

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 7, Issue 3, Article 94, 2006

COEFFICIENTS OF INVERSE FUNCTIONS IN A NESTED CLASS OF STARLIKE FUNCTIONS OF POSITIVE ORDER

A.K. MISHRA AND P. GOCHHAYAT

DEPARTMENT OF MATHEMATICS BERHAMPUR UNIVERSITY GANJAM, ORISSA, 760007, INDIA akshayam2001@yahoo.co.in

pb_gochhayat@yahoo.com

Received 28 July, 2005; accepted 10 March, 2006 Communicated by H. Silverman

ABSTRACT. In the present paper we find the estimates on the n^{th} coefficients in the Maclaurin's series expansion of the inverse of functions in the class $S_{\delta}(\alpha)$, $(0 \le \delta < \infty, 0 \le \alpha < 1)$, consisting of analytic functions $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ in the open unit disc and satisfying $\sum_{n=2}^{\infty} n^{\delta} \left(\frac{n-\alpha}{1-\alpha}\right) |a_n| \le 1$. For each n these estimates are sharp when α is close to zero or one and δ is close to zero. Further for the second, third and fourth coefficients the estimates are sharp for every admissible values of α and δ .

Key words and phrases: Univalent functions, Starlike functions of order α , Convex functions of order α , Inverse functions, Coefficient estimates.

2000 Mathematics Subject Classification. 30C45.

1. INTRODUCTION

Let \mathcal{U} denote the *open* unit disc in the complex plane

$$\mathcal{U} := \{ z \in \mathbb{C} : |z| < 1 \}.$$

Let S be the class of *normalized analytic univalent* functions in \mathcal{U} i.e. f is in S if f is one to one in \mathcal{U} , analytic and

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n; \qquad (z \in \mathcal{U}).$$

ISSN (electronic): 1443-5756

^{© 2006} Victoria University. All rights reserved.

The present investigation is partially supported by National Board For Higher Mathematics, Department of Atomic Energy, Government of India. Sanction No. 48/2/2003-R&D-II/844.

²²⁷⁻⁰⁵

The function $f \in S$ is said to be in $S^*(\alpha)$ $(0 \le \alpha < 1)$, the class of univalent *starlike functions* of order α , if

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha, \qquad (z \in \mathcal{U})$$

and f is said to be in the class $CV(\alpha)$ of univalent convex functions of order α if $zf' \in S^*(\alpha)$. The linear mapping $f \to zf'$ is popularly known as the *Alexander transformation*. A well known sufficient condition, for the function f of the form (1.1) to be in the class S, is

(1.2)
$$\sum_{n=2}^{\infty} n|a_n| \le 1 \qquad \text{(see e.g. [17, p. 212])}.$$

In fact, (1.2) is sufficient for f to be in the smaller class $S^*(0) \equiv S^*$ (see e.g [4]). An analogous sufficient condition for $S^*(\alpha)$ ($0 \le \alpha < 1$) is

(1.3)
$$\sum_{n=2}^{\infty} \left(\frac{n-\alpha}{1-\alpha}\right) |a_n| \le 1 \qquad (\text{see [15]})$$

The Alexander transformation gives that

(1.4)
$$\sum_{n=2}^{\infty} n\left(\frac{n-\alpha}{1-\alpha}\right) |a_n| \le 1$$

is a sufficient condition for f to be in $\mathcal{CV}(\alpha)$. We recall the following:

Definition 1.1 ([8, 12]). The function f given by the series (1.1) is said to be in the class $S_{\delta}(\alpha)$ $(0 \le \alpha < 1, -\infty < \delta < \infty)$ if

(1.5)
$$\sum_{n=2}^{\infty} n^{\delta} \left(\frac{n-\alpha}{1-\alpha} \right) |a_n| \le 1$$

is satisfied.

For each fixed *n* the function n^{δ} is increasing with respect to δ . Thus it follows that if $\delta_1 < \delta_2$, then $S_{\delta_2}(\alpha) \subset S_{\delta_1}(\alpha)$. Consequently, by (1.3), the functions in $S_{\delta}(\alpha)$ are univalent starlike of order α if $\delta \ge 0$ and further if $\delta \ge 1$, then by (1.4), $S_{\delta}(\alpha)$ contains only univalent convex functions of order α . Also we know (see e.g. [12, p. 224]) that if $\delta < 0$ then the class $S_{\delta}(\alpha)$ contains non-univalent functions as well. Basic properties of the class $S_{\delta}(\alpha)$ have been studied in [8, 11, 12, 13]. We also note that if $f \in S_{\delta}(\alpha)$ then

$$|a_n| \le \frac{(1-\alpha)}{n^{\delta}(n-\alpha)}; \qquad (n=2,3,\dots)$$

and equality holds for each n only for functions of the form

$$f_n(z) = z + \frac{(1-\alpha)}{n^{\delta}(n-\alpha)} e^{i\theta} z^n, \qquad (\theta \in \mathbb{R}).$$

We shall use this estimate in our investigation.

The inverse f^{-1} of every function $f \in S$, defined by $f^{-1}(f(z)) = z$, is analytic in $|w| < r(f), (r(f) \ge \frac{1}{4})$ and has Maclaurin's series expansion

(1.6)
$$f^{-1}(w) = w + \sum_{n=2}^{\infty} b_n w^n \qquad \left(|w| < r(f) \right).$$

The De-Branges theorem [2], previously known as the Bieberbach conjecture; states that if the function f in S is given by the power series (1.1) then $|a_n| \le n$ (n = 2, 3, ...) with equality for

each *n* only for the rotations of the Koebe function $\frac{z}{(1-z)^2}$. Early in 1923 Löwner [10] invented the famous parametric method to prove the Bieberbach conjecture for the third coefficient (i.e. $|a_3| \leq 3, f \in S$). Using this method he also found sharp bounds on all the coefficients for the inverse functions in S (or S^*). Thus, if $f \in S$ (or S^*) and f^{-1} is given by (1.6) then

$$|b_n| \le \frac{1}{n+1} \binom{2n}{n}; \ (n=2,3,\dots) \ (cf \ [10]; also see \ [5, p. 222])$$

with equality for every n for the inverse of the Koebe function $k(z) = z/(1+z)^2$. Although the coefficient estimate problem for inverse functions in the whole class S was completely solved in early part of the last century; for certain subclasses of S only partial results are available in literature. For example, if $f \in S^*(\alpha)$, $(0 \le \alpha < 1)$ then the sharp estimates

$$\begin{aligned} |b_2| &\le 2(1-\alpha) \\ \text{and} \\ |b_3| &\le \begin{cases} (1-\alpha)(5-6\alpha); & 0 \le \alpha \le \frac{2}{3} \\ & & \\ 1-\alpha; & & \frac{2}{3} \le \alpha < 1 \end{cases} \end{aligned} \tag{cf. [7]}$$

hold. Further, if $f \in CV$ then $|b_n| \leq 1$ (n = 2, 3, ..., 8) (cf. [1, 9]), while $|b_{10}| > 1$ [6]. However the problem of finding sharp bounds for b_n for $f \in S^*(\alpha)$ $(n \geq 4)$ and for $f \in CV$ $(n \geq 9)$ still remains open.

