Journal of Inequalities in Pure and Applied Mathematics

Volume 7, Issue 3, Article 94, 2006

COEFFICIENTS OF INVERSE FUNCTIONS IN A NESTED CLASS OF STARLIKE FUNCTIONS OF POSITIVE ORDER

A.K. MISHRA AND P. GOCHHAYAT
Department of Mathematics
Berhampur University
Ganjam, Orissa, 760007, India
akshayam2001@yahoo.co.in

pb_gochhayat@yahoo.com.
Received 28 July, 2005; accepted 10 March, 2006
Communicated by H. Silverman

AbSTRACT. In the present paper we find the estimates on the $n^{\text {th }}$ coefficients in the Maclaurin's series expansion of the inverse of functions in the class $\mathcal{S}_{\delta}(\alpha),(0 \leq \delta<\infty, 0 \leq \alpha<1)$, consisting of analytic functions $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ in the open unit disc and satisfying $\sum_{n=2}^{\infty} n^{\delta}\left(\frac{n-\alpha}{1-\alpha}\right)\left|a_{n}\right| \leq 1$. For each n these estimates are sharp when α is close to zero or one and δ is close to zero. Further for the second, third and fourth coefficients the estimates are sharp for every admissible values of α and δ.

[^0]2000 Mathematics Subject Classification. 30C45.

1. Introduction

Let \mathcal{U} denote the open unit disc in the complex plane

$$
\mathcal{U}:=\{z \in \mathbb{C}:|z|<1\} .
$$

Let \mathcal{S} be the class of normalized analytic univalent functions in \mathcal{U} i.e. f is in \mathcal{S} if f is one to one in \mathcal{U}, analytic and

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} ; \quad(z \in \mathcal{U}) \tag{1.1}
\end{equation*}
$$

[^1]The function $f \in \mathcal{S}$ is said to be in $\mathcal{S}^{*}(\alpha)(0 \leq \alpha<1)$, the class of univalent starlike functions of order α, if

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, \quad(z \in \mathcal{U})
$$

and f is said to be in the class $\mathcal{C} \mathcal{V}(\alpha)$ of univalent convex functions of order α if $z f^{\prime} \in \mathcal{S}^{*}(\alpha)$. The linear mapping $f \rightarrow z f^{\prime}$ is popularly known as the Alexander transformation. A well known sufficient condition, for the function f of the form (1.1) to be in the class \mathcal{S}, is

$$
\begin{equation*}
\sum_{n=2}^{\infty} n\left|a_{n}\right| \leq 1 \quad \text { (see e.g. [17] p. 212]). } \tag{1.2}
\end{equation*}
$$

In fact, (1.2) is sufficient for f to be in the smaller class $\mathcal{S}^{*}(0) \equiv \mathcal{S}^{*}$ (see e.g [4]). An analogous sufficient condition for $\mathcal{S}^{*}(\alpha)(0 \leq \alpha<1)$ is

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(\frac{n-\alpha}{1-\alpha}\right)\left|a_{n}\right| \leq 1 \quad \text { (see [15]). } \tag{1.3}
\end{equation*}
$$

The Alexander transformation gives that

$$
\begin{equation*}
\sum_{n=2}^{\infty} n\left(\frac{n-\alpha}{1-\alpha}\right)\left|a_{n}\right| \leq 1 \tag{1.4}
\end{equation*}
$$

is a sufficient condition for f to be in $\mathcal{C} \mathcal{V}(\alpha)$. We recall the following:
Definition $1.1([8,12])$. The function f given by the series (1.1) is said to be in the class $\mathcal{S}_{\delta}(\alpha)$ $(0 \leq \alpha<1,-\infty<\delta<\infty)$ if

$$
\begin{equation*}
\sum_{n=2}^{\infty} n^{\delta}\left(\frac{n-\alpha}{1-\alpha}\right)\left|a_{n}\right| \leq 1 \tag{1.5}
\end{equation*}
$$

is satisfied.
For each fixed n the function n^{δ} is increasing with respect to δ. Thus it follows that if $\delta_{1}<\delta_{2}$, then $\mathcal{S}_{\delta_{2}}(\alpha) \subset \mathcal{S}_{\delta_{1}}(\alpha)$. Consequently, by (1.3), the functions in $\mathcal{S}_{\delta}(\alpha)$ are univalent starlike of order α if $\delta \geq 0$ and further if $\delta \geq 1$, then by $\sqrt{1.4}, \mathcal{S}_{\delta}(\alpha)$ contains only univalent convex functions of order α. Also we know (see e.g. [12, p. 224]) that if $\delta<0$ then the class $\mathcal{S}_{\delta}(\alpha)$ contains non-univalent functions as well. Basic properties of the class $\mathcal{S}_{\delta}(\alpha)$ have been studied in [8, 11, 12, 13]. We also note that if $f \in \mathcal{S}_{\delta}(\alpha)$ then

$$
\left|a_{n}\right| \leq \frac{(1-\alpha)}{n^{\delta}(n-\alpha)} ; \quad(n=2,3, \ldots)
$$

and equality holds for each n only for functions of the form

$$
f_{n}(z)=z+\frac{(1-\alpha)}{n^{\delta}(n-\alpha)} e^{i \theta} z^{n}, \quad(\theta \in \mathbb{R})
$$

We shall use this estimate in our investigation.
The inverse f^{-1} of every function $f \in \mathcal{S}$, defined by $f^{-1}(f(z))=z$, is analytic in $|w|<$ $r(f),\left(r(f) \geq \frac{1}{4}\right)$ and has Maclaurin's series expansion

$$
\begin{equation*}
f^{-1}(w)=w+\sum_{n=2}^{\infty} b_{n} w^{n} \quad(|w|<r(f)) . \tag{1.6}
\end{equation*}
$$

The De-Branges theorem [2], previously known as the Bieberbach conjecture; states that if the function f in \mathcal{S} is given by the power series (1.1) then $\left|a_{n}\right| \leq n(n=2,3, \ldots)$ with equality for
each n only for the rotations of the Koebe function $\frac{z}{(1-z)^{2}}$. Early in 1923 Löwner [10] invented the famous parametric method to prove the Bieberbach conjecture for the third coefficient (i.e. $\left.\left|a_{3}\right| \leq 3, f \in \mathcal{S}\right)$. Using this method he also found sharp bounds on all the coefficients for the inverse functions in \mathcal{S} (or $\left.\mathcal{S}^{*}\right)$. Thus, if $f \in \mathcal{S}\left(\right.$ or $\left.\mathcal{S}^{*}\right)$ and f^{-1} is given by (1.6) then

$$
\left|b_{n}\right| \leq \frac{1}{n+1}\binom{2 n}{n} ;(n=2,3, \ldots)(\text { cf [10]; also see [5], p. 222] })
$$

with equality for every n for the inverse of the Koebe function $k(z)=z /(1+z)^{2}$. Although the coefficient estimate problem for inverse functions in the whole class \mathcal{S} was completely solved in early part of the last century; for certain subclasses of \mathcal{S} only partial results are available in literature. For example, if $f \in \mathcal{S}^{*}(\alpha),(0 \leq \alpha<1)$ then the sharp estimates

$$
\begin{align*}
& \left|b_{2}\right| \leq 2(1-\alpha) \\
& \text { and } \\
& \left|b_{3}\right| \leq \begin{cases}(1-\alpha)(5-6 \alpha) ; & 0 \leq \alpha \leq \frac{2}{3} \\
1-\alpha ; & \frac{2}{3} \leq \alpha<1\end{cases} \tag{7}
\end{align*}
$$

hold. Further, if $f \in \mathcal{C V}$ then $\left|b_{n}\right| \leq 1(n=2,3, \ldots, 8)$ (cf. [1, 9]), while $\left|b_{10}\right|>1$ [6]. However the problem of finding sharp bounds for b_{n} for $f \in \mathcal{S}^{*}(\alpha)(n \geq 4)$ and for $f \in$ $\mathcal{C V}(n \geq 9)$ still remains open.

