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ABSTRACT. This paper studies optimization for inner products of real vectors assuming mono-
tonicity properties for the entries in one of the vectors. Resulting inequalities have been use-
ful recently in bounding reciprocals of power series with rapidly decaying coefficients and in
proving that all symmetric Toeplitz matrices generated by monotone convex sequences have off-
diagonal decay preserved through triangular decompositions. An example of an application of
the theory to global optimization for inner products is also provided.
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1. I NTRODUCTION

This paper studies inequalities for inner products of real vectors assuming monotonicity and
boundedness properties for the entries in one of the vectors. In particular, forr ∈ (0, 1], we
consider inner productsp·q, for vectorsp = (p1, p2, . . . , pn) andq = (q1, q2, . . . , qn), satisfying
p, q ∈ Rn, pi ∈ [A, B] for 1 ≤ i ≤ n, and one of the following properties

(1) (r-quasi-monotonicity)pi+1 ≥ rpi for 1 ≤ i ≤ n− 1.
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(2) (r-geometric monotonicity)pi+1 ≥ 1
r
pi for 1 ≤ i ≤ n− 1.

(3) (monotonicity)pi+1 ≥ pi for 1 ≤ i ≤ n− 1.
For discussion of various classes of sequences of monotone type, see for instance, Kijima [12],
and Leindler [15, 14].

Our method involves, for each of the three cases mentioned, obtainingfinite setsPn =
Pn(A, B, r) such that

min{v · q : v ∈ Pn} ≤ p · q ≤ max{v · q : v ∈ Pn},
for all p satisfying the respective monotonicity assumption, above.

The paper proceeds as follows. In Section 2, we consider obtaining the setsPn corresponding
to Property (1), above. An application to linear recurrences, which has been useful in the recent
literature is also given. In Section 3, we consider the case ofr-geometric monotonicity. The
paper includes examples which provide an application of the theory to global optimization for
inner products, for a specific vectorq.

2. THE CASE OF r-QUASI-MONOTONICITY

In this section we consider the assumption ofr-quasi-monotonicityof the entries inp =
(p1, p2, . . . , pn) (as defined in (1), above), i.e.

(2.1) pi+1 ≥ rpi

for 1 ≤ i ≤ n − 1. The motivation for consideration of such a condition arose in a probability
related context of investigating a monotone sequence{qi} with a geometric bound, i.e.

qi ≤ Ari

whereA > 0 andr < 1 (see [2]). In this case the sequence{φi} defined byφi = qi

ri , satisfies
0 ≤ φi ≤ A, and

φi =
qi

ri
≥ qi+1

ri
= φi+1r.

For a given vectort = (t0, t1, t2, . . . , tk) satisfyingt0 ≥ 0, ti ≥ 1 for 1 ≤ i ≤ k and

(2.2)
∑

i

ti = N,

define the vectorvt via

(2.3) vt
def
= A

( t0︷ ︸︸ ︷
0, 0, . . . , 0; r0, r1, . . . , rt1−1; r0, r1, . . . , rt2−1; r0, r1, . . . , rtk−1

)
.

In addition, define the set of vectors

(2.4) PN = PN(A, 0, r) = {vt : t satisfies (2.2)}.
We have the following result regarding inner products.

Theorem 2.1. Suppose thatp = (p1, . . . , pn) and q = (q1, . . . , qn) are n-vectors wherep
satisfies (2.1), for1 ≤ i ≤ n− 1 and0 ≤ pi ≤ A for 1 ≤ i ≤ n. We have,

(2.5) min{w · q : w ∈ Pn} ≤ p · q ≤ max{w · q : w ∈ Pn}
wherep · q denotes the standard dot product

∑n
i=1 piqi.

The value in Theorem 2.1 lies in the fact that for any givenn, Pn is a finite set.
For a vectorp = (p1, p2, . . . , pn), we will use the notationpi,j to indicate the vector consist-

ing of theith throughjth entries inp, i.e.

