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ABSTRACT. In this short note, by using mathematical induction and infinite product representa-
tions of the functionsJp : R → (−∞, 1] andIp : R → [1,∞), defined by

Jp(x) = 2pΓ(p + 1)x−pJp(x) and Ip(x) = 2pΓ(p + 1)x−pIp(x),

an extension of Redheffer’s inequality for the functionJp and a Redheffer-type inequality for
the functionIp are established. HereJp andIp, denotes the Bessel function and modified Bessel
function, whileΓ stands for the Euler gamma function. At the end of this work a lower bound for
theΓ function is deduced, using Euler’s infinite product formula. Our main motivation to write
this note is the publication of C.P. Chen, J.W. Zhao and F. Qi [2], which we wish to complement.
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1. I NTRODUCTION AND PRELIMINARIES

The following inequality

(1.1)
sin x

x
≥ π2 − x2

π2 + x2
, for all x ∈ R

is known in literature as Redheffer’s inequality [4, 5]. Motivated by this inequality recently C.P.
Chen, J.W. Zhao and F. Qi [2] (see also the survey article of F.Qi [3]) using mathematical in-
duction and infinite product representation ofcos x, sinh x andcosh x established the following
Redheffer-type inequalities:

(1.2) cos x ≥ π2 − 4x2

π2 + 4x2
, and cosh x ≤ π2 + 4x2

π2 − 4x2
, for all |x| ≤ π

2
.
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Moreover, the authors found the hyperbolic analogue of inequality (1.1), by showing that

(1.3)
sinh x

x
≤ π2 + x2

π2 − x2
for all |x| < π.

As we mentioned above, the proofs of inequalities (1.2) and (1.3) by C.P. Chen, J. W. Zhao and
F. Qi are based on the following representations [1, p. 75 and 85] ofcos x, sinh x andcosh x:

(1.4) cos x =
∏
n≥1

[
1− 4x2

(2n− 1)2π2

]
, cosh x =

∏
n≥1

[
1 +

4x2

(2n− 1)2π2

]
,

and

(1.5)
sinh x

x
=
∏
n≥1

(
1 +

x2

n2π2

)
respectively. In this paper our aim is to show that the idea of using mathematical induction and
infinite product representation is also fruitful for Bessel functions as well as for theΓ function.

2. AN EXTENSION OF REDHEFFER ’ S I NEQUALITY AND ITS HYPERBOLIC ANALOGUE

Our first main result reads as follows.

Theorem 2.1. Let us consider the functionsJp : R → (−∞, 1] andIp : R → [1,∞), defined
by the relations

Jp(x) = 2pΓ(p + 1)x−pJp(x) and Ip(x) = 2pΓ(p + 1)x−pIp(x),

whereJp andIp are the well-known Bessel function, and modified Bessel function respectively.
Furthermore suppose thatp > −1 and letjp,n be then-th positive zero of the Bessel function
Jp. If ∆p(n) := j2

p,n+1 − jp,1jp,n − jp,njp,n+1 ≥ 0, wheren = 1, 2, . . ., then the following
inequalities hold

(2.1) Jp(x) ≥
j2
p,1 − x2

j2
p,1 + x2

, for all |x| ≤ αp := min
n≥1,p>−1

{
jp,1,

√
∆p(n)

}
,

(2.2) Ip(x) ≤
j2
p,1 + x2

j2
p,1 − x2

, for all |x| < jp,1.

Remark 2.2. For later use it is worth mentioning that in particular forp = −1/2 andp = 1/2
respectively the functionsJp andIp reduce to some elementary functions [1, p. 438 and 443],
such as

J−1/2(x) =
√

π/2 · x1/2J−1/2(x) = cos x,(2.3)

J1/2(x) =
√

π/2 · x−1/2J1/2(x) =
sin x

x
,

with their hyperbolic analogs

I−1/2(x) =
√

π/2 · x1/2I−1/2(x) = cosh x,(2.4)

I1/2(x) =
√

π/2 · x−1/2I1/2(x) =
sinh x

x
.