The object of the present paper is to study the coefficient estimate problem for the inverse of functions in the class $S_{\delta}(\alpha)$; $(\delta \ge 0, 0 \le \alpha < 1)$. We find sharp bounds for $|b_2|$, $|b_3|$ and $|b_4|$ for $f \in S_{\delta}(\alpha)$ $(0 \le \alpha < 1 \text{ and } \delta \ge 0)$. We further show that for every positive integer $n \ge 2$ there exist positive real numbers ε_n , δ_n and t_n such that for every $f \in S_{\delta}(\alpha)$ the following sharp estimates hold:

(1.7)
$$|b_n| \leq \begin{cases} \frac{2}{n2^{(n-1)\delta}} {2n-3 \choose n-2} \left(\frac{1-\alpha}{2-\alpha}\right)^{n-1}; & (0 \leq \alpha \leq \varepsilon_n, 0 \leq \delta \leq \delta_n) \\ \frac{1-\alpha}{n^{\delta}(n-\alpha)}; & (1-t_n \leq \alpha < 1, \delta > 0). \end{cases}$$

For each n = 2, 3, ..., there are two different extremal functions; in contrast to only one extremal function for every n for the whole class S (or $S^*(0)$). We also obtain crude estimates for $|b_n|$ ($n = 2, 3, 4, ...; 0 \le \alpha < 1, \delta > 0$; $f \in S_{\delta}(\alpha)$). Our investigation includes some results of Silverman [16] for the case $\delta = 0$ and provides new information for $\delta > 0$.

2. NOTATIONS AND PRELIMINARY RESULTS

Let the function s given by the power series

(2.1)
$$s(z) = 1 + d_1 z + d_2 z^2 + \cdots$$

be analytic in a neighbourhood of the origin. For a real number p define the function h by

(2.2)
$$h(z) = (s(z))^p = (1 + d_1 z + d_2 z^2 + \cdots)^p = 1 + \sum_{k=1}^{\infty} C_k^{(p)} z^k.$$

Thus $C_k^{(p)}$ denotes the k^{th} coefficient in the Maclaurin's series expansion of the p^{th} power of the function s(z). We need the following:

Lemma 2.1 ([14]). Let the coefficients $C_k^{(p)}$ be defined as in (2.2), then

(2.3)
$$C_{k+1}^{(p)} = \sum_{j=0}^{\kappa} \left[p - \frac{(p+1)j}{k+1} \right] d_{k+1-j} C_j^{(p)}; \qquad (k=0,1,\ldots;\ C_0^{(p)}=1).$$

Lemma 2.2 ([16]). If k and n are positive integers with $k \le n - 2$, then

$$A_j = \binom{n+j-1}{j} \left(\frac{n(k+1-j)+j}{2^j(k+2-j)} \right)$$

is a strictly increasing function of j, j = 1, 2, ..., k.

Lemma 2.3. Let k and n be positive integers with $k \le n - 2$. Write

$$A_{j}(\alpha, \delta) = \frac{(1-\alpha)}{2^{j\delta}} \binom{n+j-1}{j} \frac{(n(k+1-j)+j)}{(k+2-j)^{\delta}(k+2-j-\alpha)} \left(\frac{1-\alpha}{2-\alpha}\right)^{j},$$

(0 \le \alpha < 1, \delta > 0).

Then for each *n* there exist positive real numbers ε_n and δ_n such that $A_j(\alpha, \delta)$ is strictly increasing in *j* for $0 \le \alpha < \varepsilon_n$, $0 \le \delta < \delta_n$ and j = 1, 2, ..., k.

Proof. Write

$$h_{j}(\alpha,\delta) = A_{j+1}(\alpha,\delta) - A_{j}(\alpha,\delta)$$

= $\frac{(1-\alpha)^{j+1}}{2^{j\delta}(2-\alpha)^{j}} {n+j-1 \choose j} \left[\frac{(n+j)(n(k-j)+(j+1))(1-\alpha)}{2^{\delta}(j+1)(k+1-j)^{\delta}(k+1-j-\alpha)(2-\alpha)} - \frac{(n(k+1-j)+j)}{(k+2-j)^{\delta}(k+2-j-\alpha)} \right].$

We observe that for each fixed j (j = 1, 2, ..., k - 1) $h_j(\alpha, \delta)$ is a continuous function of (α, δ) . Also $\lim_{(\alpha, \delta) \to (0,0)} h_j(\alpha, \delta) = h_j(0,0) = A_{j+1}(0,0) - A_j(0,0) > 0$ by Lemma 2.2. Thus there exists an open circular disc $B(0, r_j)$ with center at (0,0) and radius $r_j > 0$ such that $h_j(\alpha, \delta) > 0$ for $(\alpha, \delta) \in B(0, r_j)$ for each j = 1, 2, ..., k - 1. Consequently, $h_j(\alpha, \delta) > 0$ for all j (j = 1, 2, ..., k - 1) and $(\alpha, \delta) \in B(0, r)$, where $r = \min_{1 \le j \le k-1} r_j$. If we choose $\varepsilon_n = \delta_n = \frac{\sqrt{2}}{2}r$, then $A_j(\alpha, \delta)$ is strictly increasing in j for $0 \le \alpha < \varepsilon_n$, $0 \le \delta < \delta_n$ and j = 1, 2, ..., k. The proof of Lemma 2.3 is complete.

3. MAIN RESULTS

We have the following:

Theorem 3.1. Let the function f, given by the series (1.1) be in $S_{\delta}(\alpha)$ ($0 \le \alpha < 1, 0 \le \delta < \infty$). Write

(3.1)
$$f^{-1}(w) = w + \sum_{n=2}^{\infty} b_n w^n, \qquad (|w| < r_0(f))$$

for some $r_0(f) \ge \frac{1}{4}$. Then

(3.2)
$$|b_2| \le \frac{(1-\alpha)}{2^{\delta}(2-\alpha)}; \quad (0 \le \alpha < 1, \ 0 \le \delta < \infty).$$

Set

(3.3)
$$\delta_0 = \frac{\log 3 - \log 2}{\log 4 - \log 3}$$
 and $\delta_1 = \frac{\log 5}{\log 2} - 1.$