The object of the present paper is to study the coefficient estimate problem for the inverse of functions in the class $\mathcal{S}_{\delta}(\alpha) ;(\delta \geq 0,0 \leq \alpha<1)$. We find sharp bounds for $\left|b_{2}\right|,\left|b_{3}\right|$ and $\left|b_{4}\right|$ for $f \in S_{\delta}(\alpha)(0 \leq \alpha<1$ and $\delta \geq 0)$. We further show that for every positive integer $n \geq 2$ there exist positive real numbers $\varepsilon_{n}, \delta_{n}$ and t_{n} such that for every $f \in \mathcal{S}_{\delta}(\alpha)$ the following sharp estimates hold:

$$
\left|b_{n}\right| \leq \begin{cases}\frac{2}{n 2^{(n-1) \delta}}\binom{2 n-3}{n-2}\left(\frac{1-\alpha}{2-\alpha}\right)^{n-1} ; & \left(0 \leq \alpha \leq \varepsilon_{n}, 0 \leq \delta \leq \delta_{n}\right) \tag{1.7}\\ \frac{1-\alpha}{n^{\delta}(n-\alpha)} ; & \left(1-t_{n} \leq \alpha<1, \delta>0\right)\end{cases}
$$

For each $n=2,3, \ldots$, there are two different extremal functions; in contrast to only one extremal function for every n for the whole class $\mathcal{S}\left(\right.$ or $\left.\mathcal{S}^{*}(0)\right)$. We also obtain crude estimates for $\left|b_{n}\right|\left(n=2,3,4, \ldots ; 0 \leq \alpha<1, \delta>0 ; f \in \mathcal{S}_{\delta}(\alpha)\right)$. Our investigation includes some results of Silverman [16] for the case $\delta=0$ and provides new information for $\delta>0$.

2. Notations and Preliminary Results

Let the function s given by the power series

$$
\begin{equation*}
s(z)=1+d_{1} z+d_{2} z^{2}+\cdots \tag{2.1}
\end{equation*}
$$

be analytic in a neighbourhood of the origin. For a real number p define the function h by

$$
\begin{equation*}
h(z)=(s(z))^{p}=\left(1+d_{1} z+d_{2} z^{2}+\cdots\right)^{p}=1+\sum_{k=1}^{\infty} C_{k}^{(p)} z^{k} . \tag{2.2}
\end{equation*}
$$

Thus $C_{k}^{(p)}$ denotes the $k^{t h}$ coefficient in the Maclaurin's series expansion of the $p^{t h}$ power of the function $s(z)$. We need the following:
Lemma 2.1 ([14]). Let the coefficients $C_{k}^{(p)}$ be defined as in 2.2 , then

$$
\begin{equation*}
C_{k+1}^{(p)}=\sum_{j=0}^{k}\left[p-\frac{(p+1) j}{k+1}\right] d_{k+1-j} C_{j}^{(p)} ; \quad\left(k=0,1, \ldots ; C_{0}^{(p)}=1\right) . \tag{2.3}
\end{equation*}
$$

Lemma 2.2 ([16]). If k and n are positive integers with $k \leq n-2$, then

$$
A_{j}=\binom{n+j-1}{j}\left(\frac{n(k+1-j)+j}{2^{j}(k+2-j)}\right)
$$

is a strictly increasing function of $j, j=1,2, \ldots, k$.
Lemma 2.3. Let k and n be positive integers with $k \leq n-2$. Write

$$
\begin{gathered}
A_{j}(\alpha, \delta)=\frac{(1-\alpha)}{2^{j \delta}}\binom{n+j-1}{j} \frac{(n(k+1-j)+j)}{(k+2-j)^{\delta}(k+2-j-\alpha)}\left(\frac{1-\alpha}{2-\alpha}\right)^{j} \\
(0 \leq \alpha<1, \delta>0) .
\end{gathered}
$$

Then for each n there exist positive real numbers ε_{n} and δ_{n} such that $A_{j}(\alpha, \delta)$ is strictly increasing in j for $0 \leq \alpha<\varepsilon_{n}, 0 \leq \delta<\delta_{n}$ and $j=1,2, \ldots, k$.

Proof. Write

$$
\begin{aligned}
h_{j}(\alpha, \delta)= & A_{j+1}(\alpha, \delta)-A_{j}(\alpha, \delta) \\
= & \frac{(1-\alpha)^{j+1}}{2^{j \delta}(2-\alpha)^{j}}\binom{n+j-1}{j}\left[\frac{(n+j)(n(k-j)+(j+1))(1-\alpha)}{2^{\delta}(j+1)(k+1-j)^{\delta}(k+1-j-\alpha)(2-\alpha)}\right. \\
& \left.\quad-\frac{(n(k+1-j)+j)}{(k+2-j)^{\delta}(k+2-j-\alpha)}\right] .
\end{aligned}
$$

We observe that for each fixed $j(j=1,2, \ldots, k-1) h_{j}(\alpha, \delta)$ is a continuous function of (α, δ). Also $\lim _{(\alpha, \delta) \rightarrow(0,0)} h_{j}(\alpha, \delta)=h_{j}(0,0)=A_{j+1}(0,0)-A_{j}(0,0)>0$ by Lemma 2.2 . Thus there exists an open circular disc $B\left(0, r_{j}\right)$ with center at $(0,0)$ and radius $r_{j}>0$ such that $h_{j}(\alpha, \delta)>0$ for $(\alpha, \delta) \in B\left(0, r_{j}\right)$ for each $j=1,2, \ldots, k-1$. Consequently, $h_{j}(\alpha, \delta)>0$ for all $j(j=1,2, \ldots, k-1)$ and $(\alpha, \delta) \in B(0, r)$, where $r=\min _{1 \leq j \leq k-1} r_{j}$. If we choose $\varepsilon_{n}=\delta_{n}=\frac{\sqrt{2}}{2} r$, then $A_{j}(\alpha, \delta)$ is strictly increasing in j for $0 \leq \alpha<\varepsilon_{n}, 0 \leq \delta<\delta_{n}$ and $j=1,2, \ldots, k$. The proof of Lemma 2.3 is complete.

3. Main Results

We have the following:
Theorem 3.1. Let the function f, given by the series (1.1) be in $\mathcal{S}_{\delta}(\alpha)(0 \leq \alpha<1,0 \leq \delta<$ $\infty)$. Write

$$
\begin{equation*}
f^{-1}(w)=w+\sum_{n=2}^{\infty} b_{n} w^{n}, \quad\left(|w|<r_{0}(f)\right) \tag{3.1}
\end{equation*}
$$

for some $r_{0}(f) \geq \frac{1}{4}$. Then
(a)

$$
\begin{equation*}
\left|b_{2}\right| \leq \frac{(1-\alpha)}{2^{\delta}(2-\alpha)} ; \quad(0 \leq \alpha<1,0 \leq \delta<\infty) \tag{3.2}
\end{equation*}
$$

Set

$$
\begin{equation*}
\delta_{0}=\frac{\log 3-\log 2}{\log 4-\log 3} \quad \text { and } \quad \delta_{1}=\frac{\log 5}{\log 2}-1 . \tag{3.3}
\end{equation*}
$$

