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ABSTRACT. This paper studies optimization for inner products of real vectors assuming mono-
tonicity properties for the entries in one of the vectors. Resulting inequalities have been use-
ful recently in bounding reciprocals of power series with rapidly decaying coefficients and in
proving that all symmetric Toeplitz matrices generated by monotone convex sequences have off-
diagonal decay preserved through triangular decompositions. An example of an application of
the theory to global optimization for inner products is also provided.
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1. INTRODUCTION

This paper studies inequalities for inner products of real vectors assuming monotonicity and
boundedness properties for the entries in one of the vectors. In particular, g0, 1], we
consider inner products g, for vectorsp = (p1, pa, - .., pn) @ndqg = (¢1, g2, - - -, ¢ ), Satisfying
p,q € R", p; € [A, B] for 1 <i < n, and one of the following properties

(1) (r-quasi-monotonicityp;,; > rp;for1 <i <n —1.
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(2) (r-geometric monotonicityp;,; > %pi forl <i<n-1.
(3) (monotonicity)p; 1 > p;forl1 <i<n—1.
For discussion of various classes of sequences of monotone type, see for instance/ Kijima [12],
and Leindler[[15] 14].
Our method involves, for each of the three cases mentioned, obtdinitgsetsP, =
P.(A, B,r) such that
min{v-q:veP,}<p-q<max{v-q:veP,}
for all p satisfying the respective monotonicity assumption, above.
The paper proceeds as follows. In Secfipn 2, we consider obtaining the setsresponding
to Property|(lL), above. An application to linear recurrences, which has been useful in the recent
literature is also given. In Sectign 3, we consider the casegdgometric monotonicity. The

paper includes examples which provide an application of the theory to global optimization for
inner products, for a specific vectgr

2. THE CASE OF r-QUASI-MONOTONICITY

In this section we consider the assumption-ajuasi-monotonicityof the entries inp =
(p1,p2, - - -, pn) (as defined in (1), above), i.e.
(2.1) Dit1 2 TD;

for 1 < < n — 1. The motivation for consideration of such a condition arose in a probability
related context of investigating a monotone sequgigewith a geometric bound, i.e.
g < Ar'
whereA > 0 andr < 1 (seel[2]). In this case the sequer{eg} defined byg; = %, satisfies
0<¢; <A, and
¢i = q_z > qu;1 = Qi7"
T r

For a given vectot = (tg, t1, to, . .., t;) satisfyingt, > 0,¢; > 1for 1 <i < k and

(2.2) » ti=N,

define the vectooy via

to

def o "= _ _ _
(2.3) vp = A(0,0,..., 0,70 rt et et O )

In addition, define the set of vectors
(2.4) Py =Pn(A,0,7) = {vy : t satisfies[(2]2}.
We have the following result regarding inner products.

Theorem 2.1. Suppose thap = (pi1,...,p,) andq = (¢, ..., q,) are n-vectors wherep
satisfies[(2]1), fot <i<n —1and0 <p; < Aforl <i <n.We have,

(2.5) minfw-qg:weP,} <p-qg<max{w-q:weP,}
wherep - g denotes the standard dot proddgt;_, p;g;.

The value in Theorein 2.1 lies in the fact that for any givef®,, is a finite set.
For a vectorp = (py, pa, - - ., pn), We Will use the notatiop®” to indicate the vector consist-
ing of thei* through;*" entries inp, i.e.

(2.6) P = (pi Pit1s- - 0;)
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Proof of Theorer 2] 1First, suppose - ¢ > 0, and note that the lower bound [n (R.5), for such
vectors, follows from the fact that; = 0 for ¢t = (n,0,...,0). We will obtain a sequence of
vectors{p, }7*!, satisfying
0<p-q=pP,;1 4<P,-q<---<p;-q,
such thap, € P,.
In particular, consider the vectogs = (p;(1),p;(2),...,p;(n)) € R, i =1,...,n+1
defined recursively according to the following scheme.

