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Abstract

This paper studies optimization for inner products of real vectors assuming
monotonicity properties for the entries in one of the vectors. Resulting inequal-
ities have been useful recently in bounding reciprocals of power series with
rapidly decaying coefficients and in proving that all symmetric Toeplitz matrices
generated by monotone convex sequences have off-diagonal decay preserved
through triangular decompositions. An example of an application of the theory
to global optimization for inner products is also provided.
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1. Introduction
This paper studies inequalities for inner products of real vectors assuming mono-
tonicity and boundedness properties for the entries in one of the vectors. In
particular, forr ∈ (0, 1], we consider inner productsp · q, for vectorsp =
(p1, p2, . . . , pn) andq = (q1, q2, . . . , qn), satisfyingp, q ∈ Rn, pi ∈ [A, B] for
1 ≤ i ≤ n, and one of the following properties

1. (r-quasi-monotonicity)pi+1 ≥ rpi for 1 ≤ i ≤ n− 1.

2. (r-geometric monotonicity)pi+1 ≥ 1
r
pi for 1 ≤ i ≤ n− 1.

3. (monotonicity)pi+1 ≥ pi for 1 ≤ i ≤ n− 1.

For discussion of various classes of sequences of monotone type, see for in-
stance, Kijima [12], and Leindler [15, 14].

Our method involves, for each of the three cases mentioned, obtainingfinite
setsPn = Pn(A, B, r) such that

min{v · q : v ∈ Pn} ≤ p · q ≤ max{v · q : v ∈ Pn},

for all p satisfying the respective monotonicity assumption, above.
The paper proceeds as follows. In Section2, we consider obtaining the sets

Pn corresponding to Property (1), above. An application to linear recurrences,
which has been useful in the recent literature is also given. In Section3, we con-
sider the case ofr-geometric monotonicity. The paper includes examples which
provide an application of the theory to global optimization for inner products,
for a specific vectorq.
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2. The Case ofr-quasi-monotonicity
In this section we consider the assumption ofr-quasi-monotonicityof the entries
in p = (p1, p2, . . . , pn) (as defined in (1), above), i.e.

(2.1) pi+1 ≥ rpi

for 1 ≤ i ≤ n − 1. The motivation for consideration of such a condition arose
in a probability related context of investigating a monotone sequence{qi} with
a geometric bound, i.e.

qi ≤ Ari

whereA > 0 andr < 1 (see [2]). In this case the sequence{φi} defined by
φi = qi

ri , satisfies0 ≤ φi ≤ A, and

φi =
qi

ri
≥ qi+1

ri
= φi+1r.

For a given vectort = (t0, t1, t2, . . . , tk) satisfyingt0 ≥ 0, ti ≥ 1 for 1 ≤
i ≤ k and

(2.2)
∑

i

ti = N,

define the vectorvt via

(2.3) vt
def
= A

( t0︷ ︸︸ ︷
0, 0, . . . , 0; r0, r1, . . . , rt1−1;

r0, r1, . . . , rt2−1; r0, r1, . . . , rtk−1
)
.
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In addition, define the set of vectors

(2.4) PN = PN(A, 0, r) = {vt : t satisfies (2.2) }.

We have the following result regarding inner products.

Theorem 2.1. Suppose thatp = (p1, . . . , pn) and q = (q1, . . . , qn) are n-
vectors wherep satisfies (2.1), for 1 ≤ i ≤ n−1 and0 ≤ pi ≤ A for 1 ≤ i ≤ n.
We have,

(2.5) min{w · q : w ∈ Pn} ≤ p · q ≤ max{w · q : w ∈ Pn}

wherep · q denotes the standard dot product
∑n

i=1 piqi.

The value in Theorem2.1 lies in the fact that for any givenn, Pn is a finite
set.

For a vectorp = (p1, p2, . . . , pn), we will use the notationpi,j to indicate
the vector consisting of theith throughjth entries inp, i.e.