(b) (i) If $0 \leq \delta \leq \delta_{0}$, then

$$
\left|b_{3}\right| \leq \begin{cases}\frac{2(1-\alpha)^{2}}{2^{2 \delta}(2-\alpha)^{2}} ; & \left(0 \leq \alpha \leq \alpha_{0}\right) \tag{3.4}\\ \frac{(1-\alpha)}{3^{\delta}(3-\alpha)} ; & \left(\alpha_{0} \leq \alpha<1\right),\end{cases}
$$

where α_{0} is the only root, in the interval $0 \leq \alpha<1$, of the equation

$$
\begin{equation*}
\left(2 \cdot 3^{\delta}-2^{2 \delta}\right) \alpha^{2}-4\left(2 \cdot 3^{\delta}-2^{2 \delta}\right) \alpha+\left(6 \cdot 3^{\delta}-4 \cdot 2^{2 \delta}\right)=0 . \tag{3.5}
\end{equation*}
$$

(ii) Further, if $\delta>\delta_{0}$, then

$$
\begin{equation*}
\left|b_{3}\right| \leq \frac{(1-\alpha)}{3^{\delta}(3-\alpha)} ; \quad(0 \leq \alpha<1) \tag{3.6}
\end{equation*}
$$

(c) (i) If $0 \leq \delta \leq \delta_{1}$, then

$$
\left|b_{4}\right| \leq \begin{cases}\frac{5(1-\alpha)^{3}}{2^{3 \delta}(2-\alpha)^{3}} ; & \left(0 \leq \alpha<\alpha_{1}\right) \tag{3.7}\\ \frac{(1-\alpha)}{4^{\delta}(4-\alpha)} ; & \left(\alpha_{1} \leq \alpha<1\right)\end{cases}
$$

where α_{1} is the only root in the interval $0 \leq \alpha<1$, of the equation
$\left(2^{3 \delta}-5 \cdot 4^{\delta}\right) \alpha^{3}-6\left(2^{3 \delta}-5 \cdot 4^{\delta}\right) \alpha^{2}-3\left(15 \cdot 4^{\delta}-4 \cdot 2^{3 \delta}\right) \alpha+4\left(5 \cdot 4^{\delta}-2 \cdot 2^{3 \delta}\right)=0$.
(ii) If $\delta>\delta_{1}$, then

$$
\begin{equation*}
\left|b_{4}\right| \leq \frac{(1-\alpha)}{4^{\delta}(4-\alpha)} ; \quad(0 \leq \alpha<1) . \tag{3.9}
\end{equation*}
$$

All the estimates are sharp.
Proof. We know from [7] that

$$
b_{n}=\frac{1}{2 \pi i n} \int_{|z|=r}\left[\frac{1}{f(z)}\right]^{n} d z
$$

For fixed n write

$$
h(z)=\left[\frac{z}{f(z)}\right]^{n}=\frac{1}{\left(1+\sum_{k=2}^{\infty} a_{k} z^{k-1}\right)^{n}}=1+\sum_{k=1}^{\infty} C_{k}^{(-n)} z^{k} .
$$

Thus

$$
n b_{n}=\frac{1}{2 \pi i} \int_{|z|=r} \frac{h(z)}{z^{n}} d z=\frac{h^{(n-1)}(0)}{(n-1)!}=C_{n-1}^{(-n)} .
$$

Therefore a function, which maximizes $\left|C_{n-1}^{(-n)}\right|$ will also maximize $\left|b_{n}\right|$. Now write $w(z)=$ $-\sum_{k=2}^{\infty} a_{k} z^{k-1}$ and $h(z)=\left(1+w(z)+w^{2}(z)+\cdots\right)^{n},(z \in \mathcal{U})$. It follows that all the coefficients in the expansion of $h(z)$ shall be nonnegative if $f(z)$ is of the form

$$
\begin{equation*}
f(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k}, \quad\left(a_{k} \geq 0 ; k=2,3, \ldots\right) \tag{3.10}
\end{equation*}
$$

Consequently, $\max _{f \in \mathcal{S}_{\delta}(\alpha)}\left|C_{n-1}^{(-n)}\right|$ must occur for a function in $\mathcal{S}_{\delta}(\alpha)$ with the representation (3.10).
(a) Now

$$
\left(\frac{z}{f(z)}\right)^{2}=\left(1-\sum_{k=2}^{\infty} a_{k} z^{k-1}\right)^{-2}=1+2 a_{2} z+\cdots
$$

Therefore

$$
C_{1}^{(-2)}=2 a_{2}=\frac{2(1-\alpha)}{2^{\delta}(2-\alpha)} \lambda_{2} ; \quad\left(0 \leq \lambda_{2} \leq 1,0 \leq \alpha<1,0 \leq \delta<1\right)
$$

and the maximum $C_{1}^{(-2)}$ is obtained by replacing $\lambda_{2}=1$. Equivalently

$$
\left|b_{2}\right|=\frac{C_{1}^{(-2)}}{2} \leq \frac{1-\alpha}{2^{\delta}(2-\alpha)} ; \quad(0 \leq \alpha<1,0 \leq \delta<\infty)
$$

We get (3.2). To show that equality holds in (3.2), consider the function $f_{2}(z)$ defined by

$$
\begin{equation*}
f_{2}(z)=z-\frac{(1-\alpha)}{2^{\delta}(2-\alpha)} z^{2} ; \quad(z \in \mathcal{U}, 0 \leq \alpha<1,0 \leq \delta<\infty) \tag{3.11}
\end{equation*}
$$

For this function

$$
\left(\frac{z}{f_{2}(z)}\right)^{2}=1+\frac{2(1-\alpha)}{2^{\delta}(2-\alpha)} z+\cdots=1+C_{1}^{(-2)} z+\cdots
$$

and

$$
\left|b_{2}\right|=\frac{C_{1}^{(-2)}}{2}=\frac{(1-\alpha)}{2^{\delta}(2-\alpha)}
$$

The proof of (a) is complete.
To find sharp estimates for $\left|b_{3}\right|$, we consider

$$
h(z)=\left(\frac{z}{f(z)}\right)^{3}=\left(1-a_{2} z-a_{3} z^{2}-\cdots\right)^{-3}=1+\sum_{k=1}^{\infty} C_{k}^{(-3)} z^{k} .
$$

By direct calculation or by taking $p=-3, d_{k}=-a_{k+1}$ in Lemma 2.1, we get,

$$
\begin{equation*}
C_{1}^{(-3)}=3 a_{2} \quad \text { and } \quad C_{2}^{(-3)}=3 a_{3}+2 a_{2} C_{1}^{(-3)}=3 a_{3}+6 a_{2}^{2} \tag{3.12}
\end{equation*}
$$

Substituting $a_{2}=\frac{(1-\alpha) \lambda_{2}}{2^{\delta}(2-\alpha)}$ and $a_{3}=\frac{(1-\alpha) \lambda_{3}}{3^{\delta}(3-\alpha)},\left(0 \leq \lambda_{2}, \lambda_{3} \leq 1, \lambda_{2}+\lambda_{3} \leq 1\right)$ in the equation (3.12) we obtain

$$
C_{2}^{(-3)}=\frac{3(1-\alpha)}{3^{\delta}(3-\alpha)} \lambda_{3}+\frac{6(1-\alpha)^{2}}{2^{2 \delta}(2-\alpha)^{2}} \lambda_{2}^{2}
$$

Equivalently

$$
\begin{equation*}
\frac{C_{2}^{(-3)}}{3}=(1-\alpha)\left\{\frac{\lambda_{3}}{3^{\delta}(3-\alpha)}+\frac{2(1-\alpha) \lambda_{2}^{2}}{2^{2 \delta}(2-\alpha)^{2}}\right\} . \tag{3.13}
\end{equation*}
$$

