
Journal of Inequalities in Pure and
Applied Mathematics

http://jipam.vu.edu.au/

Volume 6, Issue 1, Article 4, 2005

ON THE APPROXIMATION OF LOCALLY BOUNDED FUNCTIONS BY
OPERATORS OF BLEIMANN, BUTZER AND HAHN

JESÚS DE LA CAL AND VIJAY GUPTA

DEPARTAMENTO DEMATEMÁTICA APLICADA Y ESTADÍSTICA E INVESTIGACIÓN OPERATIVA

FACULTAD DE CIENCIAS

UNIVERSIDAD DEL PAÍS VASCO

APARTADO 644, 48080 BILBAO , SPAIN

mepcaagj@lg.ehu.es

SCHOOL OFAPPLIED SCIENCES

NETAJI SUBHAS INSTITUTE OFTECHNOLOGY

SECTOR3 DWARKA , NEW DELHI-110045, INDIA

vijay@nsit.ac.in

Received 25 November, 2004; accepted 29 December, 2004
Communicated by A. Lupaş
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1. I NTRODUCTION AND M AIN RESULTS

Bleimann, Butzer and Hahn [1] introduced the Bernstein type operatorLn over the interval
[0,∞) given by

Ln(f, x) :=
n∑

k=0

f

(
k

n− k + 1

)
bn,k(x), x ≥ 0, n = 1, 2, . . . ,

wheref is a real function on[0,∞), and

(1.1) bn,k(x) :=

(
n

k

)
pk

xq
n−k
x , px :=

x

1 + x
, qx := 1− px =

1

1 + x
.
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2 JESÚS DE LACAL AND V IJAY GUPTA

The approximation of uniformly continuous functions by these operators has been considered
in [1] – [4]. For other properties ofLn (preservation of global smoothness, preservation ofφ-
variation, behavior of the iterates, etc.) we refer, for instance, to [4] – [10]. In some of the
mentioned works, the results are achieved by using probabilistic methods. This comes from the
fact thatLn is an operator of probabilistic type. We can actually write

Ln(f, x) = Ef(Zn,x),

whereE denotes mathematical expectation, andZn,x is the random variable given by

(1.2) Zn,x :=
Sn,x

n− Sn,x + 1
, Sn,x := ξ1,x + · · ·+ ξn,x,

whereξ1,x, ξ2,x, . . . are independent random variables having the same Bernoulli distribution
with parameterpx, i.e.,

P (ξk,x = 1) = px = 1− P (ξk,x = 0)

(so thatSn,x has the binomial distribution with parametersn, px). This probabilistic represen-
tation also plays a significant role in the present paper (for a more refined representation useful
for other purposes, see [5, 6]).

Here, we discuss the approximation of real functionsf on the semi axis which are locally
bounded, i.e., bounded on each finite subinterval of[0,∞). In such a case, we set, forx > 0
andh ≥ 0,

ω+
x (f ; h) := sup

x≤t≤x+h
|f(t)− f(x)|,

ω−x (f ; h) := sup
(x−h)+≤t≤x

|f(t)− f(x)|,

ωx(f ; h) := ω+
x (f ; h) + ω−x (f ; h),

where(x − h)+ := max(x − h, 0), and we observe that these functions are (nonnegative and)
nondecreasing on[0,∞). In particular, every continuous function is locally bounded. Also, if
f is locally of bounded variation, i.e., such that

b∨
a

(f) < ∞, 0 ≤ a < b < ∞,

where
∨b

a(f) stands for the total variation off on the interval[a, b], thenf is locally bounded,
and we obviously have

ωx(f ; h) ≤
x+h∨
x−h

(f), 0 ≤ h ≤ x.

This kind of problem has been already considered for other Bernstein-type operators (see, for
instance, [11] – [14] and the references therein). Our main results are stated as follows.

Theorem 1.1.Letg be a real locally bounded function on[0,∞) such thatg(t) = O(tr) (t →
∞), for somer = 1, 2, . . . . If g is continuous atx > 0, then, forn large enough, we have

(1.3) |Ln(g, x)− g(x)| ≤ 7(1 + x)2

(n + 2)x

n∑
k=1

ωx

(
g;

x√
k

)
+ Or,x

(
1

n

)
.