(1) Py1 = p-
(2) Forl <i<n,set

Si={s:i+1<s<n and p,,,(s) = A}, andv; = min (SZ-U{n+1}) :
(3) Forl < i < n, definep, (a function ofp,_ ;) via
By = (Bt (1B (2, - B (i = 1), 6B (1), 6B (i 4+ 1), 6B (01— 1),
A B v+ 1), B ()

(2.7) = (w}ﬂ; Ciw?—i—l; w?+1)a

say, where;; is given by

( A )
o if w?, g™t >0
J— rDi— . co .
(2.8) Ci P Loif w? gt <0andi >1 -
Di
L 0, otherwise

It is not difficult to verify by induction tha’w{H,j = 1,2, 3, are of the form

(29) z+1 p114:1 ! (plap?a s 7pi—1)
(210) wi+1 p/v;-:-]?[ (pza Di, 7”2]%, sy T T l_lpi)
(211) w?+1 = pi+1 S Pn—vﬁ-lv

We have that{(2]7) anl (2.8) imply
Di-q _ﬁiJrl -q = (¢ 1)( w; qn_i’vi_l) >0,
and, forl <i<n+1,
(2.12) ﬁi S {(php% <oy Di-1,TPi—1, 7”2]91'—1, 7’31?1'—1, cee 77‘%71‘]?1'—1; 'w?+1>>
(p17p2> <oy Di—1, A7 Y’A, T2A7 v 771“71’7114; W?+1)}.

Thusv;_; € {v;,i}, and in particular, foi = 2, we have
(2.13) p, € {(pl,rpl,rgpl,r?’pl, 2 pand), (pr, A A TPA,L L L r”z_?’A;wg)}.
The vectorp, then satisfies
(2.14) p, € {(0,0,...,0;w3), (A, r A, r?A, P A, ... . r? 2 A w)),

(A,A,rA,'r A, .. o 3A;w3), (O,A,rA, rPA, T A wd) ) C P,

and the theorem is proven in this case. The proof follows similarly,-i§ < 0, and the proof
of the theorem is complete. O
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q vector

q_i
0
l

Figure 2.1: The vectog in (2.15).

The following example provides an application of Theoienj 2.1 to global optimization for
inner products, for a specific vectgr

Example 2.1. Consider the vectay € R!5 given by

(2.15) q = (0.4361725,0.6454718,2.0226176, —4.1395363,0.9749134,
4.3806500, —4.0035597, 0.6773984, —3.7420053, —2.7051776,
3.8209032, 0.6327872,1.4719490, 1.2277661, 4.1026365).

The entries ing are depicted in Figure 3.1. Now, consider optimizjng g over allp =
(p1,pa,-..,p15) € R, satisfying0 < p; < 1 and [2.1) for som& < r < 1. Theorem
[2.7 implies that we need only compute and compare inner productsgvatter the finite set
Pi5(1,0,7) as given in[(2.4).

The results of the computations fok {.1,.3,.7, .9}, are given in Figurg 2|2.

It is possible to apply Theorem 2.1 in sequence to obtain bounds for linear recurrences, as is
shown by the following theorem.

Theorem 2.2. Suppose thafb; } and{«; ;} satisfy
-1

(2.16) bn= (—ani)be, n>1,
k=0

3

whereb, = 1 and

(2.17) ani € [0, 4],
for0 <k <mn-—1landn>1,and
(2.18) T0 < Qg1
Then, there existb; } and{q; ;} such that

[bn| < [0,
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0.1 0.1
minimal maximal
-13.991 19.177
[ee] [oe]
4 33 m < 33 \/W
o -1 o -
o 3 ]
(=] I T I T T I I g T T T T I T T
2 4 6 8 10 12 14 2 4 6 8 10 12 14
i
0.3 0.3
minimal maximal
-12.437 17.21
[ee] [oe]
o — o .
o o
o [ T T T T T I o T T T T [ T T
2 4 6 8 10 12 14 2 4 6 8 10 12 14
i
0.7 0.7
minimal maximal
-7.343 12.684

p_i
0.0 0.8
L1l
p_i
0.2 0.8
L1l

2 4 6 8 10 12 14 2 4 6 8 10 12 14
i i
0.9 0.9
minimal maximal
-2.38 11.256
© ©
= c 7 m = o ] /
o — o -
o T o
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Figure 2.2: Maximal and minimal values for inner products under the constraifitin (2.1)

and

n—1
(2.19) b,=> (—ap b, n>1,

k=0
with each vector

a; = (&;70, 05;717 B 70‘;@‘—1) € Pl
for 1 <i <mn,whereP; is as in [2.4).
In fact, there exists a s¢iv}, o, . . ., o, }, with & € P;, such that), is as large as possible

(with its inherent sign) givehy, b}, b5, ..., b;_,.

