}+\cdots+z^{\nu}+b_{\nu+1} z^{\nu+1}+\cdots+b_{2 \nu} z^{2 \nu}
$$

where $b_{\nu+1}, \ldots, b_{2 \nu} \in \mathbb{C}$. Let ω^{ν} be given by

$$
\begin{equation*}
\omega^{\nu}(z)=\frac{z^{\nu+1} K_{\nu}\left(\frac{1}{z}\right)}{K_{\nu}(z)}=z \frac{z^{\nu}+p_{1} z^{\nu-1}+p_{2} z^{\nu-2}+\cdots+p_{\nu}}{1+p_{1} z+p_{2} z^{2}+\cdots+p_{\nu} z^{\nu}} . \tag{2.2}
\end{equation*}
$$

Since

$$
p_{k}>p_{k} \frac{2 k+1}{2 k+2}=p_{k+1} \quad \text { where } \quad k=0,1,2,3, \ldots,
$$

then for $\nu \in \mathbb{N}$ we have $1>p_{1}>p_{2}>p_{3}>\cdots>p_{\nu}>0$.
Applying Theorem E to the polynomial K_{ν} we obtain $K_{\nu}(z) \neq 0$ for $|z| \leq 1$, hence the function ω^{ν} is regular in Δ. Moreover $\omega^{\nu}(0)=0$ and on the circle $|z|=1$ we have

$$
\left|\omega^{\nu}\left(e^{i t}\right)\right|=\left|\frac{e^{(\nu+1) i t} K_{\nu}\left(e^{-i t}\right)}{K_{\nu}\left(e^{i t}\right)}\right|=\frac{\left|\overline{K_{\nu}\left(e^{i t}\right)}\right|}{\left|K_{\nu}\left(e^{i t}\right)\right|}=1 ; \quad t \in \mathbb{R}
$$

In this way we conclude that for $\nu \in\{1,2,3, \ldots\}$

$$
\begin{equation*}
\omega^{\nu} \in \Omega \tag{2.3}
\end{equation*}
$$

Let, for a certain $\nu \in \mathbb{N}$, the function ω^{ν} be represented by following power series expansions: $\omega^{\nu}(z)=\gamma_{1}^{\nu} z+\gamma_{2}^{\nu} z^{2}+\gamma_{3}^{\nu} z^{3}+\cdots$ and let $s_{n}^{\nu}(z)$ denote the partial sum

$$
s_{n}^{\nu}(z)=\sum_{k=1}^{n} \gamma_{k}^{\nu} z^{k}=\gamma_{1}^{\nu} z+\gamma_{2}^{\nu} z^{2}+\gamma_{3}^{\nu} z^{3}+\cdots+\gamma_{n}^{\nu} z^{n}
$$

for all $n \in\{1,2,3, \ldots, \nu+1\}$.
Now we will estimate $s_{n}^{\nu}(1)=\gamma_{1}^{\nu}+\gamma_{2}^{\nu}+\gamma_{3}^{\nu}+\cdots+\gamma_{n}^{\nu}$. If we integrate on a circle $C:|z|=r$ in a counterclockwise direction with $0<r<1$, then we obtain

$$
\begin{equation*}
\int_{C} a z^{m} d z=0 \quad \text { and } \quad \int_{C} \frac{a}{z} d z=2 \pi a i \tag{2.4}
\end{equation*}
$$

for all integers $m \neq-1$ and $a \in \mathbb{C}$. Hence

$$
\begin{aligned}
s_{n}^{\nu}(1) & =\gamma_{1}^{\nu}+\gamma_{2}^{\nu}+\gamma_{3}^{\nu}+\cdots+\gamma_{n}^{\nu} \\
& =\frac{1}{2 \pi i} \int_{C} \omega^{\nu}(z)\left(\frac{1}{z^{2}}+\frac{1}{z^{3}}+\frac{1}{z^{4}}+\cdots+\frac{1}{z^{n+1}}\right) d z \\
& =\frac{1}{2 \pi i} \int_{C} \frac{\omega^{\nu}(z)}{z^{n+1}}\left(1+z+z^{2}+z^{3}+\cdots+z^{n-1}\right) d z \\
& =\frac{1}{2 \pi i} \int_{C} \frac{\omega^{\nu}(z)}{z^{n+1}} Q(z) d z
\end{aligned}
$$

where

$$
Q(z)=1+z+z^{2}+\cdots+z^{n-1}+d_{n} z_{n}+d_{n+1} z^{n+1}+\cdots+d_{s} z^{s}
$$

is any polynomial whose first n terms are equal to $1+z+z^{2}+\cdots+z^{n-1}$.
If for $n \leq \nu+1$ we set

$$
Q(z)=K_{\nu}^{2}(z)=1+z+z^{2}+\cdots+z^{n-1}+z^{n}+\cdots+z^{\nu}+b_{\nu+1} z^{\nu+1}+\cdots+b_{2 \nu} z^{2 \nu}
$$

then we obtain

$$
s_{n}^{\nu}(1)=\frac{1}{2 \pi i} \int_{C} \frac{\omega^{\nu}(z)}{z^{n+1}} K_{\nu}^{2}(z) d z
$$