In the following statements (and throughout the paper), we use the notations:

f ∗(x) := f(x+)− f(x−)

f̃(x) :=
f(x+) + f(x−)

2
,
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APPROXIMATION OF LOCALLY BOUNDED FUNCTIONS BY OPERATORS 3

fx := (f − f(x−))1[0,x) + (f − f(x+))1(x,∞)

(1A being the indicator function of the setA), provided that the lateral limitsf(x+) andf(x−)
exist (such a condition is fulfilled whenf is locally of bounded variation). We also use the
symbolbac to indicate the integral part of the real numbera.

Theorem 1.2.Letf be a real locally bounded function on[0,∞) such thatf(t) = O(tr) (t →
∞), for somer = 1, 2, . . . . If x > 0, andf(x+) andf(x−) exist, then we have forn large
enough∣∣∣Ln(f, x)− f̃(x)

∣∣∣
≤ ∆n,x(fx) +

1.6 + x + 2.6 x2

√
nx(1 + x)

· |f
∗(x)|
2

+
εn,x(1 + x)√

2enx
|f(x)− f(x−)|,

where∆n,x(fx) is the right-hand side of (1.3) withg replaced byfx, and

εn,x :=

{
1 if (n + 1)px ∈ {1, 2, . . . , n}

0 otherwise.

Theorem 1.3. Let g be a real function on[0,∞) such thatg(t) = O(tr) (t → ∞), for some
r = 1, 2, . . . , and having the form

g(t) = c +

∫ t

0

f(u) du, t ≥ 0,

wherec is a constant andf is measurable and locally bounded on[0,∞). If x > 0, andf(x+)
andf(x−) exist, then we have forn large enough∣∣∣∣Ln(g, x)− g(x)−

√
x(1 + x)√

2πn
f ∗(x)

∣∣∣∣
≤ 5(1 + x)2

n + 2

b
√

nc∑
k=1

ωx

(
fx;

x

k

)
+|f ∗(x)| ox

(
n−1/2

)
+Or,x(n

−1).

The proofs of the preceding theorems are given in Sections 3 – 5. In Section 2, we collect the
necessary auxiliary results. Some remarks on moments close the paper.

2. AUXILIARY RESULTS

In the following lemma,Φ denotes the standard normal distribution function, andF ∗
n,x stands

for the distribution function ofS∗
n,x := (Sn,x − npx)

/√
npxqx ,, whereSn,x is the same as in

(1.2). Such a lemma is nothing but the application of the well-known Berry-Esseen theorem
(cf. [15]) to the situation at hand.

Lemma 2.1. We have, forx > 0 andn ≥ 1,

sup
−∞<t<∞

|F ∗
n,x(t)− Φ(t)| ≤ 0.8(p3

xqx + pxq
3
x)√

n(pxqx)3/2
=

0.8(1 + x2)√
nx(1 + x)

.

Lemma 2.2. Letx > 0 andn ≥ 1. Then, we have:

(a)

Ln((· − x)2, x) = E(Zn,x − x)2 ≤ 3x(1 + x)2

n + 2
.
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4 JESÚS DE LACAL AND V IJAY GUPTA

(b)

P (Zn,x ≤ x− h) + P (Zn,x ≥ x + h) ≤ 3x(1 + x)2

(n + 2)h2
, h > 0.

(c)

|P (Zn,x > x)− P (Zn,x ≤ x)| ≤
√

x

n
+

1.6(1 + x2)√
nx(1 + x)

.

(d)

Ln((· − x), x) = E(Zn,x − x) = −xpn
x = ox(n

−1), (n →∞).

(e)

Ln(| · −x|, x) = E|Zn,x − x| =
√

2x(1 + x)√
πn

+ ox(n
−1/2), (n →∞).

Proof. Part (a) was shown in [10]. Part (b) follows from (a) and the fact that, by Markov’s
inequality,

P (Zn,x ≤ x− h) + P (Zn,x ≥ x + h) = P (|Zn,x − x| ≥ h) ≤ E(Zn,x − x)2

h2
.