In order to maximize the right hand side of (3.13), write

$$
G\left(\lambda_{2}, \lambda_{3}\right)=\frac{\lambda_{3}}{3^{\delta}(3-\alpha)}+\frac{2(1-\alpha) \lambda_{2}^{2}}{2^{2 \delta}(2-\alpha)^{2}} ; \quad\left(0 \leq \lambda_{2} \leq 1,0 \leq \lambda_{3} \leq 1, \lambda_{2}+\lambda_{3} \leq 1\right)
$$

The function $G\left(\lambda_{2}, \lambda_{3}\right)$ does not have a maximum in the interior of the square $\left\{\left(\lambda_{2}, \lambda_{3}\right): 0<\right.$ $\left.\lambda_{2}<1,0<\lambda_{3}<1\right\}$, since $G_{\lambda_{2}} \neq 0, G_{\lambda_{3}} \neq 0$. Also if $\lambda_{3}=1$ then $\lambda_{2}=0$ and if $\lambda_{2}=1$ then $\lambda_{3}=0$. Therefore

$$
\max _{\lambda_{3}=1} G\left(\lambda_{2}, \lambda_{3}\right)=\frac{1}{3^{\delta}(3-\alpha)} \quad \text { and } \quad \max _{\lambda_{2}=1} G\left(\lambda_{2}, \lambda_{3}\right)=\frac{2(1-\alpha)}{2^{2 \delta}(2-\alpha)^{2}}
$$

Also

$$
\max _{\lambda_{3}=0} G\left(\lambda_{2}, \lambda_{3}\right)=\frac{2(1-\alpha)}{2^{2 \delta}(2-\alpha)^{2}} \quad \text { and } \quad \max _{\lambda_{2}=0} G\left(\lambda_{2}, \lambda_{3}\right)=\frac{1}{3^{\delta}(3-\alpha)}
$$

We get

$$
\max _{\substack{0 \leq \lambda_{2} \leq 1 \\ 0 \leq \lambda_{3} \leq 1}} G\left(\lambda_{2}, \lambda_{3}\right)=\max \left\{\frac{1}{3^{\delta}(3-\alpha)}, \frac{2(1-\alpha)}{2^{2 \delta}(2-\alpha)^{2}}\right\}
$$

Thus

$$
\frac{C_{3}^{(-2)}}{3} \leq(1-\alpha) \max \left\{\frac{1}{3^{\delta}(3-\alpha)}, \frac{2(1-\alpha)}{2^{2 \delta}(2-\alpha)^{2}}\right\}
$$

We now find the maximum of the above two terms. Note that the sign of the expression

$$
\frac{1}{3^{\delta}(3-\alpha)}-\frac{2(1-\alpha)}{2^{2 \delta}(2-\alpha)^{2}}=\frac{-F(\alpha)}{2^{2 \delta} 3^{\delta}(3-\alpha)(2-\alpha)^{2}}
$$

depends on the sign of the quadratic polynomial $F(\alpha)=a(\delta) \alpha^{2}-4 a(\delta) \alpha+c(\delta)$, where $a(\delta)=3^{\delta} \cdot 2-2^{2 \delta}$ and $c(\delta)=2\left(3^{\delta+1}-2^{2 \delta+1}\right)$. Observe that

$$
\begin{aligned}
& a(\delta)\left\{\begin{array}{ll}
\geq 0 & \text { if } \delta \leq \delta_{0}^{*} \\
<0 & \text { if } \delta>\delta_{0}^{*}
\end{array} ;\right.
\end{aligned} \quad\left(\delta_{0}^{*}=\frac{\log 2}{\log 4-\log 3}\right)
$$

and $\delta_{0} \leq \delta_{0}^{*}$.
(b) (i) The case $0 \leq \delta \leq \delta_{0}$: Suppose $0 \leq \delta \leq \delta_{0}$ then $F(0)=c(\delta) \geq 0, F(1)=-2^{2 \delta}<$ 0 and since $a(\delta) \geq 0, F(\alpha)$ is positive for large values of α. Therefore $F(\alpha) \geq 0$ if $0 \leq \alpha \leq \alpha_{0}$ and $F(\alpha)<0$ if $\alpha_{0}<\alpha<1$ where α_{0} is the unique root of equation $F(\alpha)=0$ in the interval $0 \leq \alpha<1$. Or equivalently $-F(\alpha) \leq 0$ for $0<\alpha \leq \alpha_{0}$ and $-F(\alpha)>0$ for $\alpha_{0}<\alpha<1$. Consequently,

$$
\left|b_{3}\right|=\frac{C_{2}^{(-3)}}{3} \leq \begin{cases}\frac{2(1-\alpha)^{2}}{2^{2 \delta}(2-\alpha)^{2}} ; & \left(0 \leq \alpha \leq \alpha_{0}\right) \\ \frac{(1-\alpha)}{3^{\delta}(3-\alpha)} ; & \left(\alpha_{0} \leq \alpha<1\right)\end{cases}
$$

We get the estimate (3.4).
(ii) The case $\delta_{0}<\delta$: We show below that if $\delta_{0}<\delta \leq \delta_{0}^{*}$ or $\delta_{0}^{*}<\delta$ then $F(\alpha)<0$. Suppose $\delta_{0}<\delta \leq \delta_{0}^{*}$, then $a(\delta) \geq 0$. Consequently, $F(\alpha)>0$ for large positive and negative values of α. Also $F(\overline{0})=c(\delta)<0$ and $F(1)=-2^{2 \delta}<0$. Therefore $F(\alpha)<0$ for every α in the real interval $0 \leq \alpha<1$. Similarly, if $\delta_{0}^{*}<\delta$, then $a(\delta)<0$. Thus $F^{\prime}(\alpha)=2 a(\delta)(\alpha-2)>0 ;(0 \leq \alpha<1)$. Or equivalently $F(\alpha)$ is an increasing function in $0 \leq \alpha<1$. Also $F(1)=-2^{2 \delta}<0$. Therefore $F(\alpha)<0$ in $0 \leq \alpha<1$.
Since $-F(\alpha)>0$ we have

$$
\left|b_{3}\right|=\frac{C_{2}^{(-3)}}{3} \leq \frac{(1-\alpha)}{3^{\delta}(3-\alpha)} \quad\left(0 \leq \alpha<1 ; \delta>\delta_{0}\right)
$$

This is precisely the estimate (3.6). We note that for the function $f_{2}(z)$ defined by (3.11)

$$
\begin{aligned}
\left(\frac{z}{f_{2}(z)}\right)^{3} & =\left(1-\frac{(1-\alpha)}{2^{\delta}(2-\alpha)} z\right)^{-3} \\
& =1+\frac{3(1-\alpha)}{2^{\delta}(2-\alpha)} z+\frac{6(1-\alpha)^{2}}{2^{2 \delta}(2-\alpha)^{2}} z^{2}+\cdots
\end{aligned}
$$

Therefore

$$
\left|b_{3}\right|=\frac{C_{2}^{(-3)}}{3}=\frac{2(1-\alpha)^{2}}{2^{2 \delta}(2-\alpha)^{2}}
$$

We get sharpness in (3.4) with $0 \leq \alpha<\alpha_{0}$. Similarly for the function $f_{3}(z)$ defined by

$$
\begin{equation*}
f_{3}(z)=z-\frac{(1-\alpha)}{3^{\delta}(3-\alpha)} z^{3} ; \quad(z \in \mathcal{U}, 0 \leq \alpha<1,0 \leq \delta<\infty) \tag{3.14}
\end{equation*}
$$

we have

$$
\begin{gathered}
\left(\frac{z}{f_{3}(z)}\right)^{3}=\left(1-\frac{(1-\alpha)}{3^{\delta}(3-\alpha)} z^{2}\right)^{-3}=1+\frac{3(1-\alpha)}{3^{\delta}(3-\alpha)} z^{2}+\cdots \\
\left|b_{3}\right|=\frac{C_{2}^{(-3)}}{3}=\frac{(1-\alpha)}{3^{\delta}(3-\alpha)}
\end{gathered}
$$

This establishes the sharpness of (3.4) with $\alpha_{0} \leq \alpha<1$ and (3.6). The proof of (b) is complete.