(2.6) pi,j = (pi, pi+1, . . . , pj)

J. Inequal. Pure and Appl. Math., 7(5) Art. 158, 2006 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


MAXIMIZATION FOR INNER PRODUCTS 3

Proof of Theorem 2.1.First, supposep · q > 0, and note that the lower bound in (2.5), for such
vectors, follows from the fact thatvt = 0 for t = (n, 0, . . . , 0). We will obtain a sequence of
vectors{p̃i}n+1

i=1 , satisfying

0 ≤ p · q = p̃n+1 · q ≤ p̃n · q ≤ · · · ≤ p̃1 · q,

such that̃p1 ∈ Pn.
In particular, consider the vectors̃pi = (p̃i(1), p̃i(2), . . . , p̃i(n)) ∈ Rn, i = 1, . . . , n + 1

defined recursively according to the following scheme.
(1) p̃n+1 = p.
(2) For1 ≤ i ≤ n, set

Si = {s : i + 1 ≤ s ≤ n and p̃i+1(s) = A}, and vi = min
(
Si

⋃
{n + 1}

)
.

(3) For1 ≤ i ≤ n, definep̃i (a function ofp̃i+1) via

p̃i =
(
p̃i+1(1), p̃i+1(2), . . . , p̃i+1(i− 1), cip̃i+1(i), cip̃i+1(i + 1), . . . , cip̃i+1(vi − 1),

A, p̃i+1(vi + 1), . . . , p̃i+1(n)
)

= (w1
i+1; ciw

2
i+1; w

3
i+1),(2.7)

say, whereci is given by

(2.8) ci =



A

pi

, if w2
i+1 · qi,vi−1 > 0

rpi−1

pi

, if w2
i+1 · qi,vi−1 ≤ 0 andi > 1

0, otherwise

.

Note thatp̃i+1 = (w1
i+1, w

2
i+1, w

3
i+1).

It is not difficult to verify by induction thatwj
i+1, j = 1, 2, 3, are of the form

w1
i+1 = p̃1,i−1

i+1 = (p1, p2, . . . , pi−1)(2.9)

w2
i+1 = p̃i,vi−1

i+1 = (pi, rpi, r
2pi, . . . , r

vi−i−1pi)(2.10)

w3
i+1 = p̃vi,n

i+1 ∈ Pn−vi+1,(2.11)

We have that (2.7) and (2.8) imply

p̃i · q − p̃i+1 · q = (ci − 1)(w2
i+1 · qn−i,vi−1) ≥ 0,

and, for1 ≤ i ≤ n + 1,

(2.12) p̃i ∈
{
(p1, p2, . . . , pi−1, rpi−1, r

2pi−1, r
3pi−1, . . . , r

vi−ipi−1; w
3
i+1),

(p1, p2, . . . , pi−1, A, rA, r2A, . . . , rvi−i−1A; w3
i+1)

}
.

Thusvi−1 ∈ {vi, i}, and in particular, fori = 2, we have

(2.13) p̃2 ∈
{
(p1, rp1, r

2p1, r
3p1, . . . , r

v2−2p1; w
3
3), (p1, A, rA, r2A, . . . , rv2−3A; w3

3)
}
.

The vectorp̃1 then satisfies

(2.14) p̃1 ∈
{
(0, 0, . . . , 0; w3

3), (A, rA, r2A, r3A, . . . , rv2−2A; w3
3),

(A, A, rA, r2A, . . . , rv2−3A; w3
3), (0, A, rA, r2A, . . . , rv2−3A; w3

3)
}
⊂ Pn

and the theorem is proven in this case. The proof follows similarly, ifp · q ≤ 0, and the proof
of the theorem is complete. �
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Figure 2.1: The vectorq in (2.15).

The following example provides an application of Theorem 2.1 to global optimization for
inner products, for a specific vectorq.

Example 2.1.Consider the vectorq ∈ R15 given by

(2.15) q =
(
0.4361725, 0.6454718, 2.0226176,−4.1395363, 0.9749134,

4.3806500,−4.0035597, 0.6773984,−3.7420053,−2.7051776,

3.8209032, 0.6327872, 1.4719490, 1.2277661, 4.1026365
)
.