Remark 2.3. While Theorenj 22 looks relatively simple, it has proven indispensable recently
in two quite unrelated interesting contexts. The theorem was crucial, in proving a recent optimal
explicit form of Kendall's Renewal Theorem (see Berenhaut, Allen and Fraser [2]) stemming
from bounds on reciprocals of power series with rapidly decaying coefficients. In a quite un-
related context, a simpler version of Theorenj 2.2 was also employed in Berenhaut and Bandy-
opadhyayl|[3] in proving that all symmetric Toeplitz matrices generated by monotone convex
sequences have off-diagonal decay preserved through triangular decompositions.
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Proof of Theorem 2]2The proof, here, involves applying Theorem|2.1 to successively “scale”
the rows of the coefficient matrix

—a g 0 e 0
—Qp —Q21
(o] =
0
| —Qpo —OQp1 - —Opp-1 |
while not decreasing the value 8f,| at any step.
First, define the sequences
a; = (Ozi’(), R 7ai,i—1> and

b = (by,..., b)),

for0<k<j<n-—1landl <i<n.
Suppose that, > 0. Expanding via[(2.16), can be written as

(2.20) b, = CVb + O}y,

whereC? andC| are constants, which depend fm; ;}. If C > 0, then select; = (o} ) €
Py so that-a/; -b"* is maximal, via Theorefn 2.1. Similarly, @} < 0, selec&} = (o o) € P;
so that—a/; -b”” is minimal. In either case, replacing , by o, , in (2.16) will resultin a larger
(or equal) value fo] b, and in turn, referring tO), a larger (or equal) valuégf.

Now, suppose that the first through— 1) rows of thea: matrix are of the form described in
the theorem (i.e. resulting in maxinalvalues forl < i < k — 1 with respect to the preceeding
b;, 0 < j <i—1),and express, in the form

(2.21) by, = Cbg + Cby + - - + Cby,

via (2.16). IfCf > 0, then selec&), € P, so that—&, - b+~ is maximal, via Theorern 2.1.
Similarly, if Cf < 0, selecta;, € P, so that—a;, - b is minimal. In either case, referring to
(2.21), replacing the values i, by those ina;, in (2.18) will not decrease the value {@f,|.
The result follows by induction for this case. The case< 0 is similar and the theorem is
proven. 0

For further results along these lines in the case1 andB = 0, see([4].

Note that, recurrences with varying or random coefficients have been studied by many previ-
ous authors. For a partial survey of such literature see Viswandth [22] and [23], Viswanath and
Trefethen[[24], Embree and Trefethén|[10], Wright and Trefetheh [26], Mallik [16], Popenda
[18], Kittapa [13], Odlyzko[[17], Berenhaut and Goedharit([6, 7], Berenhaut and Marton [9],
Berenhaut and Foley|[5], and Sté\il9,20] 21] (and the references therein). For a comprehen-
sive treatment of difference equations and inequalities, c.f. Agarwal [1].

We now turn to consideration of the remaining cases-géometric decay and monotonicity
mentioned in the introduction.

3. THE CASE OF r-GEOMETRIC M ONOTONICITY

In this section we consider the assumptionrejeometric monotonicity of the entries in

p = (pl;pQ; ... 7pn), i.e.
1
Dit1 = —Di
,

forl1 <i<n-—1.
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First, for a given integed < ¢t < n, define the vectowv, viav, = 0, and
n—t

e /_H
vy e/ (0,0,...,0, Ar'= 1 Ar'=2 . Ar, A).

In addition, define the set of vectors
(3.2) P2 =P2A,0,r)={vg: 0<t<n}.
Here, we have the following theorem.

Theorem 3.1. Suppose thap = (pi1,...,p,) andq = (¢, ..., q,) are n-vectors wherep
satisfies

1
(3.2) Piy1 2 Di

forl1 <i<n-—1,and0 <p; < Afor1 <i: < n. We have,
minfw-qg:weP,} <p-qg<max{w-q:weP,}
Proof. First, suppose - g > 0, and note that the lower bound |n (R.5) follows from the fact that
v, = 0 for t = 0. As in the proof of Theoremn 2.1, we will, again, obtain a sequence of vectors
{p:}i2], satisfying
0<P q=Pn1 ' 4<P, 4= <D q,
such thap, € P2.
In particular, consider the vectogs = (p;(1),p;(2),...,p;(n)) € R, i =1,2,...,n+1
defined recursively according to the following scheme.
(l) 5n+l =Pp.
(2) Forl < i < n,setS; = {s:i+1 < s < nandp; ,(s) = Ar"*}, andv; =
min(S; J{n +1}).
(3) Forl <i<n,set

b, = (ﬁi+1(1)7ﬁi+1(2)’ e 7ﬁi+1(i - 1)7 Cz‘ﬁwl(i)a CiﬁiJrl(i + 1), e 7Ciﬁi+l(vi - 1)7