In order to find sharp estimates for $\left|b_{4}\right|$, we consider the function

$$
h(z)=\left(\frac{z}{f(z)}\right)^{4}=\left(1-\sum_{k=2}^{\infty} a_{k} z^{k-1}\right)^{-4}=1+\sum_{k=1}^{\infty} C_{k}^{(-4)} z^{k} .
$$

Taking $p=-4$ and $d_{k}=-a_{k+1}$ in Lemma 2.1, we get

$$
C_{1}^{(-4)}=4 a_{2} ; \quad C_{2}^{(-4)}=4 a_{3}+10 a_{2}^{2} ; \quad C_{3}^{(-4)}=4 a_{4}+20 a_{2} a_{3}+20 a_{2}^{3}
$$

Taking $a_{2}=\frac{(1-\alpha)}{2^{\delta}(2-\alpha)} \lambda_{2}, a_{3}=\frac{(1-\alpha)}{3^{\delta}(3-\alpha)} \lambda_{3}$ and $a_{4}=\frac{(1-\alpha)}{4^{\delta}(4-\alpha)} \lambda_{4}$, where $0 \leq \lambda_{2}, \lambda_{3}, \lambda_{4} \leq 1$ and $\lambda_{2}+\lambda_{3}+\lambda_{4} \leq 1$ we get

$$
\begin{aligned}
\left|b_{4}\right| & =\frac{C_{3}^{(-4)}}{4} \\
& =(1-\alpha)\left\{\frac{\lambda_{4}}{4^{\delta}(4-\alpha)}+\frac{5(1-\alpha) \lambda_{2} \lambda_{3}}{2^{\delta} 3^{\delta}(2-\alpha)(3-\alpha)}+\frac{5(1-\alpha)^{2} \lambda_{2}^{3}}{2^{3 \delta}(2-\alpha)^{3}}\right\} \\
& =(1-\alpha) L\left(\lambda_{2}, \lambda_{3}, \lambda_{4}\right) \quad(\text { say }) .
\end{aligned}
$$

Since $L_{\lambda_{2}} \neq 0, L_{\lambda_{3}} \neq 0$ and $L_{\lambda_{4}} \neq 0$, the function L cannot have a local maximum in the interior of cube $0<\lambda_{2}<1,0<\lambda_{3}<1,0<\lambda_{4}<1$. Therefore the constraint $\lambda_{2}+\lambda_{3}+\lambda_{4} \leq 1$ becomes $\lambda_{2}+\lambda_{3}+\lambda_{4}=1$. Hence putting $\lambda_{4}=1-\lambda_{2}-\lambda_{3}$ we get

$$
\begin{aligned}
\left|b_{4}\right| & =\frac{C_{3}^{(-4)}}{4} \\
& =(1-\alpha)\left\{\frac{1-\lambda_{2}-\lambda_{3}}{4^{\delta}(4-\alpha)}+\frac{5(1-\alpha) \lambda_{2} \lambda_{3}}{2^{\delta} 3^{\delta}(2-\alpha)(3-\alpha)}+\frac{5(1-\alpha)^{2} \lambda_{2}^{3}}{2^{3 \delta}(2-\alpha)^{3}}\right\} \\
& =(1-\alpha) H\left(\lambda_{2}, \lambda_{3}\right) \quad \text { (say). }
\end{aligned}
$$

Thus we need to maximize $H\left(\lambda_{2}, \lambda_{3}\right)$ in the closed square $0 \leq \lambda_{2} \leq 1,0 \leq \lambda_{3} \leq 1$. Since

$$
H_{\lambda_{2} \lambda_{2}} \cdot H_{\lambda_{3} \lambda_{3}}-\left(H_{\lambda_{2} \lambda_{3}}\right)^{2}=-\left(\frac{5(1-\alpha)}{2^{\delta} 3^{\delta}(2-\alpha)(3-\alpha)}\right)^{2}<0
$$

the function H cannot have a local maximum in the interior of the square $0 \leq \lambda_{2} \leq 1,0 \leq$ $\lambda_{3} \leq 1$. Further, if $\lambda_{2}=1$ then $\lambda_{3}=0$ and if $\lambda_{3}=1$ then $\lambda_{2}=0$. Therefore

$$
\begin{gathered}
\max _{\lambda_{2}=1} H\left(\lambda_{2}, \lambda_{3}\right)=H(1,0)=\frac{5(1-\alpha)^{2}}{2^{3 \delta}(2-\alpha)^{3}}, \\
\max _{\lambda_{3}=1} H\left(\lambda_{2}, \lambda_{3}\right)=H(0,1)=0 \\
\max _{0<\lambda_{2}<1} H\left(\lambda_{2}, 0\right)=\max \left\{\frac{1-\lambda_{2}}{4^{\delta}(4-\alpha)}+\frac{5(1-\alpha)^{2} \lambda_{2}^{3}}{2^{3 \delta}(2-\alpha)^{3}}\right\} \\
=\max \left\{\frac{1}{4^{\delta}(4-\alpha)}, \frac{5(1-\alpha)^{2}}{2^{3 \delta}(2-\alpha)^{3}}\right\}
\end{gathered}
$$

and

$$
\max _{0 \leq \lambda_{3} \leq 1} H\left(0, \lambda_{3}\right)=\max _{0 \leq \lambda_{3} \leq 1} \frac{1-\lambda_{3}}{4^{\delta}(4-\alpha)}=\frac{1}{4^{\delta}(4-\alpha)} .
$$

Thus

$$
\max _{\substack{0 \leq \lambda_{2} \leq 1 \\ 0 \leq \lambda_{3} \leq 1}} H\left(\lambda_{2}, \lambda_{3}\right)=\max \left\{\frac{1}{4^{\delta}(4-\alpha)}, \frac{5(1-\alpha)^{2}}{2^{3 \delta}(2-\alpha)^{3}}\right\} .
$$

The maximum of the above two terms can be found as in the case for $\left|b_{3}\right|$. We see that the sign of the expression

$$
\frac{5(1-\alpha)^{2}}{2^{3 \delta}(2-\alpha)^{3}}-\frac{1}{4^{\delta}(4-\alpha)}
$$

is same as the sign of the cubic polynomial $P(\alpha)=a(\delta) \alpha^{3}-6 a(\delta) \alpha^{2}-3 b(\delta) \alpha+4 c(\delta)$, where $a(\delta)=2^{3 \delta}-5 \cdot 4^{\delta}, b(\delta)=15 \cdot 4^{\delta}-4 \cdot 2^{3 \delta}$ and $c(\delta)=5 \cdot 4^{\delta}-2 \cdot 2^{3 \delta}$. We observe that

$$
\begin{aligned}
& c(\delta)\left\{\begin{array}{ll}
\geq 0 & \text { if } \delta \leq \delta_{1} \\
<0 & \text { if } \delta>\delta_{1}
\end{array} ; \quad\left(\delta_{1}=\frac{\log 5}{\log 2}-1\right),\right. \\
& b(\delta)\left\{\begin{array}{ll}
\geq 0 & \text { if } \delta \leq \delta_{2} \\
<0 & \text { if } \delta>\delta_{2}
\end{array} ; \quad\left(\delta_{2}=\delta_{1}+\frac{\log 3}{\log 2}-1\right)\right.
\end{aligned}
$$

and

$$
a(\delta)\left\{\begin{array}{ll}
\leq 0 & \text { if } \delta \leq \delta_{3} \\
>0 & \text { if } \delta>\delta_{3}
\end{array} ; \quad\left(\delta_{3}=\frac{\log 5}{\log 2}\right)\right.
$$