To show (c), observe that

|P (Zn,x > x)− P (Zn,x ≤ x)|= |1− 2P (Zn,x ≤ x)|
= |1− 2P (Sn,x ≤ (n + 1)px)|

=

∣∣∣∣1− 2F ∗
n,x

(√
x

n

)∣∣∣∣
≤ 2

∣∣∣∣Φ(√x

n

)
− F ∗

n,x

(√
x

n

)∣∣∣∣+ ∣∣∣∣1− 2Φ

(√
x

n

)∣∣∣∣ .
Thus, the conclusion in part (c) follows from Lemma 2.1 and the fact that (cf. [16])

0 < 2Φ(t)− 1 ≤
(
1− e−t2

)1/2

≤ t, (t > 0).

Part (d) is immediate. Finally, to show (e), letm := b(n + 1)pxc. We have

Ln(| · −x|, x)− Ln((· − x), x)= 2
m∑

k=0

(
x− k

n− k + 1

)
bn,k(x)

= 2x
m∑

k=0

bn,k(x)− 2
m∑

k=1

n!

(k − 1)!(n− k + 1)!
pk

xq
n−k
x

= 2x
m∑

k=0

bn,k(x)− 2x
m−1∑
k=0

bn,k(x)

= 2x bn,m(x)

=

√
2x(1 + x)√

πn
+ ox(n

−1/2), (n →∞),

the last equality by [13, Lemma 1], and the conclusion follows from (d). �
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APPROXIMATION OF LOCALLY BOUNDED FUNCTIONS BY OPERATORS 5

Lemma 2.3. Let x > 0 and r = 1, 2, . . . . Then, we have for all integersn such that(n +
1)(p2x − p3x/2) ≥ r,∑

k∈K

kr

(n− k + 1)r
bn,k(x)≤ 12 r!

r∑
s=1

{r

s

} xs−1(1 + x)r−s+2

n + r − s + 2
· n!

(n + r − s)!

= Or,x(n
−1), (n →∞),

where the
{

r
s

}
are the Stirling numbers of the second kind, andK is the set of all integersk

such thatn ≥ k > (n− k + 1)2x (i.e.,n ≥ k > (n + 1)p2x).

Proof. Using the well known identity

ar =
r∑

s=1

{r

s

}
a(a− 1) · · · (a− s + 1),

we can write

(2.1)
∑
k∈K

kr

(n− k + 1)r
bn,k(x) =

r∑
s=1

{r

s

}
As,

where

As:=
∑
k∈K

k(k − 1) · · · (k − s + 1)

(n− k + 1)r
bn,k(x)

=
∑
k∈K

1

(n− k + 1)r
· n!

(k − s)!(n− k)!
pk

xq
n−k
x .

Since

1

(n− k + 1)r
=

r∏
i=1

[
1

n− k + i

n− k + i

n− k + 1

]

=
r∏

i=1

[
1

n− k + i

(
1 +

i− 1

n− k + 1

)]

≤
r∏

i=1

i

n− k + i
=

r!(n− k)!

(n− k + r)!
,

we have

As≤ r!
∑
k∈K

n!

(k − s)!(n− k + r)!
pk

xq
n−k
x

= r!
∑
l∈Ks

n!

l!(n + r − s− l)!
pl+s

x qn−l−s
x

=
r!n!ps

xq
−r
x

(n + r − s)!

∑
l∈Ks

(
n + r − s

l

)
xl

(1 + x)n+r−s

≤ r!n!ps
xq
−r
x

(n + r − s)!

∑
l∈K′

(
n + r − s

l

)
xl

(1 + x)n+r−s
,

whereKs := {k − s : k ∈ K}, andK ′ stands for the set of all integersl such thatn ≥ l >
(n− l + 1)(3x/2) (observe that, by the assumption onn, we haveKs ⊂ K ′). The probabilistic
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6 JESÚS DE LACAL AND V IJAY GUPTA

interpretation of the last sum together with Lemma 2.2(b) yield

As≤
r!n!xs(1 + x)r−s

(n + r − s)!
P

(
Zn+r−s,x >

3x

2

)
≤ 12 r!n!xs−1(1 + x)r−s+2

(n + r − s)!(n + r − s + 2)
,(2.2)

and the conclusion follows from (2.1) and (2.2). �

Remark 2.4. The same procedure as in the preceding proof leads to the following upper bound
for the integral moments ofLn (or Zn,x):

Ln(tr, x) = E(Zn,x)
r

=
n∑

k=0

kr

(n− k + 1)r
bn,k(x)

≤ r!
r∑

s=1

{r

s

} n!xs(1 + x)r−s

(n + r − s)!
.