The entries inq are depicted in Figure 2.1. Now, consider optimizingp · q over all p =
(p1, p2, . . . , p15) ∈ R15, satisfying0 ≤ pi ≤ 1 and (2.1) for some0 < r ≤ 1. Theorem
2.1 implies that we need only compute and compare inner products withq over the finite set
P15(1, 0, r) as given in (2.4).

The results of the computations forr ∈ {.1, .3, .7, .9}, are given in Figure 2.2.
It is possible to apply Theorem 2.1 in sequence to obtain bounds for linear recurrences, as is

shown by the following theorem.

Theorem 2.2.Suppose that{bi} and{αi,j} satisfy

(2.16) bn =
n−1∑
k=0

(−αn,k)bk, n ≥ 1,

whereb0 = 1 and

(2.17) αn,k ∈ [0, A],

for 0 ≤ k ≤ n− 1 andn ≥ 1, and

(2.18) rαn,k ≤ αn,k+1.

Then, there exist{b′i} and{α′i,j} such that

|bn| ≤ |b′n|
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Figure 2.2: Maximal and minimal values for inner products under the constraint in (2.1)

and

(2.19) b′n =
n−1∑
k=0

(−α′n,k)b
′
k, n ≥ 1,

with each vector
α′

i = (α′i,0, α
′
i,1, . . . , α

′
i,i−1) ∈ Pi,

for 1 ≤ i ≤ n, wherePi is as in (2.4).
In fact, there exists a set{α′

1, α
′
2, . . . ,α

′
n}, with α′

i ∈ Pi, such thatb′i is as large as possible
(with its inherent sign) givenb0, b

′
1, b

′
2, . . . , b

′
i−1.

Remark 2.3. While Theorem 2.2 looks relatively simple, it has proven indispensable recently
in two quite unrelated interesting contexts. The theorem was crucial, in proving a recent optimal
explicit form of Kendall’s Renewal Theorem (see Berenhaut, Allen and Fraser [2]) stemming
from bounds on reciprocals of power series with rapidly decaying coefficients. In a quite un-
related context, a simpler version of Theorem 2.2 was also employed in Berenhaut and Bandy-
opadhyay [3] in proving that all symmetric Toeplitz matrices generated by monotone convex
sequences have off-diagonal decay preserved through triangular decompositions.
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Proof of Theorem 2.2.The proof, here, involves applying Theorem 2.1 to successively “scale"
the rows of the coefficient matrix

[−αi,j] =


−α1,0 0 · · · 0

−α2,0 −α2,1
...

...
...

...
... 0

−αn,0 −αn,1 · · · −αn,n−1

 .

while not decreasing the value of|bn| at any step.
First, define the sequences

ᾱi = (αi,0, . . . , αi,i−1) and

bk,j = (bk, . . . , bj),

for 0 ≤ k ≤ j ≤ n− 1 and1 ≤ i ≤ n.
Suppose thatbn > 0. Expanding via (2.16),bn can be written as

(2.20) bn = C0
1b0 + C1

1b1,

whereC0
1 andC1

1 are constants, which depend on{αi,j}. If C1
1 > 0, then select̄α′

1 = (α′1,0) ∈
P1 so that−ᾱ′

1 ·b0,0 is maximal, via Theorem 2.1. Similarly, ifC1
1 < 0, selectᾱ′

1 = (α′1,0) ∈ P1

so that−ᾱ′
1 ·b0,0 is minimal. In either case, replacingα1,0 by α′1,0 in (2.16) will result in a larger

(or equal) value forC1
1b1, and in turn, referring to (2.20), a larger (or equal) value of|bn|.

Now, suppose that the first through(k−1)th rows of theα matrix are of the form described in
the theorem (i.e. resulting in maximalbi values for1 ≤ i ≤ k−1 with respect to the preceeding
bj, 0 ≤ j ≤ i− 1), and expressbn in the form

(2.21) bn = C0
kb0 + C1

kb1 + · · ·+ Ck
k bk,

via (2.16). IfCk
k ≥ 0, then select̄α′

k ∈ Pk so that−ᾱ′
k · b

0,k−1 is maximal, via Theorem 2.1.
Similarly, if Ck

k < 0, selectᾱ′
k ∈ Pk so that−ᾱ′

k · b
0,0 is minimal. In either case, referring to

(2.21), replacing the values in̄αk by those inᾱ′
k in (2.16) will not decrease the value of|bn|.

