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ABSTRACT. This paper deals with a relation between Hardy-Hilbert’s integral inequality and
Mulholland’s integral inequality with a best constant factor, by using the Beta function and in-
troducing a parameterλ. As applications, the reverse, the equivalent form and some particular
results are considered.
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1. I NTRODUCTION

If p > 1, 1
p

+ 1
q

= 1, f, g ≥ 0 satisfy0 <
∫∞

0
fp(x)dx < ∞ and0 <

∫∞
0

gq(x)dx < ∞, then
one has two equivalent inequalities as (see [1]):

(1.1)
∫ ∞

0

∫ ∞

0

f(x)g(y)

x + y
dxdy <

π

sin
(

π
p

) {∫ ∞

0

fp(x)dx

} 1
p
{∫ ∞

0

gq(x)dx

} 1
q

;

(1.2)
∫ ∞

0

(∫ ∞

0

f(x)

x + y
dx

)p

dy <

 π

sin
(

π
p

)
p ∫ ∞

0

fp(x)dx,

where the constant factors π
sin(π/p)

and
[

π
sin(π/p)

]p

are all the best possible. Inequality (1.1) is

called Hardy- Hilbert’s integral inequality, which is important in analysis and its applications
(cf. Mitrinovic et al. [2]).
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2 BICHENG YANG

If 0 <
∫∞

1
1
x
F p(x)dx < ∞ and0 <

∫∞
1

1
y
Gq(y)dy < ∞, then the Mulholland’s integral

inequality is as follows (see [1, 3]):

(1.3)
∫ ∞

1

∫ ∞

1

F (x)F (y)

xy ln xy
dxdy <

π

sin
(

π
p

) {∫ ∞

1

F p(x)

x
dx

} 1
p
{∫ ∞

1

Gq(y)

y
dy

} 1
q

,

where the constant factor π
sin(π/p)

is the best possible. Settingf(x) = F (x)/x, andg(y) =

G(y)/y in (1.3), by simplification, one has (see [12])

(1.4)
∫ ∞

1

∫ ∞

1

f(x)g(y)

ln xy
dxdy <

π

sin
(

π
p

) {∫ ∞

1

xp−1fp(x)dx

} 1
p
{∫ ∞

1

xq−1gq(x)dx

} 1
q

.

We still call (1.4) Mulholland’s integral inequality.
In 1998, Yang [11] first introduced an independent parameterλ and theβ function for given

an extension of (1.1) (forp = q = 2). Recently, by introducing a parameterλ, Yang [8] and
Yang et al. [10] gave some extensions of (1.1) and (1.2) as: Ifλ > 2 − min{p, q}, f, g ≥ 0
satisfy0 <

∫∞
0

x1−λfp(x)dx < ∞ and0 <
∫∞

0
x1−λgq(x)dx < ∞, then one has two equivalent

inequalities as:

(1.5)
∫ ∞

0

∫ ∞

0

f(x)g(y)

(x + y)λ
dxdy < kλ(p)

{∫ ∞

0

x1−λfp(x)dx

} 1
p
{∫ ∞

0

x1−λgq(x)dx

} 1
q

and

(1.6)
∫ ∞

0

y(p−1)(λ−1)

[∫ ∞

0

f(x)

(x + y)λ
dx

]p

dy < [kλ(p)]p
∫ ∞

0

x1−λfp(x)dx,

where the constant factorskλ(p) and [kλ(p)]p (kλ(p) = B
(

p+λ−2
p

, q+λ−2
q

)
, B(u, v) is theβ

function) are all the best possible. By introducing a parameterα, Kuang [5] gave an ex-
tension of (1.1), and Yang [9] gave an improvement of [5] as: Ifα > 0, f, g ≥ 0 satisfy
0 <

∫∞
0

x(p−1)(1−α)fp(x)dx < ∞ and0 <
∫∞

0
x(q−1)(1−α)gq(x)dx < ∞, then

(1.7)
∫ ∞

0

∫ ∞

0

f(x)g(y)

xα + yα
dxdy

<
π

α sin
(

π
p

) {∫ ∞

0

x(p−1)(1−α)fp(x)dx

} 1
p
{∫ ∞

0

x(q−1)(1−α)gq(x)dx

} 1
q

,

where the constant π
α sin(π/p)

is the best possible. Recently, Sulaiman [6] gave some new forms
of (1.1) and Hong [14] gave an extension of Hardy-Hilbert’s inequality by introducing two
parametersλ andα. Yang et al. [13] provided an extensive account of the above results.