From (2.2) it follows that

$$
\begin{aligned}
s_{n}^{\nu}(1) & =\frac{1}{2 \pi i} \int_{C} \frac{\frac{z^{\nu+1} K_{\nu}\left(\frac{1}{z}\right)}{K_{\nu}(z)}}{z^{n+1}} K_{\nu}^{2}(z) d z \\
& =\frac{1}{2 \pi i} \int_{C} z^{\nu-n} K_{\nu}\left(\frac{1}{z}\right) K_{\nu}(z) d z \\
& =\frac{1}{2 \pi i} \int_{C} z^{\nu-n}\left(1+p_{1} \frac{1}{z}+p_{2} \frac{1}{z^{2}}+\cdots+p_{\nu} \frac{1}{z^{\nu}}\right)\left(1+p_{1} z+p_{2} z^{2}+\cdots+p_{\nu} z^{\nu}\right) d z
\end{aligned}
$$

Using (2.4) we get

$$
s_{n}^{\nu}(1)=p_{\nu-n+1}+p_{\nu-n+2} p_{1}+p_{\nu-n+3} p_{2}+\cdots+p_{\nu} p_{n-1}
$$

where $\left(p_{k}\right)$ are given by (2.1), and so

$$
\begin{equation*}
s_{n}^{\nu}(1)=\sum_{k=1}^{n} \gamma_{k}^{\nu}=\sum_{k=1}^{n} p_{\nu-n+k} p_{k-1} \tag{2.5}
\end{equation*}
$$

By the above we have $\gamma_{1}^{\nu}=s_{1}^{\nu}(1)=p_{\nu}$ and for all $\nu \in\{1,2,3, \ldots\}$ and $n \in\{2,3,4, \ldots, \nu+1\}$

$$
\gamma_{n}^{\nu}=s_{n}^{\nu}(1)-s_{n-1}^{\nu}(1)=\sum_{k=1}^{n} p_{\nu-n+k} p_{k-1}-\sum_{k=1}^{n-1} p_{\nu-n+1+k} p_{k-1}
$$

Therefore

$$
\begin{equation*}
\gamma_{n}^{\nu}=\sum_{k=1}^{n-1}\left(p_{\nu-n+k}-p_{\nu-n+1+k}\right) p_{k-1}+p_{\nu} p_{n-1} \tag{2.6}
\end{equation*}
$$

The sequence $\left(p_{n}\right)$ is positive and decreasing, then from (2.6) it follows that

$$
\begin{equation*}
\gamma_{n}^{\nu}>0 \text { for all } \nu \in \mathbb{N} \text { and } n \in\{1,2,3, \ldots, \nu+1\} \tag{2.7}
\end{equation*}
$$

We conclude from (2.5) that for $n=\nu+1$

$$
s_{\nu+1}^{\nu}(1)=\gamma_{1}^{\nu}+\gamma_{2}^{\nu}+\cdots+\gamma_{\nu}^{\nu}+\gamma_{\nu+1}^{\nu}=\sum_{k=1}^{\nu+1} p_{k-1} p_{k-1}=1+\sum_{k=1}^{\nu} p_{k}^{2}
$$

Since $\sum_{k=1}^{\infty} p_{k}^{2}=\infty$ then

$$
\begin{equation*}
\lim _{\nu \rightarrow \infty} s_{\nu+1}^{\nu}(1)=\lim _{\nu \rightarrow \infty}\left(1+\sum_{k=1}^{\nu} p_{k}^{2}\right)=+\infty \tag{2.8}
\end{equation*}
$$

Now using the properties of ω^{ν} we construct the function belonging to the class $P(X, Y)$ which is not in the class $P(A, B) \star P(C, D)$, where $|B|<1$ and $|D|<1$.

Since for $|x|=1$ we have $P(A, B)=P(A x, B x)$, we can assume without loss of generality that $B \in[0 ; 1), D \in[0 ; 1)$ and $Y \in[0 ; 1]$.