(b) (i) If $0 \le \delta \le \delta_0$, then

(3.4)
$$|b_3| \le \begin{cases} \frac{2(1-\alpha)^2}{2^{2\delta}(2-\alpha)^2}; & (0 \le \alpha \le \alpha_0), \\ \frac{(1-\alpha)}{3^{\delta}(3-\alpha)}; & (\alpha_0 \le \alpha < 1), \end{cases}$$

where α_0 is the only root, in the interval $0 \leq \alpha < 1$, of the equation

(3.5)
$$(2 \cdot 3^{\delta} - 2^{2\delta})\alpha^2 - 4(2 \cdot 3^{\delta} - 2^{2\delta})\alpha + (6 \cdot 3^{\delta} - 4 \cdot 2^{2\delta}) = 0.$$

(ii) Further, if $\delta > \delta_0$, then

(3.6)
$$|b_3| \le \frac{(1-\alpha)}{3^{\delta}(3-\alpha)}; \qquad (0 \le \alpha < 1).$$

(c) (i) If $0 \le \delta \le \delta_1$, then

(3.7)
$$|b_4| \le \begin{cases} \frac{5(1-\alpha)^3}{2^{3\delta}(2-\alpha)^3}; & (0 \le \alpha < \alpha_1), \\ \\ \frac{(1-\alpha)}{4^{\delta}(4-\alpha)}; & (\alpha_1 \le \alpha < 1), \end{cases}$$

where α_1 is the only root in the interval $0 \leq \alpha < 1$, of the equation

(3.8)
$$(2^{3\delta} - 5 \cdot 4^{\delta})\alpha^3 - 6(2^{3\delta} - 5 \cdot 4^{\delta})\alpha^2 - 3(15 \cdot 4^{\delta} - 4 \cdot 2^{3\delta})\alpha + 4(5 \cdot 4^{\delta} - 2 \cdot 2^{3\delta}) = 0.$$

(ii) If $\delta > \delta_1$, then

(3.9)
$$|b_4| \le \frac{(1-\alpha)}{4^{\delta}(4-\alpha)}; \quad (0 \le \alpha < 1).$$

All the estimates are sharp.

Proof. We know from [7] that

$$b_n = \frac{1}{2\pi i n} \int_{|z|=r} \left[\frac{1}{f(z)}\right]^n dz.$$

For fixed n write

$$h(z) = \left[\frac{z}{f(z)}\right]^n = \frac{1}{\left(1 + \sum_{k=2}^{\infty} a_k z^{k-1}\right)^n} = 1 + \sum_{k=1}^{\infty} C_k^{(-n)} z^k.$$

Thus

$$nb_n = \frac{1}{2\pi i} \int_{|z|=r} \frac{h(z)}{z^n} dz = \frac{h^{(n-1)}(0)}{(n-1)!} = C_{n-1}^{(-n)}.$$

Therefore a function, which maximizes $|C_{n-1}^{(-n)}|$ will also maximize $|b_n|$. Now write $w(z) = -\sum_{k=2}^{\infty} a_k z^{k-1}$ and $h(z) = (1 + w(z) + w^2(z) + \cdots)^n$, $(z \in \mathcal{U})$. It follows that all the coefficients in the expansion of h(z) shall be nonnegative if f(z) is of the form

(3.10)
$$f(z) = z - \sum_{k=2}^{\infty} a_k z^k, \qquad (a_k \ge 0 ; k = 2, 3, \dots).$$

Consequently, $\max_{f \in S_{\delta}(\alpha)} |C_{n-1}^{(-n)}|$ must occur for a function in $S_{\delta}(\alpha)$ with the representation (3.10).

(a) Now

$$\left(\frac{z}{f(z)}\right)^2 = \left(1 - \sum_{k=2}^{\infty} a_k z^{k-1}\right)^{-2} = 1 + 2a_2 z + \cdots$$

Therefore

$$C_1^{(-2)} = 2a_2 = \frac{2(1-\alpha)}{2^{\delta}(2-\alpha)}\lambda_2; \qquad (0 \le \lambda_2 \le 1, 0 \le \alpha < 1, 0 \le \delta < 1)$$

and the maximum $C_1^{(-2)}$ is obtained by replacing $\lambda_2 = 1$. Equivalently

$$|b_2| = \frac{C_1^{(-2)}}{2} \le \frac{1-\alpha}{2^{\delta}(2-\alpha)}; \qquad (0 \le \alpha < 1, \ 0 \le \delta < \infty)$$

We get (3.2). To show that equality holds in (3.2), consider the function $f_2(z)$ defined by

(3.11)
$$f_2(z) = z - \frac{(1-\alpha)}{2^{\delta}(2-\alpha)} z^2; \qquad (z \in \mathcal{U}, \ 0 \le \alpha < 1, \ 0 \le \delta < \infty).$$

For this function

$$\left(\frac{z}{f_2(z)}\right)^2 = 1 + \frac{2(1-\alpha)}{2^{\delta}(2-\alpha)}z + \dots = 1 + C_1^{(-2)}z + \dots$$

and

$$|b_2| = \frac{C_1^{(-2)}}{2} = \frac{(1-\alpha)}{2^{\delta}(2-\alpha)}.$$

The proof of (a) is complete.

To find sharp estimates for $|b_3|$, we consider

$$h(z) = \left(\frac{z}{f(z)}\right)^3 = (1 - a_2 z - a_3 z^2 - \dots)^{-3} = 1 + \sum_{k=1}^{\infty} C_k^{(-3)} z^k.$$

By direct calculation or by taking $p = -3, d_k = -a_{k+1}$ in Lemma 2.1, we get,

(3.12) $C_1^{(-3)} = 3a_2$ and $C_2^{(-3)} = 3a_3 + 2a_2C_1^{(-3)} = 3a_3 + 6a_2^2$. Substituting $a_2 = \frac{(1-\alpha)\lambda_2}{2^{\delta}(2-\alpha)}$ and $a_3 = \frac{(1-\alpha)\lambda_3}{3^{\delta}(3-\alpha)}$, $(0 \le \lambda_2, \lambda_3 \le 1, \lambda_2 + \lambda_3 \le 1)$ in the equation

(3.12) we obtain

$$C_2^{(-3)} = \frac{3(1-\alpha)}{3^{\delta}(3-\alpha)}\lambda_3 + \frac{6(1-\alpha)^2}{2^{2\delta}(2-\alpha)^2}\lambda_2^2$$

Equivalently

(3.13)
$$\frac{C_2^{(-3)}}{3} = (1-\alpha) \left\{ \frac{\lambda_3}{3^{\delta}(3-\alpha)} + \frac{2(1-\alpha)\lambda_2^2}{2^{2\delta}(2-\alpha)^2} \right\}.$$

In order to maximize the right hand side of (3.13), write

$$G(\lambda_2, \lambda_3) = \frac{\lambda_3}{3^{\delta}(3-\alpha)} + \frac{2(1-\alpha)\lambda_2^2}{2^{2\delta}(2-\alpha)^2}; \qquad (0 \le \lambda_2 \le 1, 0 \le \lambda_3 \le 1, \lambda_2 + \lambda_3 \le 1).$$