The main objective of this paper is to build a relation to (1.1) and (1.4) with a best con-
stant factor, by introducing theβ function and a parameterλ, related to the double integral∫ b

a

∫ b

a
f(x)g(y)

(u(x)+u(y))λ dxdy (λ > 0). As applications, the reversion, the equivalent form and some
particular results are considered.

2. SOME L EMMAS

First, we need the formula of theβ function as (cf. Wang et al. [7]):

(2.1) B(u, v) :=

∫ ∞

0

1

(1 + t)u+v
tu−1dt = B(v, u) (u, v > 0).
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Lemma 2.1(cf. [4]). If p > 1, 1
p

+ 1
q

= 1, ω(σ) > 0, f, g ≥ 0, f ∈ Lp
ω(E) andg ∈ Lq

ω(E),
then one has the Hölder’s inequality with weight as:

(2.2)
∫

E

ω(σ)f(σ)g(σ)dσ ≤
{∫

E

ω(σ)fp(σ)dσ

} 1
p
{∫

E

ω(σ)gq(σ)dσ

} 1
q

;

if p < 1 (p 6= 0), with the above assumption, one has the reverse of (2.2), where the equality (in
the above two cases) holds if and only if there exists non-negative real numbersc1 andc2, such
that they are not all zero andc1f

p(σ) = c2g
q(σ), a. e. inE.

Lemma 2.2. If p 6= 0, 1, 1
p

+ 1
q

= 1, φr = φr(λ) > 0 (r = p, q), φp + φq = λ, andu(t) is a
differentiable strict increasing function in(a, b) (−∞ ≤ a < b ≤ ∞) such thatu(a+) = 0 and
u(b−) = ∞, for r = p, q, defineωr(x) as

(2.3) ωr(x) := (u(x))λ−φr

∫ b

a

(u(y))φr−1u
′
(y)

(u(x) + u(y))λ
dy (x ∈ (a, b)).

Then forx ∈ (a, b), eachωr(x) is constant, that is

(2.4) ωr(x) = B(φp, φq) (r = p, q).

Proof. For fixedx, settingv = u(y)
u(x)

in (2.3), one has

ωr(x) = (u(x))λ−φr

∫ b

a

(u(y))φr−1u
′
(y)

(u(x))λ(1 + u(y)/u(x))λ
dy

= (u(x))λ−φr

∫ ∞

0

(vu(x))φr−1

(u(x))λ(1 + v)λ
u(x)dv

=

∫ ∞

0

vφr−1

(1 + v)λ
dv (r = p, q).

By (2.1), one has (2.4). The lemma is proved. �

Lemma 2.3. If p > 1, 1
p

+ 1
q

= 1, φr > 0 (r = p, q), satisfyφp + φq = λ, and u(t) is a
differentiable strict increasing function in(a, b) (−∞ ≤ a < b ≤ ∞) satisfyingu(a+) = 0
andu(b−) = ∞, then forc = u−1(1) and0 < ε < qφp,

I :=

∫ b

c

∫ b

c

(u(x))φq− ε
p
−1u

′
(x)

(u(x) + u(y))λ
(u(y))φp− ε

q
−1u

′
(y)dxdy

>
1

ε
B

(
φp −

ε

q
, φq +

ε

q

)
−O(1) ;(2.5)

if 0 < p < 1 (or p < 0), with the above assumption and0 < ε < −qφq (or 0 < ε < qφp), then

(2.6) I <
1

ε
B

(
φp −

ε

q
, φq +

ε

q

)
.
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Proof. For fixedx, settingv = u(y)
u(x)

in I, one has

I :=

∫ b

c

(u(x))φq− ε
p
−1u

′
(x)