(2.6) pi,j = (pi, pi+1, . . . , pj)

Proof of Theorem2.1. First, supposep ·q > 0, and note that the lower bound in
(2.5), for such vectors, follows from the fact thatvt = 0 for t = (n, 0, . . . , 0).
We will obtain a sequence of vectors{p̃i}n+1

i=1 , satisfying

0 ≤ p · q = p̃n+1 · q ≤ p̃n · q ≤ · · · ≤ p̃1 · q,

such that̃p1 ∈ Pn.
In particular, consider the vectors̃pi = (p̃i(1), p̃i(2), . . . , p̃i(n)) ∈ Rn, i =

1, . . . , n + 1 defined recursively according to the following scheme.
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1. p̃n+1 = p.

2. For1 ≤ i ≤ n, set

Si = {s : i + 1 ≤ s ≤ n and p̃i+1(s) = A}, and

vi = min
(
Si

⋃
{n + 1}

)
.

3. For1 ≤ i ≤ n, definep̃i (a function ofp̃i+1) via

p̃i =
(
p̃i+1(1), p̃i+1(2), . . . , p̃i+1(i− 1), cip̃i+1(i), cip̃i+1(i + 1),

. . . , cip̃i+1(vi − 1), A, p̃i+1(vi + 1), . . . , p̃i+1(n)
)

= (w1
i+1; ciw

2
i+1; w

3
i+1),(2.7)

say, whereci is given by

(2.8) ci =



A

pi

, if w2
i+1 · qi,vi−1 > 0

rpi−1

pi

, if w2
i+1 · qi,vi−1 ≤ 0 andi > 1

0, otherwise

.

Note thatp̃i+1 = (w1
i+1, w

2
i+1, w

3
i+1).

It is not difficult to verify by induction thatwj
i+1, j = 1, 2, 3, are of the form

w1
i+1 = p̃1,i−1

i+1 = (p1, p2, . . . , pi−1)(2.9)

w2
i+1 = p̃i,vi−1

i+1 = (pi, rpi, r
2pi, . . . , r

vi−i−1pi)(2.10)

w3
i+1 = p̃vi,n

i+1 ∈ Pn−vi+1,(2.11)
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We have that (2.7) and (2.8) imply

p̃i · q − p̃i+1 · q = (ci − 1)(w2
i+1 · qn−i,vi−1) ≥ 0,

and, for1 ≤ i ≤ n + 1,

(2.12) p̃i ∈
{
(p1, p2, . . . , pi−1, rpi−1, r

2pi−1, r
3pi−1, . . . , r

vi−ipi−1; w
3
i+1),

(p1, p2, . . . , pi−1, A, rA, r2A, . . . , rvi−i−1A; w3
i+1)

}
.

Thusvi−1 ∈ {vi, i}, and in particular, fori = 2, we have

(2.13) p̃2 ∈
{
(p1, rp1, r

2p1, r
3p1, . . . , r

v2−2p1; w
3
3),

(p1, A, rA, r2A, . . . , rv2−3A; w3
3)

}
.

The vectorp̃1 then satisfies

(2.14) p̃1 ∈
{
(0, 0, . . . , 0; w3

3), (A, rA, r2A, r3A, . . . , rv2−2A; w3
3),

(A, A, rA, r2A, . . . , rv2−3A; w3
3),

(0, A, rA, r2A, . . . , rv2−3A; w3
3)

}
⊂ Pn

and the theorem is proven in this case. The proof follows similarly, ifp · q ≤ 0,
and the proof of the theorem is complete.

The following example provides an application of Theorem2.1 to global
optimization for inner products, for a specific vectorq.
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Example 2.1.Consider the vectorq ∈ R15 given by

(2.15) q =
(
0.4361725, 0.6454718, 2.0226176,

− 4.1395363, 0.9749134, 4.3806500,−4.0035597,

0.6773984,−3.7420053,−2.7051776, 3.8209032,

0.6327872, 1.4719490, 1.2277661, 4.1026365
)
.