Recall thatJ−1/2 has the infinite product representation (1.4) and [1, p. 75]

J1/2(x) =
sin x

x
=
∏
n≥1

(
1− x2

n2π2

)
.
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Thus using the relations (2.6) and (2.3) it is clear thatj−1/2,n = (2n − 1)π/2 andj1/2,n = nπ

for all n = 1, 2, . . .. Consequently for alln = 1, 2, . . . we have
√

∆1/2(n) = j1/2,1 = π and√
∆−1/2(n) =

π

2

√
2n + 3 ≥ π

2

√
5 >

π

2
= j−1/2,1,

which imply thatα−1/2 = π/2 andα1/2 = π. So in view of (2.3), if we take in (2.1)p = −1/2
and p = 1/2 respectively, then we reobtain the first inequality from (1.2) and Redheffer’s
inequality (1.1) respectively, with the intervals of validity[−π/2, π/2] and[−π, π], respectively.
The situation is similar to inequality (2.2), namely if we choose in (2.2)p = −1/2 andp = 1/2
respectively, then by using (2.4), we reobtain the second inequality from (1.2) and inequality
(1.3), with the same intervals of validity, i.e.[−π/2, π/2] and[−π, π], respectively.

Proof of Theorem 2.1. First observe that to prove (2.1) it is enough to show that

(2.5) Jp(xjp,1) ≥
1− x2

1 + x2

holds for all |x| ≤ αp/jp,1. It is known that for the Bessel function of the first kindJp the
following infinite product formula [6, p. 498]

(2.6) Jp(x) = 2pΓ(p + 1)x−pJp(x) =
∏
n≥1

(
1− x2

j2
p,n

)
is valid for arbitraryx andp 6= −1,−2, . . .. From this we deduce

(2.7) Jp(xjp,1) =
1− x2

1 + x2

[
(1 + x2) lim

n→∞
Qp,n

]
, whereQp,n :=

n∏
k=2

(
1−

x2j2
p,1

j2
p,k

)
.

In what follows we want to prove by mathematical induction that

(2.8) (1 + x2)Qp,n ≥ 1 +
x2jp,1

jp,n

holds for allp > −1, n ≥ 2 and|x| ≤ αp/jp,1. Forn = 2 clearly by assumptions we have

(1 + x2)Qp,2 −
(

1 +
x2jp,1

jp,2

)
=

x2

j2
p,2

[
∆p(1)− j2

p,1x
2
]
≥ 0.

Now suppose that (2.8) holds for somem ≥ 2. From the definition ofQp,m, we easily get

Qp,m+1 = Qp,m ·
(

1−
x2j2

p,1

j2
p,m+1

)
, for all m = 2, 3, 4, . . . ,

thus

(1 + x2)Qp,m+1 −
(

1 +
x2jp,1

jp,m+1

)
=(1 + x2)Qp,m

(
1−

x2j2
p,1

j2
p,m+1

)
−
(

1 +
x2jp,1

jp,m+1

)
≥
(

1 +
x2jp,1

jp,m

)(
1−

x2j2
p,1

j2
p,m+1

)
−
(

1 +
x2jp,1

jp,m+1

)
=

x2jp,1

jp,mj2
p,m+1

[
∆p(m)− j2

p,1x
2
]
≥ 0,

and hence by induction (2.8) follows. Here we used the fact that from the hypothesis we obtain
|x| ≤

√
∆p(m)/jp,1 ≤ jp,m+1/jp,1. On the other hand from the MacMahon expansion [6, p.

506],
jp,n = (n + p/2− 1/4)π +O(n−1), n →∞,
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we havejp,n →∞, asn tends to infinity. Finally from (2.8) we obtain

lim
n→∞

(1 + x2)Qp,n ≥ lim
n→∞

(
1 +

x2jp,1

jp,n

)
= 1,

which in view of (2.7) implies (2.5). This completes the proof of (2.1).
Proceeding similarly as in the proof of (2.1) now we prove (2.2). It suffices to show that

(2.9) Ip(xjp,1) ≤
1 + x2

1− x2

holds for all|x| < 1. Analogously, using the factorisation (2.6), it is known that for the modified
Bessel function of the first kindIp the following infinite product formula

Ip(x) = 2pΓ(p + 1)x−pIp(x) =
∏
n≥1

(
1 +

x2

j2
p,n

)
is also valid for arbitraryx andp 6= −1,−2, . . .. From this we get that

(2.10) Ip(xjp,1) =
1 + x2

1− x2

[
(1− x2) lim

n→∞
Rp,n

]
, whereRp,n :=

n∏
k=2

(
1 +

x2j2
p,1

j2
p,k

)
.

In what follows we want to show by mathematical induction that

(2.11) (1− x2)Rp,n ≤ 1− x2jp,1

jp,n

holds for allp > −1, n ≥ 2 and|x| < 1. Forn = 2, clearly we have

(1− x2)Rp,2 −
(

1− x2jp,1

jp,2

)
=

x2

j2
p,2

[
−∆p(1)− j2

p,1x
2
]
≤ 0.