[∫ b

c

(u(y))φp− ε
q
−1

(u(x) + u(y))λ
u
′
(y)dy

]
dx

=

∫ b

c

(u(x))−1−εu
′
(x)

∫ ∞

1
u(x)

1

(1 + v)λ
vφp− ε

q
−1dvdx

=

∫ b

c

u
′
(x)dx

(u(x))1+ε

∫ ∞

0

vφp− ε
q
−1

(1 + v)λ
dv −

∫ b

c

u
′
(x)

(u(x))1+ε

∫ 1
u(x)

0

vφp− ε
q
−1

(1 + v)λ
dvdx(2.7)

>
1

ε

∫ ∞

0

vφp− ε
q
−1

(1 + v)λ
dv −

∫ b

c

u
′
(x)

(u(x))

[∫ 1
u(x)

0

vφp− ε
q
−1dv

]
dx

=
1

ε

∫ ∞

0

vφp− ε
q
−1

(1 + v)λ
dv −

(
φp −

ε

q

)−2

.

By (2.1), inequality (2.5) is valid. If0 < p < 1 (or p < 0), by (2.7), one has

I <

∫ b

c

u
′
(x)

(u(x))1+ε
dx

∫ ∞

0

1

(1 + v)λ
vφp− ε

q
−1dv,

and then by (2.1), inequality (2.6) follows. The lemma is proved. �

3. M AIN RESULTS

Theorem 3.1. If p > 1, 1
p
+ 1

q
= 1, φr > 0 (r = p, q), φp +φq = λ, u(t) is a differentiable strict

increasing function in(a, b) (−∞ ≤ a < b ≤ ∞), such thatu(a+) = 0 andu(b−) = ∞, and

f, g ≥ 0 satisfy0 <
∫ b

a
(u(x))p(1−φq)−1

(u′ (x))p−1 fp(x)dx < ∞ and 0 <
∫ b

a
(u(x))q(1−φp)−1

(u′ (x))q−1 gq(x)dx < ∞,

then

(3.1)
∫ b

a

∫ b

a

f(x)g(y)

(u(x) + u(y))λ
dxdy

< B(φp, φq)

{∫ b

a

(u(x))p(1−φq)−1

(u′(x))p−1
fp(x)dx

} 1
p
{∫ b

a

(u(x))q(1−φp)−1

(u′(x))q−1
gq(x)dx

} 1
q

,

where the constant factorB(φp, φq) is the best possible. Ifp < 1 (p 6= 0), {λ; φr > 0 (r =
p, q), φp + φq = λ} 6= φ, with the above assumption, one has the reverse of (3.1), and the
constant is still the best possible.

Proof. By (2.2), one has

J :=

∫ b

a

∫ b

a

f(x)g(y)

(u(x) + u(y))λ
dxdy

=

∫ b

a

∫ b

a

1

(u(x) + u(y))λ

[
(u(x))(1−φq)/q

(u(y))(1−φp)/p

(u
′
(y))1/p

(u′(x))1/q
f(x)

]
×

[
(u(y))(1−φp)/p

(u(x))(1−φq)/q

(u
′
(x))1/q

(u′(y))1/p
g(y)

]
dxdy
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≤
{∫ b

a

[∫ b

a

(u(y))φp−1u
′
(y)

(u(x) + u(y))λ
dy

]
(u(x))(p−1)(1−φq)

(u′(x))p−1
fp(x)dx

} 1
p

×
{∫ b

a

[∫ b

a

(u(x))φq−1u
′
(x)

(u(x) + u(y))λ
dx

]
(u(y))(q−1)(1−φp)

(u′(y))q−1
gq(y)dy

} 1
q

.(3.2)

If (3.2) takes the form of equality, then by (2.2), there exist non-negative numbersc1 andc2,
such that they are not all zero and

c1
u
′
(y)(u(x))(p−1)(1−φq)

(u(y))1−φp(u′(x))p−1
fp(x) = c2

u
′
(x)(u(y))(q−1)(1−φp)

(u(x))1−φq(u′(y))q−1
gq(y),

a.e. in (a, b)× (a, b).