The entries inq are depicted in Figure1. Now, consider optimizingp · q
over allp = (p1, p2, . . . , p15) ∈ R15, satisfying0 ≤ pi ≤ 1 and (2.1) for some
0 < r ≤ 1. Theorem2.1implies that we need only compute and compare inner
products withq over the finite setP15(1, 0, r) as given in (2.4).

The results of the computations forr ∈ {.1, .3, .7, .9}, are given in Figure2.
It is possible to apply Theorem2.1 in sequence to obtain bounds for linear

recurrences, as is shown by the following theorem.

Theorem 2.2.Suppose that{bi} and{αi,j} satisfy

(2.16) bn =
n−1∑
k=0

(−αn,k)bk, n ≥ 1,

whereb0 = 1 and

(2.17) αn,k ∈ [0, A],

for 0 ≤ k ≤ n− 1 andn ≥ 1, and

(2.18) rαn,k ≤ αn,k+1.
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q_
i

q vector

Figure 1: The vectorq in (2.15).
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Figure 2: Maximal and minimal values for inner products under the constraint
in (2.1)
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Then, there exist{b′i} and{α′i,j} such that

|bn| ≤ |b′n|

and

(2.19) b′n =
n−1∑
k=0

(−α′n,k)b
′
k, n ≥ 1,

with each vector
α′

i = (α′i,0, α
′
i,1, . . . , α

′
i,i−1) ∈ Pi,

for 1 ≤ i ≤ n, wherePi is as in (2.4).
In fact, there exists a set{α′

1, α
′
2, . . . ,α

′
n}, with α′

i ∈ Pi, such thatb′i is as
large as possible (with its inherent sign) givenb0, b

′
1, b

′
2, . . . , b

′
i−1.

Remark 1. While Theorem2.2looks relatively simple, it has proven indispens-
able recently in two quite unrelated interesting contexts. The theorem was cru-
cial, in proving a recent optimal explicit form of Kendall’s Renewal Theorem
(see Berenhaut, Allen and Fraser [2]) stemming from bounds on reciprocals
of power series with rapidly decaying coefficients. In a quite unrelated con-
text, a simpler version of Theorem2.2 was also employed in Berenhaut and
Bandyopadhyay [3] in proving that all symmetric Toeplitz matrices generated
by monotone convex sequences have off-diagonal decay preserved through tri-
angular decompositions.

Proof of Theorem2.2. The proof, here, involves applying Theorem2.1 to suc-
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cessively “scale" the rows of the coefficient matrix

[−αi,j] =


−α1,0 0 · · · 0

−α2,0 −α2,1
.. .

...

...
...

.. . 0

−αn,0 −αn,1 · · · −αn,n−1

 .

while not decreasing the value of|bn| at any step.
First, define the sequences

ᾱi = (αi,0, . . . , αi,i−1) and

bk,j = (bk, . . . , bj),

for 0 ≤ k ≤ j ≤ n− 1 and1 ≤ i ≤ n.
Suppose thatbn > 0. Expanding via (2.16), bn can be written as

(2.20) bn = C0
1b0 + C1

1b1,

whereC0
1 andC1

1 are constants, which depend on{αi,j}. If C1
1 > 0, then select

ᾱ′
1 = (α′1,0) ∈ P1 so that−ᾱ′

1 · b0,0 is maximal, via Theorem2.1. Similarly, if
C1

1 < 0, selectᾱ′
1 = (α′1,0) ∈ P1 so that−ᾱ′

1 · b0,0 is minimal. In either case,
replacingα1,0 by α′1,0 in (2.16) will result in a larger (or equal) value forC1

1b1,
and in turn, referring to (2.20), a larger (or equal) value of|bn|.

Now, suppose that the first through(k − 1)th rows of theα matrix are of the
form described in the theorem (i.e. resulting in maximalbi values for1 ≤ i ≤
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k − 1 with respect to the preceedingbj, 0 ≤ j ≤ i − 1), and expressbn in the
form

(2.21) bn = C0
kb0 + C1

kb1 + · · ·+ Ck
k bk,

via (2.16). If Ck
k ≥ 0, then select̄α′

k ∈ Pk so that−ᾱ′
k · b

0,k−1 is maximal, via
Theorem2.1. Similarly, if Ck

k < 0, selectᾱ′
k ∈ Pk so that−ᾱ′

k ·b
0,0 is minimal.