Moreover, $\delta_{1}<\delta_{2}<\delta_{3}$. Also the quadratic polynomial $P^{\prime}(\alpha)=3\left(a(\delta) \alpha^{2}-4 a(\delta) \alpha-b(\delta)\right)$ has roots at $2 \pm \sqrt{4+\frac{b}{a}}$.
(c) (i) The case $0 \leq \delta \leq \delta_{1}$: In this case $c(\delta) \geq 0, b(\delta) \geq 0$ and $a(\delta) \leq 0$. Note that both the roots of $P^{\prime}(\alpha)$ are complex numbers and $P^{\prime}(0)=-3 b(\delta) \leq 0$. Therefore $P^{\prime}(\alpha)<0$ for every real number and consequently, $P^{\prime}(\alpha)$ is a decreasing function. Since $P(0)=4 c(\delta) \geq 0$ and $P(1)=-2^{3 \delta}<0$, the function $P(\alpha)$ has a unique
root α_{1} in the interval $0<\alpha<1$. Or equivalently, $P(\alpha) \geq 0$ for $0<\alpha \leq \alpha_{1}$ and $P(\alpha)<0$ if $\alpha_{1}<\alpha<1$. Thus

$$
\left|b_{4}\right| \leq \begin{cases}\frac{5(1-\alpha)^{3}}{2^{3 \delta}(2-\alpha)^{3}} ; & \left(0 \leq \alpha \leq \alpha_{1}\right) \\ \frac{(1-\alpha)}{4^{\delta}(4-\alpha)} ; & \left(\alpha_{1} \leq \alpha<1\right)\end{cases}
$$

We get the estimate (3.7).
(ii) The case $\delta>\delta_{1}$: We shall show below, separately, that if $\delta_{1}<\delta \leq \delta_{2}$ or $\delta_{2}<\delta \leq$ δ_{3} or $\delta_{3}<\delta$ then $P(\alpha)<0$ in $0 \leq \alpha<1$.
First suppose that $\delta_{1}<\delta \leq \delta_{2}$. Then $c(\delta)<0, b(\delta) \geq 0$ and $a(\delta)<0$. Thus, as in case of (c)(i), $P^{\prime}(\alpha)$ has only complex roots and $P^{\prime}(0)<0$. Therefore $P(\alpha)$ is a monotonic decreasing function in $0 \leq \alpha<1$. Since $P(0)<0$, we get that $P(\alpha)<0$ for $0 \leq \alpha<1$.
Next if $\delta_{2}<\delta \leq \delta_{3}$, then $c(\delta)<0, b(\delta)<0$ and $a(\delta)<0$. Therefore, $P^{\prime}(\alpha)$ has two real roots: one is negative and the other is greater than 2 . The condition $P^{\prime}(0)>0$ gives that $P^{\prime}(\alpha)>0$ in $0 \leq \alpha<1$. Therefore $P(\alpha)$ is a monotonic increasing function in $0 \leq \alpha<1$. Since $P(1)=-2^{3 \delta}<0$, we get that $P(\alpha)<0$ in $0 \leq \alpha<1$.
Lastly, if $\delta>\delta_{3}$ then $c(\delta)<0, b(\delta)<0$ and $a(\delta)>0$. Hence $P^{\prime}(\alpha)$ has only complex roots and the condition $P^{\prime}(0)=-3 b(\delta)>0$ gives $P^{\prime}(\alpha)>0$ for every real α. Consequently $P(\alpha)$ is a monotonic increasing function. Since $P(1)<0$, we get that $P(\alpha)<0$ in $0 \leq \alpha<1$.
Since $P(\alpha)<0$ for $0 \leq \alpha<1$, we have

$$
\left|b_{4}\right| \leq \frac{(1-\alpha)}{4^{\delta}(4-\alpha)} ; \quad(0 \leq \alpha<1)
$$

This is precisely the estimate (3.9). We note that for the function $f_{2}(z)$ defined by (3.11)
$\left(\frac{z}{f_{2}(z)}\right)^{4}=1+\frac{4(1-\alpha)}{2^{\delta}(2-\alpha)} z+\frac{20(1-\alpha)^{2}}{2.2^{2 \delta}(2-\alpha)^{2}} z^{2}+\frac{20(1-\alpha)^{3}}{2^{3 \delta}(2-\alpha)^{3}} z^{3}+\cdots$.
Therefore

$$
\left|b_{4}\right|=\frac{C_{3}^{(-4)}}{4}=\frac{5(1-\alpha)^{3}}{2^{3 \delta}(2-\alpha)^{3}} .
$$

This shows sharpness of the estimate (3.7) with $0 \leq \alpha \leq \alpha_{1}$. Similarly, for the function $f_{4}(z)$ defined by

$$
\begin{equation*}
f_{4}(z)=z-\frac{(1-\alpha)}{4^{\delta}(4-\alpha)} z^{4} ; \quad(z \in \mathcal{U}, 0 \leq \alpha<1,0 \leq \delta<\infty) \tag{3.15}
\end{equation*}
$$

we have

$$
\left|b_{4}\right|=\frac{C_{3}^{(-4)}}{4}=\frac{(1-\alpha)}{4^{\delta}(4-\alpha)}
$$

We get sharpness in (3.7) with $\alpha_{1} \leq \alpha<1$ and in (3.9). The proof of Theorem 3.1 is complete.

Theorem 3.2. Let the function f, given by (1.1), be in $\mathcal{S}_{\delta}(\alpha)(0 \leq \alpha<1, \delta>0)$ and $f^{-1}(w)$ be given by (3.1). Then for each n there exist positive numbers $\varepsilon_{n}, \delta_{n}$ and t_{n} such that

$$
\left|b_{n}\right| \leq \begin{cases}\frac{2}{n 2^{(n-1) \delta}}\binom{2 n-3}{n-2}\left(\frac{1-\alpha}{2-\alpha}\right)^{n-1} ; & \left(0 \leq \alpha \leq \varepsilon_{n}, 0 \leq \delta \leq \delta_{n}\right) \tag{3.16}\\ \frac{1-\alpha}{n^{\delta}(n-\alpha)} ; & \left(1-t_{n} \leq \alpha<1, \delta>0\right)\end{cases}
$$

The estimate (3.16) is sharp.
Proof. We follow the lines of the proof of Theorem 3.1. Write

$$
\begin{aligned}
h(z) & =\left(\frac{z}{f(z)}\right)^{n} \\
& =\left(1-a_{2} z-a_{3} z^{2}-\cdots\right)^{-n} \quad\left(a_{n} \geq 0, n=2,3, \ldots\right) \\
& =1+\sum_{k=1}^{\infty} C_{k}^{(-n)} z^{k}
\end{aligned}
$$

and observe that $b_{n}=\frac{C_{n-1}^{(-n)}}{n}$. Now taking $p=-n$ and $d_{k}=-a_{k+1}$ in Lemma 2.1, we get

$$
C_{k+1}^{(-n)}=\sum_{j=0}^{k}\left[n+\frac{(1-n) j}{k+1}\right] a_{k+2-j} C_{j}^{(-n)}
$$