It follows that

c1
(u(x))p(1−φq)

(u′(x))p
fp(x) = c2

(u(y))q(1−φp)

(u′(y))q
gq(y) = c3, a.e. in (a, b)× (a, b),

wherec3 is a constant. Without loss of generality, supposec1 6= 0. One has

(u(x))p(1−φq)−1

(u′(x))p−1
fp(x) =

c3u
′
(x)

c1u(x)
, a.e. in (a, b),

which contradicts0 <
∫ b

a
(u(x))p(1−φq)−1

(u
′
(x))p−1 fp(x)dx < ∞. Then by (2.3), one has

(3.3) J <

{∫ b

a

ωp(x)
(u(x))p(1−φq)−1

(u′(x))p−1
fp(x)dx

} 1
p
{∫ ∞

0

ωq(x)
(u(x))q(1−φp)−1

(u′(x))q−1
gq(x)dx

} 1
q

,

and in view of (2.4), it follows that (3.1) is valid.
For0 < ε < qφp, settingfε(x) = gε(x) = 0, x ∈ (a, c) (c = u−1(1));

fε(x) = (u(x))φq− ε
p
−1u

′
(x), gε(x) = (u(x))φp− ε

q
−1u

′
(x),

x ∈ [c, b), we find

(3.4)

{∫ b

a

(u(x))p(1−φq)−1

(u′(x))p−1
fp

ε (x)dx

} 1
p
{∫ b

a

(u(x))q(1−φp)−1

(u′(x))q−1
gq

ε(x)dx

} 1
q

=
1

ε
.

If the constant factorB(φp, φq) in (3.1) is not the best possible, then, there exists a positive
constantk < B(φp, φq), such that (3.1) is still valid if one replacesB(φp, φq) byk. In particular,
by (2.6) and (3.4), one has

B

(
φp −

ε

q
, φq +

ε

q

)
− εO(1)

< ε

∫ b

a

∫ b

a

fε(x)gε(y)

(u(x) + u(y))λ
dxdy

< εk

{∫ b

a

(u(x))p(1−φq)−1

(u′(x))p−1
fp

ε (x)dx

} 1
p
{∫ b

a

(u(x))q(1−φp)−1

(u′(x))q−1
gq

ε(x)dx

} 1
q

= k,

and thenB(φp, φq) ≤ k (ε → 0+). This contradicts the fact thatk < B(φp, φq). Hence the
constant factorB(φp, φq) in (3.1) is the best possible.

For 0 < p < 1 (or p < 0), by the reverse of (2.2) and using the same procedures, one can
obtain the reverse of (3.1). For0 < ε < −qφq (or 0 < ε < qφp), settingfε(x) andgε(x) as the
above, we still have (3.4). If the constant factorB(φp, φq) in the reverse of (3.1) is not the best
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possible, then, there exists a positive constantK > B(φp, φq), such that the reverse of (3.1) is
still valid if one replacesB(φp, φq) by K. In particular, by (2.7) and (3.4), one has

B

(
φp −

ε

q
, φq +

ε

q

)
> ε

∫ b

a

∫ b

a

fε(x)gε(y)

(u(x) + u(y))λ
dxdy

> εK

{∫ b

a

(u(x))p(1−φq)−1

(u′(x))p−1
fp

ε (x)dx

} 1
p
{∫ b

a

(u(x))q(1−φp)−1

(u′(x))q−1
gq

ε(x)dx

} 1
q

= K,

and thenB(φp, φq) ≥ K (ε → 0+). This contradiction concludes that the constant in the reverse
of (3.1) is the best possible. The theorem is proved. �

Theorem 3.2.Let the assumptions of Theorem 3.1 hold.

(i) If p > 1, 1
p

+ 1
q

= 1, one obtains the equivalent inequality of (3.1) as follows

(3.5)
∫ b

a

u
′
(y)

(u(y))1−pφp

[∫ b

a

f(x)

(u(x) + u(y))λ
dx

]p

dy

< [B(φp, φq)]
p

∫ b

a

(u(x))p(1−φq)−1

(u′(x))p−1
fp(x)dx;

(ii) If 0 < p < 1, one obtains the reverse of (3.5) equivalent to the reverse of (3.1);
(iii) If p < 0, one obtains inequality (3.5) equivalent to the reverse of (3.1),

where the constants in the above inequalities are all the best possible.