In either case, referring to (2.21), replacing the values in̄αk by those inᾱ′
k in

(2.16) will not decrease the value of|bn|. The result follows by induction for
this case. The casebn < 0 is similar and the theorem is proven.

For further results along these lines in the caser = 1 andB = 0, see [4].
Note that, recurrences with varying or random coefficients have been studied

by many previous authors. For a partial survey of such literature see Viswanath
[22] and [23], Viswanath and Trefethen [24], Embree and Trefethen [10], Wright
and Trefethen [26], Mallik [ 16], Popenda [18], Kittapa [13], Odlyzko [17],
Berenhaut and Goedhart [6, 7], Berenhaut and Morton [9], Berenhaut and Foley
[5], and Stevíc [19, 20, 21] (and the references therein). For a comprehensive
treatment of difference equations and inequalities, c.f. Agarwal [1].

We now turn to consideration of the remaining cases ofr-geometric decay
and monotonicity mentioned in the introduction.
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3. The Case ofr-geometric Monotonicity
In this section we consider the assumption ofr-geometric monotonicity of the
entries inp = (p1, p2, . . . , pn), i.e.

pi+1 ≥
1

r
pi

for 1 ≤ i ≤ n− 1.
First, for a given integer0 ≤ t ≤ n, define the vectorvt via v0 = 0, and

vt
def
=

( n−t︷ ︸︸ ︷
0, 0, . . . , 0, Art−1, Art−2, . . . , Ar, A

)
.

In addition, define the set of vectors

(3.1) P2
n = P2

n(A, 0, r) = {vt : 0 ≤ t ≤ n}.

Here, we have the following theorem.

Theorem 3.1. Suppose thatp = (p1, . . . , pn) and q = (q1, . . . , qn) are n-
vectors wherep satisfies

(3.2) pi+1 ≥
1

r
pi

for 1 ≤ i ≤ n− 1, and0 ≤ pi ≤ A for 1 ≤ i ≤ n. We have,

min{w · q : w ∈ Pn} ≤ p · q ≤ max{w · q : w ∈ Pn}.
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Proof. First, supposep · q > 0, and note that the lower bound in (2.5) follows
from the fact thatvt = 0 for t = 0. As in the proof of Theorem2.1, we will,
again, obtain a sequence of vectors{p̃i}n+1

i=1 , satisfying

0 ≤ p · q = p̃n+1 · q ≤ p̃n · q ≤ · · · ≤ p̃1 · q,

such that̃p1 ∈ P2
n.

In particular, consider the vectors̃pi = (p̃i(1), p̃i(2), . . . , p̃i(n)) ∈ Rn, i =
1, 2, . . . , n + 1 defined recursively according to the following scheme.

1. p̃n+1 = p.

2. For 1 ≤ i ≤ n, setSi = {s : i + 1 ≤ s ≤ n andp̃i+1(s) = Arn−s}, and
vi = min(Si

⋃
{n + 1}).

3. For1 ≤ i ≤ n, set

p̃i =
(
p̃i+1(1), p̃i+1(2), . . . , p̃i+1(i− 1), cip̃i+1(i), cip̃i+1(i + 1),

. . . , cip̃i+1(vi − 1), p̃i+1(vi), p̃i+1(vi + 1), . . . , p̃i+1(n)
)

= (w1
i+1; ciw

2
i+1; w

3
i+1),(3.3)

whereci is given by

(3.4) ci =



Arn−i

pi

, if w2
i+1 · qi,vi−1 > 0

1
r
pi−1

pi

, if w2
i+1 · qi,vi−1 ≤ 0 andi > 1

0, otherwise

.
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It is not difficult to verify by induction thatwj
i+1, j = 1, 2, 3, are of the form

w1
i+1 = p̃1,i−1

i+1 = (p1, p2, . . . , pi−1)(3.5)

w2
i+1 = p̃1,vi−1

i+1 =

(
pi,

1

r
pi,

1

r2
pi, . . . ,

1

rvi−i−1
pi

)
(3.6)

w3
i+1 = p̃vi,n

i+1 = (Arn−vi , Arn−vi−1 · · · , Ar, A) ∈ Pn−vi+1.(3.7)