Now suppose that (2.11) holds for somem ≥ 2. From the definition ofRp,m, we easily get

Rp,m+1 = Rp,m ·
(

1 +
x2j2

p,1

j2
p,m+1

)
, for all m = 2, 3, 4, . . . ,

thus

(1− x2)Rp,m+1 −
(

1− x2jp,1

jp,m+1

)
=(1− x2)Rp,m

(
1 +

x2j2
p,1

j2
p,m+1

)
−
(

1− x2jp,1

jp,m+1

)
≤
(

1− x2jp,1

jp,m

)(
1 +

x2j2
p,1

j2
p,m+1

)
−
(

1− x2jp,1

jp,m+1

)
=

x2jp,1

jp,mj2
p,m+1

[
−∆p(m)− j2

p,1x
2
]
≤ 0,

and hence by induction, (2.11) follows. Finally using again the fact thatjp,n → ∞, asn tends
to infinity, from (2.11) we obtain

lim
n→∞

(1− x2)Rp,n ≤ lim
n→∞

(
1− x2jp,1

jp,n

)
= 1,

which in view of (2.10) implies (2.9). Thus the proof is complete. �
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3. A L OWER BOUND FOR THE Γ FUNCTION

In an effort to popularize the method that C.P. Chen, J. W. Zhao and F. Qi used in the previous
section, we illustrate it below by giving a lower bound for theΓ function.

Theorem 3.1. If x ∈ (0, 1], then

(3.1) Γ(x) ≥ 1− x

1 + x
· e

(1−γ)x

x
,

whereγ = limn→∞
(
1 + 1

2
+ 1

3
+ · · ·+ 1

n
− log n

)
= 0.5772156649 . . . is the Euler constant.

Proof. From the well-known Euler infinite product formula [1, p. 255] for theΓ function,
1

xeγxΓ(x)
=
∏
n≥1

(
1 +

x

n

)
e−

x
n ,

we have

(3.2)
e(1−γ)x

xΓ(x)
=

1 + x

1− x

[
(1− x) lim

n→∞
Sn

]
, whereSn =

n∏
k=2

(
1 +

x

k

)
e−

x
k , n = 2, 3, . . ..

Observe that to prove (3.1), it is enough to show that for alln = 2, 3, . . .

(3.3) (1− x)Sn <
(
1− x

n

)
holds, hence from this we getlim

n→∞
(1 − x)Sn ≤ 1, and consequently from (3.2) the inequality

(3.1) follows. To prove (3.3) we use mathematical induction again. Forn = 2 we easily get for
x ∈ (0, 1) that

(1− x)S2 <
(
1− x

2

)
⇐⇒ ex/2 >

(1− x)
(
1 + x

2

)
1− x

2

,

which clearly holds because

ex/2 −
(1− x)

(
1 + x

2

)
1− x

2

=
∑
k≥1

(
x +

1

k!

)
xk

2k
> 0.

Now suppose that (3.3) holds for somem ≥ 2. Then from (3.2) and (3.3) we obtain that

(1− x)Sm+1 −
(

1− x

m + 1

)
=(1− x)Sm

(
1 +

x

m + 1

)
e−

x
m+1 −

(
1− x

m + 1

)
<
(
1− x

m

)(
1 +

x

m + 1

)
e−

x
m+1 −

(
1− x

m + 1

)
and this is negative if and only if

e
x

m+1 −
(
1− x

m

) (
1 + x

m+1

)(
1− x

m+1

) =
∑
k≥1

(
x

m
+

1

m
− 1 +

1

k!

)
xk

(m + 1)k
> 0.

�

Remark 3.2. Numerical experiments in Maple6 show that the lower bound from (3.1) is far
from being the best possible one. For example forx = 0.5 we have thatΓ(0.5) =

√
π =

1.772453851 . . . , while the right hand side of (3.1) is just0.8235978287. . .. Similarly for x =
0.25 we haveΓ(0.25) = 3.6256099082 . . . , while the right hand side of (3.1) is just2.667561665. . ..
In fact graphics in Maple6 suggest that the functionf : (−1,∞) → R defined by

f(x) = Γ(x)− 1− x

1 + x
· e

(1−γ)x

x
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is convex and satisfies the inequalityf(x) ≥ 1, for all x ∈ (−1, 0] or x ∈ [1,∞). Moreover
f(x) ∈ (0.94, 1], for all x ∈ [0, 1].
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