Since $f \in \mathcal{S}_{\delta}(\alpha)$, we get

$$
\begin{equation*}
a_{n}=\frac{(1-\alpha)}{n^{\delta}(n-\alpha)} \lambda_{n} ; \quad\left(0 \leq \lambda_{n} \leq 1, \sum_{n=2}^{\infty} \lambda_{n} \leq 1\right) . \tag{3.17}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
C_{k+1}^{(-n)}=\sum_{j=0}^{k}\left[n+\frac{(1-n) j}{k+1}\right] \frac{(1-\alpha) \lambda_{k+2-j}}{(k+2-j)^{\delta}(k+2-j-\alpha)} C_{j}^{(-n)} \tag{3.18}
\end{equation*}
$$

In order to establish (3.16), we wish to show that for each $n=2,3, \ldots$ there exist positive real numbers ε_{n} and δ_{n} such that $C_{n-1}^{(-n)}$ is maximized when $\lambda_{2}=1$ for $0 \leq \alpha \leq \varepsilon_{n}$ and $0 \leq \delta \leq \delta_{n}$. Using (3.18) we get

$$
C_{1}^{(-n)}=\frac{n(1-\alpha)}{2^{\delta}(2-\alpha)} \lambda_{2} C_{0}^{(-n)}=\frac{n(1-\alpha)}{2^{\delta}(2-\alpha)} \lambda_{2}
$$

so that

$$
\begin{equation*}
C_{1}^{(-n)} \leq \frac{n(1-\alpha)}{2^{\delta}(2-\alpha)}=d_{1}^{(-n)} \quad \text { (say) } \tag{3.19}
\end{equation*}
$$

Thus $C_{1}^{(-n)}$ is maximized when $\lambda_{2}=1$. Write

$$
d_{j}^{(-n)}=\max _{f \in \mathcal{S}_{\delta}(\alpha)} C_{j}^{(-n)} \quad(1 \leq j \leq n-1)
$$

Assume that $C_{j}^{(-n)}(1 \leq j \leq n-2)$ is maximized for $\lambda_{2}=1$ when $\alpha>0$ and $\delta>0$ are sufficiently small. It follows from (3.17) that $\lambda_{2}=1$ implies $\lambda_{j}=0$ for every $j \geq 3$. Therefore
using (3.18) and (3.19) we get

$$
\begin{align*}
C_{2}^{(-n)} & \leq\left(\frac{n+1}{2}\right) \frac{(1-\alpha)}{2^{\delta}(2-\alpha)} d_{1}^{(-n)} \\
& =\binom{n+2-1}{2} \frac{1}{2^{2 \delta}}\left(\frac{1-\alpha}{2-\alpha}\right)^{2}=d_{2}^{(-n)} \tag{say}
\end{align*}
$$

Assume that

$$
\begin{equation*}
d_{j}^{(-n)}=\binom{n+j-1}{j} \frac{1}{2^{j \delta}}\left(\frac{1-\alpha}{2-\alpha}\right)^{j} \quad(0 \leq j \leq n-2) . \tag{3.20}
\end{equation*}
$$

Again, using (3.18), we get

$$
\begin{align*}
d_{n-1}^{(-n)} & =\max _{f \in \mathcal{S}_{\delta}(\alpha)} C_{n-1}^{(-n)} \tag{3.21}\\
& =\max _{f \in \mathcal{S}_{\delta}(\alpha)}\left(\sum_{j=0}^{n-2}(n-j) \frac{(1-\alpha) \lambda_{n-j}}{(n-j)^{\delta}(n-j-\alpha)} C_{j}^{(-n)}\right) \\
& \leq \max _{0 \leq j \leq n-2}\left\{\frac{(n-j)(1-\alpha)}{(n-j)^{\delta}(n-j-\alpha)} C_{j}^{(-n)}\right\}\left(\sum_{j=0}^{n-2} \lambda_{n-j}\right) \\
& \leq \max _{0 \leq j \leq n-2}\left\{\frac{(n-j)(1-\alpha)}{(n-j)^{\delta}(n-j-\alpha)} d_{j}^{(-n)}\right\} .
\end{align*}
$$

Write

$$
A_{j}(\alpha, \delta)=\frac{(n-j)(1-\alpha)}{(n-j)^{\delta}(n-j-\alpha)} d_{j}^{(-n)} ; \quad(j=0,1,2, \ldots,(n-2)) .
$$

Substituting $d_{0}^{(-n)}=1$ and the value of $d_{1}^{(-n)}$ from 3.19), we get

$$
A_{0}(\alpha, \delta)=\frac{n(1-\alpha)}{n^{\delta}(n-\alpha)} \quad \text { and } \quad A_{1}(\alpha, \delta)=\frac{n(n-1)(1-\alpha)^{2}}{2^{\delta}(n-1)^{\delta}(n-1-\alpha)(2-\alpha)}
$$

Now $A_{0}(\alpha, \delta)<A_{1}(\alpha, \delta)(n \geq 2$ and $0 \leq \delta \leq 2)$ if and only if

$$
\begin{equation*}
\frac{1}{n^{\delta}(n-1)(n-\alpha)(1-\alpha)}<\frac{1}{2^{\delta}(n-1)^{\delta}(n-1-\alpha)(2-\alpha)} . \tag{3.22}
\end{equation*}
$$

The above inequality (3.22) is true, because $(n-1-\alpha)<(n-\alpha),(1-\alpha)<(2-\alpha)$ and the maximum value of $\left(\frac{n}{2}\right)^{\delta}(n-1)^{1-\delta}$ is equal to $1(n \geq 2,0 \leq \delta \leq 2)$. Also by Lemma 2.3 . there exist positive real numbers ε_{n} and δ_{n} such that $A_{j}(\alpha, \delta)<A_{k}(\alpha, \delta)\left(0 \leq \alpha \leq \varepsilon_{n}, 0 \leq\right.$ $\left.\delta \leq \delta_{n}, 1 \leq j<k \leq n-2\right)$. Therefore it follows from (3.21) that the maximum $C_{n-1}^{(-n)}$ occurs at $j=n-2$. Substituting the value of $d_{n-2}^{(-n)}$, from 3.20) in 3.21) we get

$$
\begin{aligned}
d_{n-1}^{(-n)}= & \frac{2(1-\alpha)}{2^{\delta}(2-\alpha)} d_{n-2}^{(-n)}=\frac{2}{2^{(n-1) \delta}}\binom{2 n-3}{n-2}\left(\frac{1-\alpha}{2-\alpha}\right)^{n-1} \\
& \left(0 \leq \alpha \leq \varepsilon_{n}, 0 \leq \delta \leq \delta_{n}, n=2,3, \ldots\right) .
\end{aligned}
$$

Therefore

$$
\begin{gathered}
\left|b_{n}\right|=\frac{C_{n-1}^{(-n)}}{n} \leq \frac{2}{n 2^{(n-1) \delta}}\binom{2 n-3}{n-2}\left(\frac{1-\alpha}{2-\alpha}\right)^{n-1} ; \\
\left(0 \leq \alpha \leq \varepsilon_{n}, 0 \leq \delta \leq \delta_{n}, n=2,3, \ldots\right) .
\end{gathered}
$$

The above is precisely the first assertion of (3.16). In order to prove the other case of (3.16), we first observe that in the degenerate case $\alpha=1$ we have $\mathcal{S}_{\delta}(\alpha)=\{z\}$.Therefore $C_{j}^{(-n)} \rightarrow 0$ as $\alpha \rightarrow 1^{-}$for every $j=1,2,3, \ldots$. Hence there exists a positive real number $t_{n}\left(0 \leq t_{n} \leq 1\right)$ such that

$$
\frac{n}{n^{\delta}(n-\alpha)} \geq \frac{(n-j)}{(n-j)^{\delta}(n-j-\alpha)} C_{j}^{(-n)} \quad\left(j=1,2, \ldots, 1-t_{n} \leq \alpha<1\right)
$$