The function $G(\lambda_2, \lambda_3)$ does not have a maximum in the interior of the square $\{(\lambda_2, \lambda_3) : 0 < 0 < 0\}$ $\lambda_2 < 1, 0 < \lambda_3 < 1$, since $G_{\lambda_2} \neq 0, G_{\lambda_3} \neq 0$. Also if $\lambda_3 = 1$ then $\lambda_2 = 0$ and if $\lambda_2 = 1$ then $\lambda_3 = 0$. Therefore

$$\max_{\lambda_3=1} G(\lambda_2, \lambda_3) = \frac{1}{3^{\delta}(3-\alpha)} \quad \text{and} \quad \max_{\lambda_2=1} G(\lambda_2, \lambda_3) = \frac{2(1-\alpha)}{2^{2\delta}(2-\alpha)^2}$$

Also

$$\max_{\lambda_3=0} G(\lambda_2, \lambda_3) = \frac{2(1-\alpha)}{2^{2\delta}(2-\alpha)^2} \text{ and } \max_{\lambda_2=0} G(\lambda_2, \lambda_3) = \frac{1}{3^{\delta}(3-\alpha)}.$$

We get

$$\max_{\substack{0 \le \lambda_2 \le 1\\ 0 \le \lambda_3 \le 1}} G(\lambda_2, \lambda_3) = \max\left\{\frac{1}{3^{\delta}(3-\alpha)}, \frac{2(1-\alpha)}{2^{2\delta}(2-\alpha)^2}\right\}.$$

Thus

$$\frac{C_3^{(-2)}}{3} \le (1-\alpha) \max\left\{\frac{1}{3^{\delta}(3-\alpha)}, \frac{2(1-\alpha)}{2^{2\delta}(2-\alpha)^2}\right\}$$

We now find the maximum of the above two terms. Note that the sign of the expression

$$\frac{1}{3^{\delta}(3-\alpha)} - \frac{2(1-\alpha)}{2^{2\delta}(2-\alpha)^2} = \frac{-F(\alpha)}{2^{2\delta}3^{\delta}(3-\alpha)(2-\alpha)^2}$$

depends on the sign of the quadratic polynomial $F(\alpha) = a(\delta)\alpha^2 - 4a(\delta)\alpha + c(\delta)$, where $a(\delta) = 3^{\delta} \cdot 2 - 2^{2\delta}$ and $c(\delta) = 2(3^{\delta+1} - 2^{2\delta+1})$. Observe that

$$a(\delta) \begin{cases} \geq 0 & \text{if } \delta \leq \delta_0^* \\ < 0 & \text{if } \delta > \delta_0^* \end{cases}; \qquad \left(\delta_0^* = \frac{\log 2}{\log 4 - \log 3} \right) \\ c(\delta) \begin{cases} \geq 0 & \text{if } \delta \leq \delta_0 \\ < 0 & \text{if } \delta > \delta_0 \end{cases}; \qquad \left(\delta_0 = \frac{\log 3 - \log 2}{\log 4 - \log 3} \right) \end{cases}$$

and $\delta_0 \leq \delta_0^*$.

(b) (i) The case 0 ≤ δ ≤ δ₀: Suppose 0 ≤ δ ≤ δ₀ then F(0) = c(δ) ≥ 0, F(1) = -2^{2δ} < 0 and since a(δ) ≥ 0, F(α) is positive for large values of α. Therefore F(α) ≥ 0 if 0 ≤ α ≤ α₀ and F(α) < 0 if α₀ < α < 1 where α₀ is the unique root of equation F(α) = 0 in the interval 0 ≤ α < 1. Or equivalently -F(α) ≤ 0 for 0 < α ≤ α₀ and -F(α) > 0 for α₀ < α < 1. Consequently,

$$|b_3| = \frac{C_2^{(-3)}}{3} \le \begin{cases} \frac{2(1-\alpha)^2}{2^{2\delta}(2-\alpha)^2}; & (0 \le \alpha \le \alpha_0); \\ \\ \frac{(1-\alpha)}{3^{\delta}(3-\alpha)}; & (\alpha_0 \le \alpha < 1). \end{cases}$$

We get the estimate (3.4).

(ii) The case $\delta_0 < \delta$: We show below that if $\delta_0 < \delta \leq \delta_0^*$ or $\delta_0^* < \delta$ then $F(\alpha) < 0$. Suppose $\delta_0 < \delta \leq \delta_0^*$, then $a(\delta) \geq 0$. Consequently, $F(\alpha) > 0$ for large positive and negative values of α . Also $F(0) = c(\delta) < 0$ and $F(1) = -2^{2\delta} < 0$. Therefore $F(\alpha) < 0$ for every α in the real interval $0 \leq \alpha < 1$. Similarly, if $\delta_0^* < \delta$, then $a(\delta) < 0$. Thus $F'(\alpha) = 2a(\delta)(\alpha - 2) > 0$; $(0 \leq \alpha < 1)$. Or equivalently $F(\alpha)$ is an increasing function in $0 \leq \alpha < 1$. Also $F(1) = -2^{2\delta} < 0$. Therefore $F(\alpha) < 0$ in $0 \leq \alpha < 1$.

Since $-F(\alpha) > 0$ we have

$$|b_3| = \frac{C_2^{(-3)}}{3} \le \frac{(1-\alpha)}{3^{\delta}(3-\alpha)} \qquad (0 \le \alpha < 1; \ \delta > \delta_0).$$

This is precisely the estimate (3.6). We note that for the function $f_2(z)$ defined by (3.11)

$$\left(\frac{z}{f_2(z)}\right)^3 = \left(1 - \frac{(1-\alpha)}{2^{\delta}(2-\alpha)}z\right)^{-3}$$
$$= 1 + \frac{3(1-\alpha)}{2^{\delta}(2-\alpha)}z + \frac{6(1-\alpha)^2}{2^{2\delta}(2-\alpha)^2}z^2 + \cdots$$

Therefore

$$b_3| = \frac{C_2^{(-3)}}{3} = \frac{2(1-\alpha)^2}{2^{2\delta}(2-\alpha)^2}.$$

We get sharpness in (3.4) with $0 \le \alpha < \alpha_0$. Similarly for the function $f_3(z)$ defined by

(3.14)
$$f_3(z) = z - \frac{(1-\alpha)}{3^{\delta}(3-\alpha)} z^3; \qquad (z \in \mathcal{U}, 0 \le \alpha < 1, 0 \le \delta < \infty),$$

we have

$$\left(\frac{z}{f_3(z)}\right)^3 = \left(1 - \frac{(1-\alpha)}{3^{\delta}(3-\alpha)}z^2\right)^{-3} = 1 + \frac{3(1-\alpha)}{3^{\delta}(3-\alpha)}z^2 + \cdots$$
$$|b_3| = \frac{C_2^{(-3)}}{3} = \frac{(1-\alpha)}{3^{\delta}(3-\alpha)}.$$

This establishes the sharpness of (3.4) with $\alpha_0 \leq \alpha < 1$ and (3.6). The proof of (b) is complete.