Proof. Set

g(y) :=
u
′
(y)

(u(y))1−pφp

[∫ b

a

f(x)

(u(x) + u(y))λ
dx

]p−1

,

and use (3.1) to obtain

0 <

∫ b

a

(u(y))q(1−φp)−1

(u′(y))q−1
gq(y)dy

=

∫ b

a

u
′
(y)

(u(y))1−pφp

[∫ b

a

f(x)

(u(x) + u(y))λ
dx

]p

dy

=

∫ b

a

∫ b

a

f(x)g(y)

(u(x) + u(y))λ
dxdy ≤ B(φp, φq)

×
{∫ b

a

(u(x))p(1−φq)−1

(u′(x))p−1
fp(x)dx

} 1
p
{∫ b

a

(u(y))q(1−φp)−1

(u′(y))q−1
gq(y)dy

} 1
q

;(3.6)

0 <

{∫ b

a

(u(y))q(1−φp)−1

(u′(y))q−1
gq(y)dy

}1− 1
q

=

{∫ b

a

u
′
(y)

(u(y))1−pφp

[∫ b

a

f(x)

(u(x) + u(y))λ
dx

]p

dy

} 1
p

≤ B(φp, φq)

{∫ b

a

(u(x))p(1−φq)−1

(u′(x))p−1
fp(x)dx

} 1
p

< ∞.(3.7)
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It follows that (3.6) takes the form of strict inequality by using (3.1); so does (3.7). Hence one
can get (3.5). On the other hand, if (3.5) is valid, by (2.2),∫ b

a

∫ b

a

f(x)g(y)

(u(x) + u(y))λ
dxdy

=

∫ b

a

[
(u

′
(y))

1
p

(u(y))
1
p
−φp

∫ b

a

f(x)

(u(x) + u(y))λ
dx

] [
(u(y))

1
p
−φp

(u′(y))
1
p

g(y)

]
dy

≤

{∫ b

a

u
′
(y)

(u(y))1−pφp

[∫ b

a

f(x)

(u(x) + u(y))λ
dx

]p

dy

} 1
p

×
{∫ b

a

(u(y))q(1−φp)−1

(u′(y))q−1
gq(y)dy

} 1
q

.(3.8)

Hence by (3.5), (3.1) yields. It follows that (3.1) and (3.5) are equivalent.
If the constant factor in (3.5) is not the best possible, one can get a contradiction that the

constant factor in (3.1) is not the best possible by using (3.8). Hence the constant factor in (3.5)
is still the best possible.

If 0 < p < 1 (or p < 0), one can get the reverses of (3.6), (3.7) and (3.8), and thus concludes
the equivalence. By (3.6), for0 < p < 1, one can obtain the reverse of (3.5); forp < 0, one can
get (3.5). If the constant factor in the reverse of (3.5) (or simply (3.5)) is not the best possible,
then one can get a contradiction that the constant factor in the reverse of (3.1) is not the best
possible by using the reverse of (3.8). Thus the theorem is proved. �

4. SOME PARTICULAR RESULTS

We point out that the constant factors in the following particular results of Theorems 3.1 –
3.2 are all the best possible.

4.1. The first reversible form.

Corollary 4.1. Let the assumptions of Theorems 3.1 – 3.2 hold. Forφr = (1 − 1
r
)(λ − 2) +

1(r = p, q), 0 <
∫ b

a
(u(x))1−λ

(u′ (x))p−1 f
p(x)dx < ∞ and 0 <

∫ b

a
(u(x))1−λ

(u′ (x))q−1 g
q(x)dx < ∞, setting

kλ(p) = B
(

p+λ−2
p

, q+λ−2
q

)
,

(i) If p > 1, 1
p

+ 1
q

= 1, λ > 2 − min{p, q} , then we have the following two equivalent
inequalities:

(4.1)
∫ b

a

∫ b

a

f(x)g(y)

(u(x) + u(y))λ
dxdy

< kλ(p)

{∫ b

a

(u(x))1−λ

(u′(x))p−1
fp(x)dx

} 1
p
{∫ b

a

(u(x))1−λ

(u′(x))q−1
gq(x)dx

} 1
q

and

(4.2)
∫ b

a

u
′
(y)

(u(y))(p−1)(1−λ)

[∫ b

a

f(x)

(u(x) + u(y))λ
dx

]p

dy < [kλ(p)]p
∫ b

a

(u(x))1−λ

(u′(x))p−1
fp(x)dx.