The result follows by induction for this case. The casebn < 0 is similar and the theorem is
proven. �

For further results along these lines in the caser = 1 andB = 0, see [4].
Note that, recurrences with varying or random coefficients have been studied by many previ-

ous authors. For a partial survey of such literature see Viswanath [22] and [23], Viswanath and
Trefethen [24], Embree and Trefethen [10], Wright and Trefethen [26], Mallik [16], Popenda
[18], Kittapa [13], Odlyzko [17], Berenhaut and Goedhart [6, 7], Berenhaut and Morton [9],
Berenhaut and Foley [5], and Stević [19, 20, 21] (and the references therein). For a comprehen-
sive treatment of difference equations and inequalities, c.f. Agarwal [1].

We now turn to consideration of the remaining cases ofr-geometric decay and monotonicity
mentioned in the introduction.

3. THE CASE OF r-GEOMETRIC M ONOTONICITY

In this section we consider the assumption ofr-geometric monotonicity of the entries in
p = (p1, p2, . . . , pn), i.e.

pi+1 ≥
1

r
pi

for 1 ≤ i ≤ n− 1.

J. Inequal. Pure and Appl. Math., 7(5) Art. 158, 2006 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


MAXIMIZATION FOR INNER PRODUCTS 7

First, for a given integer0 ≤ t ≤ n, define the vectorvt via v0 = 0, and

vt
def
=

( n−t︷ ︸︸ ︷
0, 0, . . . , 0, Art−1, Art−2, . . . , Ar, A

)
.

In addition, define the set of vectors

(3.1) P2
n = P2

n(A, 0, r) = {vt : 0 ≤ t ≤ n}.
Here, we have the following theorem.

Theorem 3.1. Suppose thatp = (p1, . . . , pn) and q = (q1, . . . , qn) are n-vectors wherep
satisfies

(3.2) pi+1 ≥
1

r
pi

for 1 ≤ i ≤ n− 1, and0 ≤ pi ≤ A for 1 ≤ i ≤ n. We have,

min{w · q : w ∈ Pn} ≤ p · q ≤ max{w · q : w ∈ Pn}.

Proof. First, supposep ·q > 0, and note that the lower bound in (2.5) follows from the fact that
vt = 0 for t = 0. As in the proof of Theorem 2.1, we will, again, obtain a sequence of vectors
{p̃i}n+1

i=1 , satisfying
0 ≤ p · q = p̃n+1 · q ≤ p̃n · q ≤ · · · ≤ p̃1 · q,

such that̃p1 ∈ P2
n.

In particular, consider the vectors̃pi = (p̃i(1), p̃i(2), . . . , p̃i(n)) ∈ Rn, i = 1, 2, . . . , n + 1
defined recursively according to the following scheme.

(1) p̃n+1 = p.
(2) For 1 ≤ i ≤ n, setSi = {s : i + 1 ≤ s ≤ n andp̃i+1(s) = Arn−s}, andvi =

min(Si

⋃
{n + 1}).

(3) For1 ≤ i ≤ n, set

p̃i =
(
p̃i+1(1), p̃i+1(2), . . . , p̃i+1(i− 1), cip̃i+1(i), cip̃i+1(i + 1), . . . , cip̃i+1(vi − 1),

p̃i+1(vi), p̃i+1(vi + 1), . . . , p̃i+1(n)
)

= (w1
i+1; ciw

2
i+1; w

3
i+1),(3.3)

whereci is given by

(3.4) ci =



Arn−i

pi

, if w2
i+1 · qi,vi−1 > 0

1
r
pi−1

pi

, if w2
i+1 · qi,vi−1 ≤ 0 andi > 1

0, otherwise

.