Now, note that from (3.2), and the boundpn ≤ A, we have that

pi ≤ Arn−i,

for 1 ≤ i ≤ n, andpi−1/r ≤ pi for 2 ≤ i ≤ n. Hence, (3.3) and (3.4) imply
that

p̃i · q − p̃i−1 · q = (ci − 1)(w2
i+1 · qi,vi−1) ≥ 0,

and that,

(3.8) p̃i ∈
{(

p1, p2, . . . , pi−2, pi−1,
1

r
pi−1,

1

r2
pi−1, . . . ,

1

rvi−i−1
pi−1,

Arn−vi , Arn−(vi+1), . . . , Ar, A

)
,
(
p1, p2, . . . , pi−1, Arn−i,

Arn−(i+1), . . . , Arn−(vi−1), Arn−vi , Arn−(vi+1), . . . , Ar, A
)}

.

Thusvi−1 ∈ {vi, i}, and fori = 2, we have

(3.9) p̃2 ∈
{(

p1,
1

r
p1,

1

r2
p1, . . . ,

1

rv2−i−1
pi−1, Arn−v2 , Arn−(v2+1),
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. . . , Ar, A

)
,
(
p1, Arn−2, Arn−3, . . . , Ar2, Ar, A

) }
.

The vectorp̃1 then satisfies

(3.10) p̃1 ∈
{(

0, 0, . . . , 0, Arn−v2 , Arn−(v2+1), . . . , Ar, A
)
,

(Arn−1, Arn−2, Arn−3, . . . , Ar2, Ar, A),(
0, Arn−2, Arn−3, . . . , Ar2, Ar, A

) }
⊂ P2

n,

and the theorem is proven in this case. The proof follows similarly, ifp · q ≤ 0,
and the proof of the theorem is complete.

Now, for a given integer0 ≤ t ≤ n, define the vectorvt via v0 = 0, and

vt
def
=

( n−t︷ ︸︸ ︷
B, B, . . . , B,

t︷ ︸︸ ︷
A, A, . . . , A

)
.

In addition, define the set of vectors

(3.11) P3
n = P3

n(A, B, 1) = {vt : 0 ≤ t ≤ n}.

For the caser = 1 in either (2.1) or (3.2), we can similarly prove the follow-
ing result. ForB = 0 the theorem follows directly from either Theorem2.1or
Theorem3.1(see also Lemma 2.2 in [4])). For 0 < B < A, the proof is similar
to that for Theorems2.1and3.1, and will be omitted.

Theorem 3.2 (Monotonicity). Suppose thatp = (p1, . . . , pn) andq = (q1, . . . , qn)
aren-vectors wherep satisfies

pi+1 ≥ pi
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for 1 ≤ i ≤ n− 1, and0 ≤ B ≤ pi ≤ A for 1 ≤ i ≤ n. We have,

min{w · q : w ∈ P3
n} ≤ p · q ≤ max{w · q : w ∈ P3

n}.

We conclude with a return to global optimization for inner products for the
vectorq as given in Example2.1.

Example2.1(revisited). Consider the vectorq ∈ R15 as given in (2.15).
The entries inq are depicted in Figure1. Now, consider optimizingp · q

over all p = (p1, p2, . . . , p15) ∈ R15, satisfying0 ≤ pi ≤ 1 and (3.2) for
some0 < r ≤ 1. Theorem3.2 implies that we need only check over the
finite setP2

15(1, 0, r) as given in (3.11). The results of the computations for
r ∈ {.1, .3, .7, .9}, are given in Figure3.
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Figure 3: Maximal and minimal values for inner products under the constraint
in (3.2).
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