3. PROOF OF THEOREM 1.1

Without loss of generality, we assume thatg(x) = 0. Denote byKn,x the distribution function
of Zn,x, i.e.,

Kn,x(t) := P (Zn,x ≤ t) =
∑

k≤(n−k+1)t

bn,k(x) t ≥ 0.

We can writeLn(g, x) as the Lebesgue-Stieltjes integral

Ln(g, x) = Eg(Zn,x) =

∫
[0,∞)

g(t) dKn,x(t) =
4∑

j=1

∫
Ij

g(t) dKn,x(t),

where

I1 :=

[
0, x− x√

n

]
, I2 :=

(
x− x√

n
, x +

x√
n

]
,

I3 :=

(
x +

x√
n

, 2x

]
and I4 := (2x,∞).

We obviously have ∫
I2

|g(t)| dKn,x(t)≤ ωx

(
g;

x√
n

)∫
I2

dKn,x(t)

≤ ωx

(
g;

x√
n

)
≤ 1

n

n∑
k=1

ωx

(
g;

x√
k

)
.(3.1)

On the other hand, from the asymptotic assumption ong, we have

|g(t)| ≤ M tr, t ≥ α,
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APPROXIMATION OF LOCALLY BOUNDED FUNCTIONS BY OPERATORS 7

for some constantsM > 0 andα ≥ 2x. Therefore,∫
I4

|g(t)| dKn,x(t)=

(∫
(2x,α]

+

∫
(α,∞)

)
|g(t)| dKn,x(t)

≤ ω+
x (g; α− x)P (Zn,x > 2x) + M

∑
k>(n−k+1)α

kr

(n− k + 1)r
bn,k(x).

By Lemma 2.2(b) and Lemma 2.3, this shows that

(3.2)
∫

I4

|g(t)| dKn,x(t) = Or,x(n
−1) (n →∞).

Finally, using Lemma 2.2(b) and integration by parts (follow the same procedure as in the proof
of Theorem 1 in [13]), we obtain∫

I1

|g(t)| dKn,x(t)≤
∫

I1

ω−x (g; x− t) dKn,x(t)

≤ 3x(1 + x)2

(n + 2)

[
ω−x (g; x)

x2
+ 2

∫ x−x/
√

n

0

ω−x (g; x− t)

(x− t)3
dt

]

≤ 6(1 + x)2

(n + 2)x

n∑
k=1

ω−x

(
g;

x√
k

)
,(3.3)

and, analogously,

(3.4)
∫

I3

|g(t)| dKn,x(t) ≤
6(1 + x)2

(n + 2)x

n∑
k=1

ω+
x

(
g;

x√
k

)
.

The conclusion follows from (3.1) – (3.4).

4. PROOF OF THEOREM 1.2

We can write, fort ≥ 0,

(4.1) f(t)− f̃(x) = fx(t) +
f ∗(x)

2
σx(t) + (f(x)− f̃(x))δx(t),

whereσx := −1[0,x) + 1(x,∞), andδx := 1{x} is Dirac’s delta atx (this is the so called Bojanic-
Vuilleumier-Cheng decomposition).

By Theorem 1.1, we have

(4.2) |Ln(fx, x)| ≤ ∆n,x(fx),

where∆n,x(fx) is the right-hand side of (1.2) withg replaced byfx. Moreover,

Ln(σx, x)= P (Zn,x > x)− P (Zn,x < x)

= (P (Zn,x > x)− P (Zn,x ≤ x)) + P (Zn,x = x),(4.3)

and

(4.4) Ln(δx, x) = P (Zn,x = x).