For fixed $\nu \in \mathbb{N}$ let h^{ν} be given by

$$
\begin{equation*}
h^{\nu}(z)=\frac{1+X \omega^{\nu}(z)}{1-Y \omega^{\nu}(z)} \tag{2.9}
\end{equation*}
$$

where $w^{\nu} \in \Omega$ is given by (2.2). It is clearly that $h^{\nu} \in P(X, Y)$. Suppose that there exist the functions $f \in P(A, B), g \in P(C, D)$ such that

$$
\begin{equation*}
f(z) \star g(z)=h^{\nu}(z) \tag{2.10}
\end{equation*}
$$

Let the functions f and g have the following form:

$$
f(z)=\frac{1+A \omega_{1}(z)}{1-B \omega_{1}(z)}=1+(A+B) \frac{\omega_{1}(z)}{1-B \omega_{1}(z)}
$$

and

$$
g(z)=\frac{1+C \omega_{2}(z)}{1-D \omega_{2}(z)}=1+(C+D) \frac{\omega_{2}(z)}{1-D \omega_{2}(z)}
$$

where $\omega_{1}, \omega_{2} \in \Omega$. For simplicity of notation we write

$$
f(z)=1+(A+B) \tilde{f}(z), \quad g(z)=1+(C+D) \tilde{g}(z)
$$

where

$$
\begin{equation*}
\tilde{f}(z)=\frac{\omega_{1}(z)}{1-B \omega_{1}(z)} \quad \text { and } \quad \tilde{g}(z)=\frac{\omega_{2}(z)}{1-D \omega_{2}(z)} \tag{2.11}
\end{equation*}
$$

Using these notations we can rewrite (2.10) as

$$
[1+(A+B) \tilde{f}(z)] \star[1+(C+D) \tilde{g}(z)]=\frac{1+X \omega^{\nu}(z)}{1-Y \omega^{\nu}(z)}
$$

and so

$$
\begin{equation*}
\tilde{f}(z) \star \tilde{g}(z)=\frac{X+Y}{(A+B)(C+D)} \tilde{h}^{\nu}(z) \tag{2.12}
\end{equation*}
$$

where $\tilde{h}^{\nu}(z)=\frac{\omega^{\nu}(z)}{1-B D \omega^{\nu}(z)}$.
Let the functions $\tilde{h}^{\nu}, \tilde{f}$ and \tilde{g} have the following expansions in Δ :

$$
\begin{equation*}
\tilde{h}^{\nu}(z)=\sum_{n=1}^{\infty} c_{n}^{\nu} z^{n}, \quad \tilde{f}(z)=\sum_{n=1}^{\infty} a_{n} z^{n}, \quad \tilde{g}(z)=\sum_{n=1}^{\infty} b_{n} z^{n} . \tag{2.13}
\end{equation*}
$$

From (2.11) it follows, that $\tilde{f}(z) \prec \frac{z}{1-B z}$ and $\tilde{g}(z) \prec \frac{z}{1-D z}$, and hence by Theorem F (and since $0 \leq B<1$ and $0 \leq D<1$) we obtain

$$
\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \leq \frac{1}{1-B^{2}} \quad \text { and } \quad \sum_{n=1}^{\infty}\left|b_{n}\right|^{2} \leq \frac{1}{1-D^{2}}
$$

Let us note, that

$$
\sum_{n=1}^{\infty}\left(\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2}\right)=\sum_{n=1}^{\infty}\left[\left(\left|a_{n}\right|-\left|b_{n}\right|\right)^{2}+2\left|a_{n}\right|\left|b_{n}\right|\right] \leq \frac{1}{1-|B|^{2}}+\frac{1}{1-|D|^{2}}
$$

From (2.12) and (2.13) we obtain

$$
a_{n} b_{n}=\frac{X+Y}{(A+B)(C+D)} c_{n}^{\nu}, \quad \text { for } \quad n=1,2,3, \ldots
$$

therefore

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\left|a_{n}\right|-\left|b_{n}\right|\right)^{2} \leq \frac{1}{1-B^{2}}+\frac{1}{1-D^{2}}-\left|\frac{2(X+Y)}{(A+B)(C+D)}\right| \sum_{n=1}^{\infty}\left|c_{n}^{\nu}\right| \tag{2.14}
\end{equation*}
$$

Now we observe that

$$
\begin{aligned}
\sum_{n=1}^{\infty} c_{n}^{\nu} z^{n} & =\tilde{h}^{\nu}(z)=\frac{\omega^{\nu}(z)}{1-Y \omega^{\nu}(z)} \\
& =\omega^{\nu}(z)+Y\left[\omega^{\nu}(z)\right]^{2}+Y^{2}\left[\omega^{\nu}(z)\right]^{3}+\cdots \\
& =\left(\gamma_{1}^{\nu} z+\gamma_{2}^{\nu} z^{2}+\cdots\right)+Y\left(\gamma_{1}^{\nu} z+\gamma_{2}^{\nu} z^{2}+\cdots\right)^{2}+Y^{2}\left(\gamma_{1}^{\nu} z+\gamma_{2}^{\nu} z^{2}+\cdots\right)^{3}+\cdots \\
& =\gamma_{1}^{\nu} z+\left(\gamma_{2}^{\nu}+Y\left(\gamma_{1}^{\nu}\right)^{2}\right) z^{2}+\left(\gamma_{3}^{\nu}+2 Y \gamma_{1}^{\nu} \gamma_{2}^{\nu}+Y^{2}\left(\gamma_{1}^{\nu}\right)^{3}\right) z^{3}+\cdots .
\end{aligned}
$$