Thus the maximum of 3.21 occurs at $j=0$ and we get $d_{n-1}^{(-n)}=\frac{n(1-\alpha)}{n^{\delta}(n-\alpha)}$ or equivalently

$$
\left|b_{n}\right| \leq \frac{C_{n-1}^{(-n)}}{n}=\frac{(1-\alpha)}{n^{\delta}(n-\alpha)}
$$

This last estimate is precisely the assertion of (3.16) with ($1-t_{n} \leq \alpha<1, \delta>0$).
We observe that the $(n-1)^{t h}$ coefficient of the function $\left(\frac{z}{f_{2}(z)}\right)^{n}$, where $f_{2}(z)$ is defined by (3.11), is equal to

$$
\frac{2}{2^{(n-1) \delta}}\binom{2 n-3}{n-2}\left(\frac{1-\alpha}{2-\alpha}\right)^{n-1}
$$

Similarly, the $(n-1)^{\text {th }}$ coefficient of the function $\left(\frac{z}{f_{n}(z)}\right)^{n}$, where $f_{n}(z)$ is defined by

$$
z-\frac{(1-\alpha)}{n^{\delta}(n-\alpha)} z^{n}, \quad(z \in \mathcal{U}, 0 \leq \alpha<1,0 \leq \delta<1)
$$

is equal to

$$
\frac{n(1-\alpha)}{n^{\delta}(n-\alpha)}
$$

Therefore the estimate (3.16) is sharp. The proof of Theorem 3.2 is complete.
Theorem 3.3. Let the function f given by (1.1), be in $\mathcal{S}_{\delta}(\alpha)(0 \leq \alpha<1, \delta>0)$ and $f^{-1}(w)$ be given by (3.2). For fixed α and $\delta(0 \leq \alpha<1, \delta>0)$ let $B_{n}(\alpha, \delta)=\max _{f \in \mathcal{S}_{\delta}(\alpha)}\left|b_{n}\right|$. Then

$$
\begin{equation*}
B_{n}(\alpha, \delta) \leq \frac{1}{n} \cdot \frac{2^{n \delta}(2-\alpha)^{n}}{\left[2^{\delta}(2-\alpha)-(1-\alpha)\right]^{n}} \tag{3.23}
\end{equation*}
$$

Proof. Since $f \in \mathcal{S}_{\delta}(\alpha)$, by Definition 1.1 we have $\sum_{n=2}^{\infty} \frac{n^{\delta}(n-\alpha)}{(1-\alpha)}\left|a_{n}\right| \leq 1$.
Therefore $\frac{2^{\delta}(2-\alpha)}{(1-\alpha)} \sum_{n=2}^{\infty}\left|a_{n}\right| \leq 1$ or equivalently

$$
\sum_{n=2}^{\infty}\left|a_{n}\right| \leq \frac{(1-\alpha)}{2^{\delta}(2-\alpha)}
$$

This gives

$$
\begin{align*}
|f(z)| & =\left|z+\sum_{n=2}^{\infty} a_{n} z^{n}\right| \tag{3.24}\\
& \geq|z|-\left|z^{2}\right|\left(\sum_{n=2}^{\infty}\left|a_{n}\right|\right) \\
& \geq r-r^{2} \frac{(1-\alpha)}{2^{\delta}(2-\alpha)}, \quad(|z|=r) .
\end{align*}
$$

Now using the above estimate (3.24) we have

$$
\begin{aligned}
\left|b_{n}\right| & =\left|\frac{1}{2 i n \pi} \int_{|z|=r} \frac{1}{(f(z))^{n}} d z\right| \\
& \leq \frac{1}{2 n \pi} \int_{|z|=r} \frac{1}{|f(z)|^{n}}|d z| \\
& \leq \frac{1}{n}\left(\frac{1}{r-\frac{r^{2}(1-\alpha)}{2^{\delta}(2-\alpha)}}\right)^{n} .
\end{aligned}
$$

We observe that the function $F(r)$ where

$$
F(r)=\left(\frac{1}{r-\frac{r^{2}(1-\alpha)}{2^{\delta}(2-\alpha)}}\right)^{n}
$$

is an increasing function of $r(0 \leq \alpha<1, \delta>0)$ in the interval $0 \leq r<1$. Therefore

$$
\left|b_{n}\right| \leq \frac{1}{n}\left(\frac{1}{1-\frac{(1-\alpha)}{2^{\delta}(2-\alpha)}}\right)^{n} .
$$

Consequently,

$$
B_{n}(\alpha, \delta) \leq \frac{1}{n} \frac{2^{n \delta}(2-\alpha)^{n}}{\left[2^{\delta}(2-\alpha)-(1-\alpha)\right]^{n}}
$$

The proof of Theorem 3.3 is complete.

References

[1] J.T.P. CAMPSCHROERER, Coefficients of the inverse of a convex function, Report 8227, Nov. 1982, Department of Mathematics, Catholic University, Nijmegen, The Netherlands, (1982).
[2] L. DE BRANGES, A proof of the Bieberbach conjecture, Acta. Math., 154(1-2) (1985), 137-152.
[3] P.L. DUREN, Univalent Functions, Volume 259, Grunlehren der Mathematischen Wissenchaften, Bd., Springer-Verlag, New York, (1983).
[4] A.W. GOODMAN, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc., 8 (1957), 591-601.
[5] W.K. HAYMAN, Multivalent Functions, Cambridge University Press, Second edition, (1994).
[6] W.E. KIRWAN AND G. SCHOBER, Inverse coefficients for functions of bounded boundary rotations, J. Anal. Math., 36 (1979), 167-178.
[7] J. KRZYZ, R.J. LIBERA and E. ZLOTKIEWICZ, Coefficients of inverse of regular starlike functions, Ann. Univ. Mariae. Curie-Sktodowska, Sect.A, 33 (1979), 103-109.
[8] V. KUMAR, Quasi-Hadamard product of certain univalent functions, J. Math. Anal. Appl., 126 (1987), 70-77.
[9] R.J. LIBERA AND E.J. ZLOTKIEWICZ, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85(2) (1982), 225-230.
[10] K. LÖWNER, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises I, Math. Ann., 89 (1923), 103-121.
[11] A.K. MISHRA, Quasi-Hadamard product of analytic functions related to univalent functions, Math. Student, 64(1-4) (1995), 221-225.
[12] A.K. MISHRA AND M. CHOUDHURY, A class of multivalent functions with negative Taylor coefficients, Demonstratio Math., XXVIII(1) (1995), 223-234.
[13] A.K. MISHRA AND M.K. DAS, Fractional integral operators and distortion theorems for a class of multivalent functions with negative coefficients, J. Anal., 4 (1996), 185-199.
[14] M. POURAHMADI, Taylor expansion of $\exp \left(\sum_{k=0}^{\infty} a_{k} z^{k}\right)$ and some applications, Amer. Math. Monthly, 91(5) (1984), 303-307.
[15] H. SILVERMAN, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1975), 109-116.
[16] H. SILVERMAN, Coefficient bounds for inverses of classes of starlike functions, Complex Variables, 12 (1989), 23-31.
[17] E.C. TITCHMARSH, A Theory of Functions, Oxford University Press, Second Edition, (1968).

[^0]: Key words and phrases: Univalent functions, Starlike functions of order α, Convex functions of order α, Inverse functions, Coefficient estimates.

[^1]: ISSN (electronic): 1443-5756
 (C) 2006 Victoria University. All rights reserved

 The present investigation is partially supported by National Board For Higher Mathematics, Department of Atomic Energy, Government of India. Sanction No. 48/2/2003-R\&D-II/844.

 227-05