It is not difficult to verify by induction thatwj
i+1, j = 1, 2, 3, are of the form

w1
i+1 = p̃1,i−1

i+1 = (p1, p2, . . . , pi−1)(3.5)

w2
i+1 = p̃1,vi−1

i+1 =

(
pi,

1

r
pi,

1

r2
pi, . . . ,

1

rvi−i−1
pi

)
(3.6)

w3
i+1 = p̃vi,n

i+1 = (Arn−vi , Arn−vi−1 · · · , Ar, A) ∈ Pn−vi+1.(3.7)

Now, note that from (3.2), and the boundpn ≤ A, we have that

pi ≤ Arn−i,
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for 1 ≤ i ≤ n, andpi−1/r ≤ pi for 2 ≤ i ≤ n. Hence, (3.3) and (3.4) imply that

p̃i · q − p̃i−1 · q = (ci − 1)(w2
i+1 · qi,vi−1) ≥ 0,

and that,

(3.8) p̃i ∈
{(

p1, p2, . . . , pi−2, pi−1,
1

r
pi−1,

1

r2
pi−1, . . . ,

1

rvi−i−1
pi−1,

Arn−vi , Arn−(vi+1), . . . , Ar, A

)
,
(
p1, p2, . . . , pi−1, Arn−i, Arn−(i+1), . . . ,

Arn−(vi−1), Arn−vi , Arn−(vi+1), . . . , Ar, A
)}

.

Thusvi−1 ∈ {vi, i}, and fori = 2, we have

(3.9) p̃2 ∈
{(

p1,
1

r
p1,

1

r2
p1, . . . ,

1

rv2−i−1
pi−1, Arn−v2 , Arn−(v2+1), . . . , Ar, A

)
,

(
p1, Arn−2, Arn−3, . . . , Ar2, Ar, A

) }
.

The vectorp̃1 then satisfies

(3.10) p̃1 ∈
{(

0, 0, . . . , 0, Arn−v2 , Arn−(v2+1), . . . , Ar, A
)
, (Arn−1, Arn−2, Arn−3,

. . . , Ar2, Ar, A),
(
0, Arn−2, Arn−3, . . . , Ar2, Ar, A

) }
⊂ P2

n,

and the theorem is proven in this case. The proof follows similarly, ifp · q ≤ 0, and the proof
of the theorem is complete. �

Now, for a given integer0 ≤ t ≤ n, define the vectorvt via v0 = 0, and

vt
def
=

( n−t︷ ︸︸ ︷
B, B, . . . , B,

t︷ ︸︸ ︷
A, A, . . . , A

)
.

In addition, define the set of vectors

(3.11) P3
n = P3

n(A, B, 1) = {vt : 0 ≤ t ≤ n}.
For the caser = 1 in either (2.1) or (3.2), we can similarly prove the following result. For

B = 0 the theorem follows directly from either Theorem 2.1 or Theorem 3.1 (see also Lemma
2.2 in [4])). For0 < B < A, the proof is similar to that for Theorems 2.1 and 3.1, and will be
omitted.

Theorem 3.2 (Monotonicity). Suppose thatp = (p1, . . . , pn) and q = (q1, . . . , qn) are n-
vectors wherep satisfies

pi+1 ≥ pi

for 1 ≤ i ≤ n− 1, and0 ≤ B ≤ pi ≤ A for 1 ≤ i ≤ n. We have,

min{w · q : w ∈ P3
n} ≤ p · q ≤ max{w · q : w ∈ P3

n}.
We conclude with a return to global optimization for inner products for the vectorq as given

in Example 2.1.

Example 2.1 (revisited). Consider the vectorq ∈ R15 as given in (2.15).
The entries inq are depicted in Figure 2.1. Now, consider optimizingp · q over all p =

(p1, p2, . . . , p15) ∈ R15, satisfying0 ≤ pi ≤ 1 and (3.2) for some0 < r ≤ 1. Theorem 3.2
implies that we need only check over the finite setP2

15(1, 0, r) as given in (3.11). The results of
the computations forr ∈ {.1, .3, .7, .9}, are given in Figure 3.1.
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Figure 3.1: Maximal and minimal values for inner products under the constraint in (3.2).
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