(ii) If 0 < p < 1 and2 − p < λ < 2 − q, one obtains two equivalent reverses of (4.1) and
(4.2),

(iii) If p < 0 and2 − q < λ < 2 − p, we have the reverse of (4.1) and the inequality (4.2),
which are equivalent. In particular, by (4.1),
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(a) settingu(x) = xα (α > 0, x ∈ (0,∞)), one has

(4.3)
∫ ∞

0

∫ ∞

0

f(x)g(y)

(xα + yα)λ
dxdy

<
1

α
kλ(p)

{∫ ∞

0

xp−1+α(2−λ−p)fp(x)dx

} 1
p
{∫ ∞

0

xq−1+α(2−λ−q)gq(x)dx

} 1
q

;

(b) settingu(x) = ln x, x ∈ (1,∞), one has

(4.4)
∫ ∞

1

∫ ∞

1

f(x)g(y)

(ln xy)λ
dxdy

< kλ(p)

{∫ ∞

1

xp−1(ln x)1−λfp(x)dx

} 1
p
{∫ ∞

1

xq−1(ln x)1−λgq(x)dx

} 1
q

;

(c) settingu(x) = ex, x ∈ (−∞,∞), one has

(4.5)
∫ ∞

−∞

∫ ∞

−∞

f(x)g(y)

(ex + ey)λ
dxdy

< kλ(p)

{∫ ∞

−∞
e(2−p−λ)xfp(x)dx

} 1
p
{∫ ∞

−∞
e(2−q−λ)xgq(x)dx

} 1
q

;

(d) settingu(x) = tan x, x ∈ (0, π
2
), one has

(4.6)
∫ π

2

0

∫ π
2

0

f(x)g(y)

(tan x + tan y)λ
dxdy

< kλ(p)

{∫ π
2

0

tan1−λ x

sec2(p−1) x
fp(x)dx

} 1
p
{∫ π

2

0

tan1−λ x

sec2(q−1) x
gq(x)dx

} 1
q

;

(e) settingu(x) = sec x− 1, x ∈ (0, π
2
), one has

(4.7)
∫ π

2

0

∫ π
2

0

f(x)g(y)

(sec x + sec y − 2)λ
dxdy

< kλ(p)

{∫ π
2

0

(sec x− 1)1−λ

(sec x tan x)p−1
fp(x)dx

} 1
p
{∫ π

2

0

(sec x− 1)1−λ

(sec x tan x)q−1
gq(x)dx

} 1
q

.

4.2. The second reversible form.

Corollary 4.2. Let the assumptions of Theorems 3.1 – 3.2 hold. Forφr = λ−1
2

+ 1
r

(r =

p, q), 0 <
∫ b

a
(u(x))p 1−λ

2

(u
′
(x))p−1 fp(x)dx < ∞ and 0 <

∫ b

a
(u(x))q 1−λ

2

(u′ (x))q−1 gq(x)dx < ∞, settingk̃λ(p) =

B
(

pλ−p+2
2p

, qλ−q+2
2q

)
,

(i) If p > 1, 1
p
+ 1

q
= 1, λ > 1− 2 min{1

p
, 1

q
} , then one can get two equivalent inequalities

as follows:

(4.8)
∫ b

a

∫ b

a

f(x)g(y)

(u(x) + u(y))λ
dxdy

< k̃λ(p)

{∫ b

a

(u(x))p 1−λ
2

(u′(x))p−1
fp(x)dx

} 1
p
{∫ b

a

(u(x))q 1−λ
2

(u′(x))q−1
gq(x)dx

} 1
q

;
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(4.9)
∫ b

a

u
′
(y)