Bra (Vi) Braa (v 1), - B () )
B3 = (w}ﬂ? Ciw?ﬂ? w?+1)>

whereg; is given by

Arn=t ,
o if w?, ¢! >0
3.4 =< ipi . .
(3:4) ¢ ﬁ, if w?, ;- ¢""!' <0andi > 1
Pi
L 0, otherwise

It is not difficult to verify by induction thatu{H,j = 1,2, 3, are of the form

(35) w'}+1 - ﬁzl-ﬁl_l - (p17p27 s 7pi—1>
1 1 1
~17'Ui_1
(3.6) w?—&-l =Diy1 = (pi, ;pn ﬁpm ceey m%)
(3.7) wiy =Py = (AT AT A A) € Py
Now, note that from[(3]2), and the boupg < A, we have that
Di S Arn_ia
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for 1 <i <n,andp,_;/r < p; for 2 < i < n. Hence,[(3.8) and (3.4) imply that
Pi°q—Di1-q=(ci— 1)(w?+1 : qi’viil) >0,
and that,
_ 1 1 1
(3.8) p; € { (P17P2, <oy Die2, Pie1y TPi-15 5 Pi-1y- -+ o Pi-1,
r r i
Arnvi Apn= i) Ay A) , (pl,pg, Py, AT A D

Apr= D g Apn= it ) Ay, A) }

Thusv;_; € {v;,i}, and fori = 2, we have

~ 1 1 1
(39) V) € P1, —P1, 5P1y---y ————7Pi-1, Arn_vza Arn_(v2+1)7 ) AT? A 9
r 7“2 ru2—0 1

(pl, Arn=2 A3 A2, A, A) }
The vectorp, then satisfies

(3.10) p, € {(0,0,...,0, Ar""2 Apn= (=D Ap A) | (ArtTh Arn TR Arn R,

o AP Ar A), (0, ArmTP AT L Ar? Ar A) b C P
and the theorem is proven in this case. The proof follows similarly, i§ < 0, and the proof
of the theorem is complete. O

Now, for a given integed < t < n, define the vectov, viav, = 0, and
n—t t
v (BB, .BAA. A).
In addition, define the set of vectors
(3.11) P3=P3(A, B, 1)={v,: 0<t<n}.

For the case = 1 in either [2.1) or[(3.2), we can similarly prove the following result. For
B = 0 the theorem follows directly from either Theor¢m|2.1 or Thedrer 3.1 (see also Lemma
2.2in [4])). For0 < B < A, the proof is similar to that for Theorers P.1 3.1, and will be
omitted.

Theorem 3.2 (Monotonicity) Suppose thap = (p1,...,p,) andq = (q1,...,q,) are n-
vectors wherg satisfies

Dit1 = Di
forl<i<n-—1,and0 < B <p; < Afor1 <i<n.We have,
minfw-q:w € P} <p-q<max{w- q:we P}
We conclude with a return to global optimization for inner products for the vecés given

in Examplg 2.1L.

Example[2.1 (revisited) Consider the vectar € R'® as given in[(2.15).

The entries iy are depicted in Figure 2.1. Now, consider optimizijng g over allp =
(p1,pa,--.,p15) € R, satisfyingd < p; < 1 and [3.2) for som® < r < 1. Theoren{ 3.2
implies that we need only check over the finite B&i(1, 0, r) as given inl). The results of
the computations for € {.1,.3,.7,.9}, are given in Figurg 3]1.
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0.1 0.1
minimal maximal
4,102 4,241
o 7 o
23 f - J
. o ]
o T o ]
=} T T T T T S} T T T T T
6 8 10 12 14 6 8 10 12 14
i
0.3 0.3
minimal maximal
4,102 4.651
o «©
= / E i J
- o -
o I o 7
o [ [ [ [ [ o [ [ [ I T
6 8 10 12 14 6 8 10 12 14
i
0.7 0.7
minimal maximal
4,102 6.817
© 7 ©
2 7 / - /
. o ]
o o
o T T T T T o T T T T T
6 8 10 12 14 6 8 10 12 14
i i
0.9 0.9
minimal maximal
4,102 9.368
[ee] [oe]
- © 7 / - ° ] /re’e/e/q
o — a -
o T o
o I I I I I I I o I I I I I T T
2 4 6 8 10 12 14 2 4 6 8 10 12 14

Figure 3.1: Maximal and minimal values for inner products under the constraifitin (3.2).
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