In order to find sharp estimates for $|b_4|$, we consider the function

$$h(z) = \left(\frac{z}{f(z)}\right)^4 = \left(1 - \sum_{k=2}^{\infty} a_k z^{k-1}\right)^{-4} = 1 + \sum_{k=1}^{\infty} C_k^{(-4)} z^k.$$

Taking p = -4 and $d_k = -a_{k+1}$ in Lemma 2.1, we get

 $\begin{array}{ll} C_1^{(-4)} = 4a_2; & C_2^{(-4)} = 4a_3 + 10a_2^2; & C_3^{(-4)} = 4a_4 + 20a_2a_3 + 20a_2^3. \\ \text{Taking } a_2 = \frac{(1-\alpha)}{2^{\delta}(2-\alpha)}\lambda_2, \ a_3 = \frac{(1-\alpha)}{3^{\delta}(3-\alpha)}\lambda_3 \text{ and } a_4 = \frac{(1-\alpha)}{4^{\delta}(4-\alpha)}\lambda_4, \text{ where } 0 \leq \lambda_2, \lambda_3, \lambda_4 \leq 1 \text{ and } \lambda_2 + \lambda_3 + \lambda_4 \leq 1 \text{ we get} \end{array}$

$$\begin{split} |b_4| &= \frac{C_3^{(-4)}}{4} \\ &= (1-\alpha) \left\{ \frac{\lambda_4}{4^{\delta}(4-\alpha)} + \frac{5(1-\alpha)\lambda_2\lambda_3}{2^{\delta}3^{\delta}(2-\alpha)(3-\alpha)} + \frac{5(1-\alpha)^2\lambda_2^3}{2^{3\delta}(2-\alpha)^3} \right\} \\ &= (1-\alpha)L(\lambda_2,\lambda_3,\lambda_4) \qquad \text{(say).} \end{split}$$

Since $L_{\lambda_2} \neq 0, L_{\lambda_3} \neq 0$ and $L_{\lambda_4} \neq 0$, the function L cannot have a local maximum in the interior of cube $0 < \lambda_2 < 1, 0 < \lambda_3 < 1, 0 < \lambda_4 < 1$. Therefore the constraint $\lambda_2 + \lambda_3 + \lambda_4 \leq 1$ becomes $\lambda_2 + \lambda_3 + \lambda_4 = 1$. Hence putting $\lambda_4 = 1 - \lambda_2 - \lambda_3$ we get

$$\begin{split} |b_4| &= \frac{C_3^{(-4)}}{4} \\ &= (1-\alpha) \left\{ \frac{1-\lambda_2 - \lambda_3}{4^{\delta}(4-\alpha)} + \frac{5(1-\alpha)\lambda_2\lambda_3}{2^{\delta}3^{\delta}(2-\alpha)(3-\alpha)} + \frac{5(1-\alpha)^2\lambda_2^3}{2^{3\delta}(2-\alpha)^3} \right\} \\ &= (1-\alpha)H(\lambda_2,\lambda_3) \quad \text{(say).} \end{split}$$

Thus we need to maximize $H(\lambda_2, \lambda_3)$ in the closed square $0 \le \lambda_2 \le 1, 0 \le \lambda_3 \le 1$. Since

$$H_{\lambda_{2}\lambda_{2}} \cdot H_{\lambda_{3}\lambda_{3}} - (H_{\lambda_{2}\lambda_{3}})^{2} = -\left(\frac{5(1-\alpha)}{2^{\delta}3^{\delta}(2-\alpha)(3-\alpha)}\right)^{2} < 0$$

the function H cannot have a local maximum in the interior of the square $0 \le \lambda_2 \le 1, 0 \le \lambda_3 \le 1$. Further, if $\lambda_2 = 1$ then $\lambda_3 = 0$ and if $\lambda_3 = 1$ then $\lambda_2 = 0$. Therefore

$$\max_{\lambda_2=1} H(\lambda_2, \lambda_3) = H(1, 0) = \frac{5(1-\alpha)^2}{2^{3\delta}(2-\alpha)^3},$$
$$\max_{\lambda_3=1} H(\lambda_2, \lambda_3) = H(0, 1) = 0,$$

$$\max_{0<\lambda_2<1} H(\lambda_2, 0) = \max\left\{\frac{1-\lambda_2}{4^{\delta}(4-\alpha)} + \frac{5(1-\alpha)^2\lambda_2^3}{2^{3\delta}(2-\alpha)^3}\right\}$$
$$= \max\left\{\frac{1}{4^{\delta}(4-\alpha)}, \frac{5(1-\alpha)^2}{2^{3\delta}(2-\alpha)^3}\right\}$$

and

$$\max_{0 \le \lambda_3 \le 1} H(0, \lambda_3) = \max_{0 \le \lambda_3 \le 1} \frac{1 - \lambda_3}{4^{\delta}(4 - \alpha)} = \frac{1}{4^{\delta}(4 - \alpha)}$$

Thus

$$\max_{\substack{0 \le \lambda_2 \le 1\\ 0 \le \lambda_3 \le 1}} H(\lambda_2, \lambda_3) = \max\left\{\frac{1}{4^{\delta}(4-\alpha)}, \frac{5(1-\alpha)^2}{2^{3\delta}(2-\alpha)^3}\right\}.$$

The maximum of the above two terms can be found as in the case for $|b_3|$. We see that the sign of the expression

$$\frac{5(1-\alpha)^2}{2^{3\delta}(2-\alpha)^3} - \frac{1}{4^{\delta}(4-\alpha)^2}$$

is same as the sign of the cubic polynomial $P(\alpha) = a(\delta)\alpha^3 - 6a(\delta)\alpha^2 - 3b(\delta)\alpha + 4c(\delta)$, where $a(\delta) = 2^{3\delta} - 5 \cdot 4^{\delta}$, $b(\delta) = 15 \cdot 4^{\delta} - 4 \cdot 2^{3\delta}$ and $c(\delta) = 5 \cdot 4^{\delta} - 2 \cdot 2^{3\delta}$. We observe that

$$c(\delta) \begin{cases} \geq 0 & \text{if } \delta \leq \delta_1 \\ < 0 & \text{if } \delta > \delta_1 \end{cases}; \qquad \left(\delta_1 = \frac{\log 5}{\log 2} - 1\right), \\ b(\delta) \begin{cases} \geq 0 & \text{if } \delta \leq \delta_2 \\ < 0 & \text{if } \delta > \delta_2 \end{cases}; \qquad \left(\delta_2 = \delta_1 + \frac{\log 3}{\log 2} - 1\right) \end{cases}$$

and

$$a(\delta) \begin{cases} \leq 0 & \text{if } \delta \leq \delta_3 \\ > 0 & \text{if } \delta > \delta_3 \end{cases}; \qquad \left(\delta_3 = \frac{\log 5}{\log 2}\right) \end{cases}$$

Moreover, $\delta_1 < \delta_2 < \delta_3$. Also the quadratic polynomial $P'(\alpha) = 3\left(a(\delta)\alpha^2 - 4a(\delta)\alpha - b(\delta)\right)$ has roots at $2 \pm \sqrt{4 + \frac{b}{a}}$.