(u(y))
p 1−λ

2

[∫ b

a

f(x)

(u(x) + u(y))λ
dx

]p

dy <
[
k̃λ(p)

]p
∫ b

a

(u(x))p 1−λ
2

(u′(x))p−1
fp(x)dx,

(ii) If 0 < p < 1, 1 − 2
p

< λ < 1 − 2
q
, one can get two equivalent reversions of (4.8) and

(4.9),
(iii) If p < 0, 1 − 2

q
< λ < 1 − 2

p
, one can get the reversion of (4.8) and inequality (4.9),

which are equivalent. In particular, by (4.8),
(a) settingu(x) = xα (α > 0, x ∈ (0,∞)), one has

(4.10)
∫ ∞

0

∫ ∞

0

f(x)g(y)

(xα + yα)λ
dxdy

<
1

α
k̃λ(p)

{∫ ∞

0

xp−1+α(1−p 1+λ
2

)fp(x)dx

} 1
p
{∫ ∞

0

xq−1+α(1−q 1+λ
2

)gq(x)dx

} 1
q

;

(b) settingu(x) = ln x, x ∈ (1,∞), one has

(4.11)
∫ ∞

1

∫ ∞

1

f(x)g(y)

(ln xy)λ
dxdy

< k̃λ(p)

{∫ ∞

1

xp−1(ln x)p 1−λ
2 fp(x)dx

} 1
p
{∫ ∞

1

xq−1(ln x)q 1−λ
2 gq(x)dx

} 1
q

;

(c) settingu(x) = ex, x ∈ (−∞,∞), one has

(4.12)
∫ ∞

−∞

∫ ∞

−∞

f(x)g(y)

(ex + ey)λ
dxdy

< k̃λ(p)

{∫ ∞

−∞
e(1−p 1+λ

2
)xfp(x)dx

} 1
p
{∫ ∞

−∞
e(1−q 1+λ

2
)xgq(x)dx

} 1
q

;

(d) settingu(x) = tan x, x ∈ (0, π
2
), one has

(4.13)
∫ π

2

0

∫ π
2

0

f(x)g(y)

(tan x + tan y)λ
dxdy

< k̃λ(p)

{∫ π
2

0

tanp 1−λ
2 x

sec2(p−1) x
fp(x)dx

} 1
p
{∫ π

2

0

tanq 1−λ
2 x

sec2(q−1) x
gq(x)dx

} 1
q

;

(e) settingu(x) = sec x− 1, x ∈ (0, π
2
), one has

(4.14)
∫ π

2

0

∫ π
2

0

f(x)g(y)

(sec x + sec y − 2)λ
dxdy

< k̃λ(p)

{∫ π
2

0

(sec x− 1)p 1−λ
2

(sec x tan x)p−1
fp(x)dx

} 1
p
{∫ π

2

0

(sec x− 1)q 1−λ
2

(sec x tan x)q−1
gq(x)dx

} 1
q

.

4.3. The form which does not have a reverse.

Corollary 4.3. Let the assumptions of Theorems 3.1 – 3.2 hold. Forφr = λ
r
(r = p, q), if p >

1, 1
p
+ 1

q
= 1, λ > 0 , 0 <

∫ b

a
(u(x))(p−1)(1−λ)

(u′ (x))p−1 fp(x)dx < ∞ and 0 <
∫ b

a
(u(x))(q−1)(1−λ)

(u′ (x))q−1 gq(x)dx <
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∞, then one can get two equivalent inequalities as:

(4.15)
∫ b

a

∫ b

a

f(x)g(y)

(u(x) + u(y))λ
dxdy

< B

(
λ

p
,
λ

q

) {∫ b

a

(u(x))(p−1)(1−λ)

(u′(x))p−1
fp(x)dx

} 1
p
{∫ b

a

(u(x))(q−1)(1−λ)

(u′(x))q−1
gq(x)dx

} 1
q

;

(4.16)
∫ b

a

u
′
(y)

(u(y))1−λ

[∫ b

a

f(x)

(u(x) + u(y))λ
dx

]p

dy

<

[
B

(
λ

p
,
λ

q

)]p ∫ b

a

(u(x))(p−1)(1−λ)

(u′(x))p−1
fp(x)dx.