Since $Y \in[0 ; 1]$ and since (2.7) we have

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|c_{n}^{\nu}\right| & =\left|\gamma_{1}^{\nu}\right|+\left|\gamma_{2}^{\nu}+Y\left(\gamma_{1}^{\nu}\right)^{2}\right|+\left|\gamma_{3}^{\nu}+2 Y \gamma_{1}^{\nu} \gamma_{2}^{\nu}+Y^{2}\left(\gamma_{1}^{\nu}\right)^{3}\right|+\cdots \\
& \geq \sum_{n=1}^{\nu+1}\left|c_{n}^{\nu}\right| \geq \gamma_{1}^{\nu}+\gamma_{2}^{\nu}+\gamma_{3}^{\nu}+\ldots+\gamma_{\nu+1}^{\nu}=s_{\nu+1}^{\nu}(1)
\end{aligned}
$$

From the above we have for all $\nu \in\{1,2,3, \ldots\}$

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|c_{n}^{\nu}\right| \geq s_{\nu+1}^{\nu}(1) \tag{2.15}
\end{equation*}
$$

Combining (2.14) and (2.15) we obtain

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\left|a_{n}\right|-\left|b_{n}\right|\right)^{2} \leq \frac{1}{1-B^{2}}+\frac{1}{1-D^{2}}-\left|\frac{2(X+Y)}{(A+B)(C+D)}\right| s_{\nu+1}^{\nu}(1) . \tag{2.16}
\end{equation*}
$$

From (2.8) it follows that we are able to choose a suitable ν such that the right side of 2.16) is negative. In this way (2.16) follows the contradiction and the proof is complete.

From Theorem 2.1 and Theorem D we immediately have the following
Corollary 2.2. The classes $P(A, B) \star P(C, D)$ and $P(A D+A C+B C, B D)$ are equal if and only if $|B|=1$ or $|D|=1$.

References

[1] G. ENESTRÖM, Härledning af en allmä formel för antalet pensionärer som vid en godtycklig tidpunkt förefinnas inom en sluten pensionskassa, Öfversigt af Kongl. Vetenskaps - Akademiens Förhandlingar, 50 (1893), 405-415.
[2] J. HADAMARD, Théoréme sur les séries entiéres, Acta Mathematica, 22 (1898), 55-63.
[3] W. JANOWSKI, Some extremal problems for certain families of analytic functions, Ann. Polon. Math., 28 (1957), 297-326.
[4] S. KAKEYA, On the limits of the roots of an algebraic equation with positive coefficients, Tôhoku Math. J., 2 (1912), 140-142.
[5] K. PIEJKO, J. SOKÓŁ and J. STANKIEWICZ, On some problem of the convolution of bounded functions, North-Holland Mathematics Studies, 197 (2004), 229-238.
[6] E. LANDAU, Darstellung und Begrundung einiger neurer Ergebnise der Funktionentheorie, Chelsea Publishing Co., New York, N.Y. (1946).
[7] G. PÓLYA and I.J. SCHOENBERG, Remarks on de la Vallée Pousin means and convex conformal maps of the circle, Pacific J. Math., 8 (1958), 295-334.
[8] W. ROGOSINSKI, On the coefficients of subordinate functions, Proc. London Math. Soc., 48(2) (1943), 48-82.
[9] S. RUSCHEWEYH and T. SHEIL-SMALL, Hadamard product of schlicht functions and the Pólya-Schoenberg conjecture, Comtnt. Math. Helv., 48 (1973), 119-135.
[10] S. RUSCHEWEYH and J. STANKIEWICZ, Subordination under convex univalent functions, Bull. Polon. Acad. Sci. Math., 33 (1985), 499-502.
[11] J. STANKIEWICZ and Z. STANKIEWICZ, Convolution of some classes of function, Folia Sci. Univ. Techn. Resov., 48 (1988), 93-101.
[12] H.S. WILF, Subordintating factor sequences for convex maps of the unit circle, Proc. Amer. Math. Soc., 12 (1961), 689-693.

[^0]: ISSN (electronic): 1443-5756
 (c) 2005 Victoria University. All rights reserved.

 229-04