(c) (i) The case 0 ≤ δ ≤ δ₁: In this case c(δ) ≥ 0, b(δ) ≥ 0 and a(δ) ≤ 0. Note that both the roots of P'(α) are complex numbers and P'(0) = -3b(δ) ≤ 0. Therefore P'(α) < 0 for every real number and consequently, P'(α) is a decreasing function. Since P(0) = 4c(δ) ≥ 0 and P(1) = -2^{3δ} < 0, the function P(α) has a unique

root α_1 in the interval $0 < \alpha < 1$. Or equivalently, $P(\alpha) \ge 0$ for $0 < \alpha \le \alpha_1$ and $P(\alpha) < 0$ if $\alpha_1 < \alpha < 1$. Thus

$$|b_4| \le \begin{cases} \frac{5(1-\alpha)^3}{2^{3\delta}(2-\alpha)^3}; & (0 \le \alpha \le \alpha_1), \\ \\ \frac{(1-\alpha)}{4^{\delta}(4-\alpha)}; & (\alpha_1 \le \alpha < 1). \end{cases}$$

We get the estimate (3.7).

(ii) The case $\delta > \delta_1$: We shall show below, separately, that if $\delta_1 < \delta \le \delta_2$ or $\delta_2 < \delta \le \delta_3$ or $\delta_3 < \delta$ then $P(\alpha) < 0$ in $0 \le \alpha < 1$.

First suppose that $\delta_1 < \delta \leq \delta_2$. Then $c(\delta) < 0$, $b(\delta) \geq 0$ and $a(\delta) < 0$. Thus, as in case of (c)(i), $P'(\alpha)$ has only complex roots and P'(0) < 0. Therefore $P(\alpha)$ is a monotonic decreasing function in $0 \leq \alpha < 1$. Since P(0) < 0, we get that $P(\alpha) < 0$ for $0 \leq \alpha < 1$.

Next if $\delta_2 < \delta \leq \delta_3$, then $c(\delta) < 0$, $b(\delta) < 0$ and $a(\delta) < 0$. Therefore, $P'(\alpha)$ has two real roots: one is negative and the other is greater than 2. The condition P'(0) > 0 gives that $P'(\alpha) > 0$ in $0 \leq \alpha < 1$. Therefore $P(\alpha)$ is a monotonic increasing function in $0 \leq \alpha < 1$. Since $P(1) = -2^{3\delta} < 0$, we get that $P(\alpha) < 0$ in $0 \leq \alpha < 1$.

Lastly, if $\delta > \delta_3$ then $c(\delta) < 0$, $b(\delta) < 0$ and $a(\delta) > 0$. Hence $P'(\alpha)$ has only complex roots and the condition $P'(0) = -3b(\delta) > 0$ gives $P'(\alpha) > 0$ for every real α . Consequently $P(\alpha)$ is a monotonic increasing function. Since P(1) < 0, we get that $P(\alpha) < 0$ in $0 \le \alpha < 1$.

Since $P(\alpha) < 0$ for $0 \le \alpha < 1$, we have

$$|b_4| \le \frac{(1-\alpha)}{4^{\delta}(4-\alpha)};$$
 $(0 \le \alpha < 1).$

This is precisely the estimate (3.9). We note that for the function $f_2(z)$ defined by (3.11)

$$\left(\frac{z}{f_2(z)}\right)^4 = 1 + \frac{4(1-\alpha)}{2^{\delta}(2-\alpha)}z + \frac{20(1-\alpha)^2}{2\cdot 2^{2\delta}(2-\alpha)^2}z^2 + \frac{20(1-\alpha)^3}{2^{3\delta}(2-\alpha)^3}z^3 + \cdots$$

Therefore

$$|b_4| = \frac{C_3^{(-4)}}{4} = \frac{5(1-\alpha)^3}{2^{3\delta}(2-\alpha)^3}.$$

This shows sharpness of the estimate (3.7) with $0 \le \alpha \le \alpha_1$. Similarly, for the function $f_4(z)$ defined by

(3.15)
$$f_4(z) = z - \frac{(1-\alpha)}{4^{\delta}(4-\alpha)} z^4; \qquad (z \in \mathcal{U}, 0 \le \alpha < 1, 0 \le \delta < \infty)$$

we have

$$|b_4| = \frac{C_3^{(-4)}}{4} = \frac{(1-\alpha)}{4^{\delta}(4-\alpha)}$$

We get sharpness in (3.7) with $\alpha_1 \leq \alpha < 1$ and in (3.9). The proof of Theorem 3.1 is complete.

Theorem 3.2. Let the function f, given by (1.1), be in $S_{\delta}(\alpha)$ ($0 \le \alpha < 1, \delta > 0$) and $f^{-1}(w)$ be given by (3.1). Then for each n there exist positive numbers ε_n , δ_n and t_n such that

(3.16)
$$|b_n| \leq \begin{cases} \frac{2}{n2^{(n-1)\delta}} {2n-3 \choose n-2} \left(\frac{1-\alpha}{2-\alpha}\right)^{n-1}; & (0 \leq \alpha \leq \varepsilon_n, 0 \leq \delta \leq \delta_n) \\ \frac{1-\alpha}{n^{\delta}(n-\alpha)}; & (1-t_n \leq \alpha < 1, \delta > 0). \end{cases}$$

The estimate (3.16) is sharp.

Proof. We follow the lines of the proof of Theorem 3.1. Write

$$h(z) = \left(\frac{z}{f(z)}\right)^n$$

= $(1 - a_2 z - a_3 z^2 - \dots)^{-n}$ $(a_n \ge 0, n = 2, 3, \dots)$
= $1 + \sum_{k=1}^{\infty} C_k^{(-n)} z^k$

and observe that $b_n = \frac{C_{n-1}^{(-n)}}{n}$. Now taking p = -n and $d_k = -a_{k+1}$ in Lemma 2.1, we get

$$C_{k+1}^{(-n)} = \sum_{j=0}^{k} \left[n + \frac{(1-n)j}{k+1} \right] a_{k+2-j} C_j^{(-n)}.$$

Since $f \in \mathcal{S}_{\delta}(\alpha)$, we get

(3.17)
$$a_n = \frac{(1-\alpha)}{n^{\delta}(n-\alpha)}\lambda_n; \qquad \left(0 \le \lambda_n \le 1, \ \sum_{n=2}^{\infty}\lambda_n \le 1\right).$$