In particular, by (4.15),

(a) settingu(x) = xα(α > 0; x ∈ (0,∞)), one has

(4.17)
∫ ∞

0

∫ ∞

0

f(x)g(y)

(xα + yα)λ
dxdy

<
1

α
B

(
λ

p
,
λ

q

) {∫ ∞

0

x(p−1)(1−αλ)fp(x)dx

} 1
p
{∫ ∞

0

x(q−1)(1−αλ)gq(x)dx

} 1
q

;

(b) settingu(x) = ln x, x ∈ (1,∞), one has

(4.18)
∫ ∞

1

∫ ∞

1

f(x)g(y)

(ln xy)λ
dxdy < B

(
λ

p
,
λ

q

) {∫ ∞

1

xp−1(ln x)(p−1)(1−λ)fp(x)dx

} 1
p

×
{∫ ∞

1

xq−1(ln x)(q−1)(1−λ)gq(x)dx

} 1
q

;

(c) settingu(x) = ex, x ∈ (−∞,∞), one has

(4.19)
∫ ∞

−∞

∫ ∞

−∞

f(x)g(y)

(ex + ey)λ
dxdy

< B

(
λ

p
,
λ

q

) {∫ ∞

−∞
e(1−p)λxfp(x)dx

} 1
p
{∫ ∞

−∞
e(1−q)λxgq(x)dx

} 1
q

;

(d) settingu(x) = tan x, x ∈ (0, π
2
), one has

(4.20)
∫ π

2

0

∫ π
2

0

f(x)g(y)

(tan x + tan y)λ
dxdy

< B

(
λ

p
,
λ

q

) {∫ π
2

0

tan(p−1)(1−λ) x

sec2(p−1) x
fp(x)dx

} 1
p
{∫ π

2

0

tan(q−1)(1−λ) x

sec2(q−1) x
gq(x)dx

} 1
q

;
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(e) settingu(x) = sec x− 1, x ∈ (0, π
2
), one has

(4.21)
∫ π

2

0

∫ π
2

0

f(x)g(y)

(sec x + sec y − 2)λ
dxdy

< B

(
λ

p
,
λ

q

) {∫ π
2

0

(sec x− 1)(p−1)(1−λ)

(sec x tan x)p−1
fp(x)dx

} 1
p

×

{∫ π
2

0

(sec x− 1)(q−1)(1−λ)

(sec x tan x)q−1
gq(x)dx

} 1
q

.

Remark 4.4. Forα = 1, (4.3) reduces to (1.5). Forλ = 1, inequalities (4.3), (4.10) and (4.17)
reduce to (1.7), and inequalities (4.4), (4.11) and (4.18) reduce to (1.4). It follows that inequality
(3.5) is a relation between (1.4) and (1.7)(ro (1.1)) with a parameterλ. Still for λ = 1, (4.5),
(4.12) and (4.19) reduce to

(4.22)
∫ ∞

−∞

∫ ∞

−∞

f(x)g(y)

ex + ey
dxdy

<
π

sin
(

π
p

) {∫ ∞

−∞
e(1−p)xfp(x)dx

} 1
p
{∫ ∞

−∞
e(1−q)xgq(x)dx

} 1
q

,

(4.6), (4.13) and (4.20) reduce to

(4.23)
∫ π

2

0

∫ π
2

0

f(x)g(y)

tan x + tan y
dxdy

<
π

sin
(

π
p

) {∫ π
2

0

cos2(p−1) xfp(x)dx

} 1
p
{∫ π

2

0

cos2(q−1) xgq(x)dx

} 1
q

,

and (4.7), (4.14) and (4.21) reduce to

(4.24)
∫ π

2

0

∫ π
2

0

f(x)g(y)

sec x + sec y − 2
dxdy

<
π

sin
(

π
p

) {∫ π
2

0

(
cos2 x

sin x

)p−1

fp(x)dx

} 1
p
{∫ π

2

0

(
cos2 x

sin x

)q−1

gq(x)dx

} 1
q

.
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