Using Lemma 2.2(c) and the fact that (cf. [17, Theorem 1])

P (Zn,x = x) =

{ (
n
k

)
pk

xq
n−k
x ≤ (1+x)√

2enx
if (n + 1)px = k ∈ {1, 2, . . . , n}

0 otherwise,

the conclusion readily follows from (4.1) – (4.4).
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8 JESÚS DE LACAL AND V IJAY GUPTA

5. PROOF OF THEOREM 1.3

Using the decomposition (4.1), it is easily checked that

(5.1) Ln(g, x)− g(x) =
4∑

i=1

Ai(n, x),

where

A1(n, x) := f̃(x)Ln((· − x), x) +
f ∗(x)

2
Ln(| · −x|, x),

A2(n, x) :=

∫
[0,x]

(∫ x

t

fx(u) du

)
dKn,x(t),

A3(n, x) :=

∫
(x,2x]

(∫ t

x

fx(u) du

)
dKn,x(t),

A4(n, x) :=

∫
(2x,∞)

(∫ t

x

fx(u) du

)
dKn,x(t),

andKn,x(t) is the same as in the preceding proofs.
From Lemma 2.2(d,e), we have

(5.2) A1(n, x) =

√
x(1 + x)√

2πn
f ∗(x) + f ∗(x) ox(n

−1/2) + ox(n
−1), (n →∞).

Next, we estimateA2(n, x). By Fubini’s theorem,

A2(n, x) =

∫ x

0

Kn,x(u) fx(u) du =

(∫ x−x/
√

n

0

+

∫ x

x−x/
√

n

)
Kn,x(u) fx(u) du.

It is clear that ∣∣∣∣∫ x

x−x/
√

n

Kn,x(u) fx(u) du

∣∣∣∣≤ ∫ x

x−x/
√

n

|fx(u)| du

≤
∫ x

x−x/
√

n

ω−x (fx; x− u) du

≤ x√
n

ω−x

(
fx;

x√
n

)

≤ 2x

n

b
√

nc∑
k=1

ω−x

(
fx;

x

k

)
,

and, using Lemma 2.2(b),∣∣∣∣∣
∫ x−x/

√
n

0

Kn,x(u) fx(u) du

∣∣∣∣∣≤ 3x(1 + x)2

(n + 2)

∫ x−x/
√

n

0

|fx(u)|
(x− u)2

du

≤ 3x(1 + x)2

(n + 2)

∫ x−x/
√

n

0

ω−x (fx; x− u)

(x− u)2
du

≤ 3(1 + x)2

(n + 2)

∫ √
n

1

ω−x

(
fx;

x

t

)
dt

≤ 3(1 + x)2

n + 2

b
√

nc∑
k=1

ω−x

(
fx;

x

k

)
.
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APPROXIMATION OF LOCALLY BOUNDED FUNCTIONS BY OPERATORS 9

We therefore conclude that

(5.3) |A2(n, x)| ≤ 5(1 + x)2

n + 2

b
√

nc∑
k=1

ω−x

(
fx;

x

k

)
.

Similarly,

(5.4) |A3(n, x)| ≤ 5(1 + x)2

n + 2

b
√

nc∑
k=1

ω+
x

(
fx;

x

k

)
.

Finally,

A4(n, x) =

∫
(2x,∞)

g(t) dKn,x(t)−
∫

(2x,∞)

[g(x) + f(x+)(t− x)] dKn,x(t),

and, by the asymptotic assumption ong, Lemma 2.2(b) and Lemma 2.3, we obtain

(5.5) |A4(n, x)| = Or,x(n
−1), (n →∞).

The conclusion follows from (5.1) – (5.5).

6. REMARKS ON M OMENTS

Fix x > 0, and letg(·) := | · −x|β, with β > 2. Since

ωx(g, h) = 2 hβ, 0 ≤ h ≤ x,

and
n∑

k=1

k−β/2 = O(1), (n →∞),

we conclude from Theorem 1.1 that

Ln(| · −x|β, x) = Or,x(n
−1), (n →∞).

In the case that0 < β ≤ 2, we have, by Jensen’s inequality (or Hölder’s inequality) and
Lemma 2.2(a),

Ln(| · −x|β, x) = E|Zn,x − x|β ≤
(
E(Zn,x − x)2

)β/2 ≤
(

3x(1 + x)2

n + 2

)β
2

,

for all n ≥ 1.
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