Therefore

(3.18)
$$C_{k+1}^{(-n)} = \sum_{j=0}^{k} \left[n + \frac{(1-n)j}{k+1} \right] \frac{(1-\alpha)\lambda_{k+2-j}}{(k+2-j)^{\delta}(k+2-j-\alpha)} C_{j}^{(-n)}.$$

In order to establish (3.16), we wish to show that for each n = 2, 3, ... there exist positive real numbers ε_n and δ_n such that $C_{n-1}^{(-n)}$ is maximized when $\lambda_2 = 1$ for $0 \le \alpha \le \varepsilon_n$ and $0 \le \delta \le \delta_n$. Using (3.18) we get

$$C_1^{(-n)} = \frac{n(1-\alpha)}{2^{\delta}(2-\alpha)} \lambda_2 C_0^{(-n)} = \frac{n(1-\alpha)}{2^{\delta}(2-\alpha)} \lambda_2$$

so that

(3.19)
$$C_1^{(-n)} \le \frac{n(1-\alpha)}{2^{\delta}(2-\alpha)} = d_1^{(-n)}$$
 (say).

Thus $C_1^{(-n)}$ is maximized when $\lambda_2 = 1$. Write

$$d_j^{(-n)} = \max_{f \in \mathcal{S}_{\delta}(\alpha)} C_j^{(-n)}$$
 $(1 \le j \le n-1).$

Assume that $C_j^{(-n)}$ $(1 \le j \le n-2)$ is maximized for $\lambda_2 = 1$ when $\alpha > 0$ and $\delta > 0$ are sufficiently small. It follows from (3.17) that $\lambda_2 = 1$ implies $\lambda_j = 0$ for every $j \ge 3$. Therefore

using (3.18) and (3.19) we get

$$C_{2}^{(-n)} \leq \left(\frac{n+1}{2}\right) \frac{(1-\alpha)}{2^{\delta}(2-\alpha)} d_{1}^{(-n)} \\ = \binom{n+2-1}{2} \frac{1}{2^{2\delta}} \left(\frac{1-\alpha}{2-\alpha}\right)^{2} = d_{2}^{(-n)}$$
(say).

Assume that

(3.20)
$$d_{j}^{(-n)} = \binom{n+j-1}{j} \frac{1}{2^{j\delta}} \left(\frac{1-\alpha}{2-\alpha}\right)^{j} \qquad (0 \le j \le n-2).$$

Again, using (3.18), we get

(3.21)
$$d_{n-1}^{(-n)} = \max_{f \in S_{\delta}(\alpha)} C_{n-1}^{(-n)}$$
$$= \max_{f \in S_{\delta}(\alpha)} \left(\sum_{j=0}^{n-2} (n-j) \frac{(1-\alpha)\lambda_{n-j}}{(n-j)^{\delta}(n-j-\alpha)} C_{j}^{(-n)} \right)$$
$$\leq \max_{0 \le j \le n-2} \left\{ \frac{(n-j)(1-\alpha)}{(n-j)^{\delta}(n-j-\alpha)} C_{j}^{(-n)} \right\} \left(\sum_{j=0}^{n-2} \lambda_{n-j} \right)$$
$$\leq \max_{0 \le j \le n-2} \left\{ \frac{(n-j)(1-\alpha)}{(n-j)^{\delta}(n-j-\alpha)} d_{j}^{(-n)} \right\}.$$

Write

$$A_j(\alpha, \delta) = \frac{(n-j)(1-\alpha)}{(n-j)^{\delta}(n-j-\alpha)} d_j^{(-n)}; \qquad (j=0,1,2,\dots,(n-2)).$$

Substituting $d_0^{(-n)} = 1$ and the value of $d_1^{(-n)}$ from (3.19), we get

$$A_0(\alpha, \delta) = \frac{n(1-\alpha)}{n^{\delta}(n-\alpha)} \text{ and } A_1(\alpha, \delta) = \frac{n(n-1)(1-\alpha)^2}{2^{\delta}(n-1)^{\delta}(n-1-\alpha)(2-\alpha)}$$

Now $A_0(\alpha, \delta) < A_1(\alpha, \delta)$ $(n \ge 2 \text{ and } 0 \le \delta \le 2)$ if and only if

(3.22)
$$\frac{1}{n^{\delta}(n-1)(n-\alpha)(1-\alpha)} < \frac{1}{2^{\delta}(n-1)^{\delta}(n-1-\alpha)(2-\alpha)}$$

The above inequality (3.22) is true, because $(n - 1 - \alpha) < (n - \alpha)$, $(1 - \alpha) < (2 - \alpha)$ and the maximum value of $\left(\frac{n}{2}\right)^{\delta} (n - 1)^{1-\delta}$ is equal to $1 \ (n \ge 2, \ 0 \le \delta \le 2)$. Also by Lemma 2.3, there exist positive real numbers ε_n and δ_n such that $A_j(\alpha, \delta) < A_k(\alpha, \delta) \ (0 \le \alpha \le \varepsilon_n, \ 0 \le \delta \le \delta_n, \ 1 \le j < k \le n - 2)$. Therefore it follows from (3.21) that the maximum $C_{n-1}^{(-n)}$ occurs at j = n - 2. Substituting the value of $d_{n-2}^{(-n)}$, from (3.20) in (3.21) we get

$$d_{n-1}^{(-n)} = \frac{2(1-\alpha)}{2^{\delta}(2-\alpha)} d_{n-2}^{(-n)} = \frac{2}{2^{(n-1)\delta}} \binom{2n-3}{n-2} \left(\frac{1-\alpha}{2-\alpha}\right)^{n-1} (0 \le \alpha \le \varepsilon_n, \ 0 \le \delta \le \delta_n, \ n=2,3,\dots).$$

Therefore

$$|b_n| = \frac{C_{n-1}^{(-n)}}{n} \le \frac{2}{n2^{(n-1)\delta}} \binom{2n-3}{n-2} \left(\frac{1-\alpha}{2-\alpha}\right)^{n-1}; (0 \le \alpha \le \varepsilon_n, \ 0 \le \delta \le \delta_n, \ n = 2, 3, \dots).$$

The above is precisely the first assertion of (3.16). In order to prove the other case of (3.16), we first observe that in the degenerate case $\alpha = 1$ we have $S_{\delta}(\alpha) = \{z\}$. Therefore $C_i^{(-n)} \to 0$ as $\alpha \to 1^-$ for every $j = 1, 2, 3, \ldots$. Hence there exists a positive real number t_n $(0 \le t_n \le 1)$ such that

$$\frac{n}{n^{\delta}(n-\alpha)} \ge \frac{(n-j)}{(n-j)^{\delta}(n-j-\alpha)} C_j^{(-n)} \qquad (j=1,2,\dots,1-t_n \le \alpha < 1).$$

Thus the maximum of (3.21) occurs at j = 0 and we get $d_{n-1}^{(-n)} = \frac{n(1-\alpha)}{n^{\delta}(n-\alpha)}$ or equivalently

$$|b_n| \le \frac{C_{n-1}^{(-n)}}{n} = \frac{(1-\alpha)}{n^{\delta}(n-\alpha)}.$$

This last estimate is precisely the assertion of (3.16) with $(1 - t_n \leq \alpha < 1, \delta > 0)$.

We observe that the $(n-1)^{th}$ coefficient of the function $\left(\frac{z}{f_2(z)}\right)^n$, where $f_2(z)$ is defined by (3.11), is equal to

$$\frac{2}{2^{(n-1)\delta}} \binom{2n-3}{n-2} \left(\frac{1-\alpha}{2-\alpha}\right)^{n-1}$$

Similarly, the $(n-1)^{th}$ coefficient of the function $\left(\frac{z}{f_n(z)}\right)^n$, where $f_n(z)$ is defined by

$$z - \frac{(1-\alpha)}{n^{\delta}(n-\alpha)} z^n, \qquad (z \in \mathcal{U}, 0 \le \alpha < 1, 0 \le \delta < 1)$$

is equal to

$$\frac{n(1-\alpha)}{n^{\delta}(n-\alpha)}$$

Therefore the estimate (3.16) is sharp. The proof of Theorem 3.2 is complete.

Theorem 3.3. Let the function f given by (1.1), be in $S_{\delta}(\alpha)$ $(0 \le \alpha < 1, \delta > 0)$ and $f^{-1}(w)$ be given by (3.2). For fixed α and δ ($0 \leq \alpha < 1$, $\delta > 0$) let $B_n(\alpha, \delta) = \max_{f \in S_{\delta}(\alpha)} |b_n|$. Then

(3.23)
$$B_n(\alpha, \delta) \le \frac{1}{n} \cdot \frac{2^{n \delta} (2 - \alpha)^n}{[2^{\delta} (2 - \alpha) - (1 - \alpha)]^n}.$$

Proof. Since $f \in S_{\delta}(\alpha)$, by Definition 1.1 we have $\sum_{n=2}^{\infty} \frac{n^{\delta}(n-\alpha)}{(1-\alpha)} |a_n| \leq 1$. Therefore $\frac{2^{\delta}(2-\alpha)}{(1-\alpha)}\sum_{n=2}^{\infty}|a_n| \leq 1$ or equivalently

$$\sum_{n=2}^{\infty} |a_n| \le \frac{(1-\alpha)}{2^{\delta}(2-\alpha)}.$$

This gives

(3.24)

$$|f(z)| = \left| z + \sum_{n=2}^{\infty} a_n z^n \right|$$

$$\geq |z| - |z^2| \left(\sum_{n=2}^{\infty} |a_n| \right)$$

$$\geq r - r^2 \frac{(1-\alpha)}{2^{\delta}(2-\alpha)}, \qquad (|z|=r)$$

Now using the above estimate (3.24) we have

$$|b_n| = \left| \frac{1}{2in\pi} \int_{|z|=r} \frac{1}{(f(z))^n} dz \right|$$

$$\leq \frac{1}{2n\pi} \int_{|z|=r} \frac{1}{|f(z)|^n} |dz|$$

$$\leq \frac{1}{n} \left(\frac{1}{r - \frac{r^2(1-\alpha)}{2^{\delta}(2-\alpha)}} \right)^n.$$

We observe that the function F(r) where

$$F(r) = \left(\frac{1}{r - \frac{r^2(1-\alpha)}{2^{\delta}(2-\alpha)}}\right)^n$$

is an increasing function of $r \ (0 \le \alpha < 1, \ \delta > 0)$ in the interval $0 \le r < 1$. Therefore

$$|b_n| \le \frac{1}{n} \left(\frac{1}{1 - \frac{(1-\alpha)}{2^{\delta}(2-\alpha)}} \right)^n.$$

Consequently,

$$B_n(\alpha, \delta) \le \frac{1}{n} \frac{2^{n\delta} (2-\alpha)^n}{[2^{\delta} (2-\alpha) - (1-\alpha)]^n}.$$

The proof of Theorem 3.3 is complete.

REFERENCES

- [1] J.T.P. CAMPSCHROERER, Coefficients of the inverse of a convex function, Report 8227, Nov. 1982, Department of Mathematics, Catholic University, Nijmegen, The Netherlands, (1982).
- [2] L. DE BRANGES, A proof of the Bieberbach conjecture, Acta. Math., 154(1-2) (1985), 137–152.
- [3] P.L. DUREN, *Univalent Functions*, Volume 259, Grunlehren der Mathematischen Wissenchaften, Bd., Springer-Verlag, New York, (1983).
- [4] A.W. GOODMAN, Univalent functions and nonanalytic curves, *Proc. Amer. Math. Soc.*, 8 (1957), 591–601.
- [5] W.K. HAYMAN, *Multivalent Functions*, Cambridge University Press, Second edition, (1994).
- [6] W.E. KIRWAN AND G. SCHOBER, Inverse coefficients for functions of bounded boundary rotations, *J. Anal. Math.*, **36** (1979), 167–178.
- [7] J. KRZYZ, R.J. LIBERA AND E. ZLOTKIEWICZ, Coefficients of inverse of regular starlike functions, Ann. Univ. Mariae. Curie-Skłodowska, Sect.A, 33 (1979), 103–109.
- [8] V. KUMAR, Quasi-Hadamard product of certain univalent functions, J. Math. Anal. Appl., 126 (1987), 70–77.
- [9] R.J. LIBERA AND E.J. ZLOTKIEWICZ, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85(2) (1982), 225–230.
- [10] K. LÖWNER, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises I, *Math. Ann.*, **89** (1923), 103–121.
- [11] A.K. MISHRA, Quasi-Hadamard product of analytic functions related to univalent functions, *Math. Student*, **64**(1-4) (1995), 221–225.

- [12] A.K. MISHRA AND M. CHOUDHURY, A class of multivalent functions with negative Taylor coefficients, *Demonstratio Math.*, XXVIII(1) (1995), 223–234.
- [13] A.K. MISHRA AND M.K. DAS, Fractional integral operators and distortion theorems for a class of multivalent functions with negative coefficients, J. Anal., 4 (1996), 185–199.
- [14] M. POURAHMADI, Taylor expansion of exp $\left(\sum_{k=0}^{\infty} a_k z^k\right)$ and some applications, *Amer. Math. Monthly*, **91**(5) (1984), 303–307.
- [15] H. SILVERMAN, Univalent functions with negative coefficients, *Proc. Amer. Math. Soc.*, **51** (1975), 109–116.
- [16] H. SILVERMAN, Coefficient bounds for inverses of classes of starlike functions, Complex Variables, 12 (1989), 23–31.
- [17] E.C. TITCHMARSH, A Theory of Functions, Oxford University Press, Second Edition, (1968).

15