GENERALIZATIONS OF SOME NEW ČEBYŠEV TYPE INEQUALITIES

ZHENG LIU

Institute of Applied Mathematics, School of Science University of Science and Technology Liaoning

Anshan 114051, Liaoning, China EMail: lewzheng@163.net

Received: 17 August, 2006

Accepted: 02 January, 2007

Communicated by: N.S. Barnett

2000 AMS Sub. Class.: 26D15.

Key words: Cebyšev type inequalities, Absolutely continuous functions, Cauchy-Schwarz in-

equality for double integrals, L_p spaces, Hölder's integral inequality.

Abstract: We provide generalizations of some recently published Čebyšev type inequali-

ties.

Acknowledgements: The author wishes to thank the editor for his help with the final presentation of

this paper.

Čebyšev Type Inequalities

Zheng Liu

vol. 8, iss. 1, art. 13, 2007

Title Page

Contents

Page 1 of 15

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Contents

1	Introduction	3
2	Statement of Results	6
3	Proof of Theorem 2.1	8
4	Proof of Theorem 2.2	11
5	Proof of Theorem 2.3	13

Čebyšev Type Inequalities

Zheng Liu

vol. 8, iss. 1, art. 13, 2007

Title Page

Contents

Page 2 of 15

Go Back

Full Screen

journal of inequalities in pure and applied mathematics

Close

issn: 1443-5756

1. Introduction

In a recent paper [1], B.G. Pachpatte proved the following Čebyšhev type inequalities:

Theorem 1.1. Let $f, g : [a, b] \to \mathbb{R}$ be absolutely continuous functions on [a, b] with $f', g' \in L_2[a, b]$, then,

$$(1.1) |P(F,G,f,g)| \le \frac{(b-a)^2}{12} \left[\frac{1}{b-a} ||f'||_2^2 - ([f;a,b])^2 \right]^{\frac{1}{2}} \times \left[\frac{1}{b-a} ||g'||_2^2 - ([g;a,b])^2 \right]^{\frac{1}{2}},$$

$$(1.2) |P(A, B, f, g)| \le \frac{(b-a)^2}{12} \left[\frac{1}{b-a} ||f'||_2^2 - ([f; a, b])^2 \right]^{\frac{1}{2}} \times \left[\frac{1}{b-a} ||g'||_2^2 - ([g; a, b])^2 \right]^{\frac{1}{2}},$$

where

(1.3)
$$P(\alpha, \beta, f, g) = \alpha \beta - \frac{1}{b-a} \left(\alpha \int_{a}^{b} g(t) dt + \beta \int_{a}^{b} f(t) dt \right) + \left(\frac{1}{b-a} \int_{a}^{b} f(t) dt \right) \left(\frac{1}{b-a} g(t) dt \right),$$

(1.4)
$$[f; a, b] = \frac{f(b) - f(a)}{b - a},$$

Čebyšev Type Inequalities

Zheng Liu

vol. 8, iss. 1, art. 13, 2007

Title Page

Contents

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

$$F = \frac{f(a) + f(b)}{2}, \quad G = \frac{g(a) + g(b)}{2}, \quad A = f\left(\frac{a+b}{2}\right), \quad B = g\left(\frac{a+b}{2}\right),$$

and

$$||f||_2 := \left[\int_a^b f^2(t) \, dt \right]^{\frac{1}{2}}.$$

Theorem 1.2. Let $f, g : [a, b] \to \mathbb{R}$ be differentiable functions so that f', g' are absolutely continuous on [a, b], then,

$$(1.5) |P(\overline{F}, \overline{G}, f, g)| \le \frac{(b-a)^4}{144} ||f'' - [f'; a, b]||_{\infty} ||g'' - [g'; a, b]||_{\infty},$$

where

$$\overline{F} = \frac{f(a) + f(b)}{2} - \frac{(b-a)^2}{12} [f'; a, b],$$

$$\overline{G} = \frac{g(a) + g(b)}{2} - \frac{(b-a)^2}{12} [g'; a, b],$$

 $P(\alpha, \beta, f, g)$ and [f; a, b] are as defined in (1.3) and (1.4), and

$$||f||_{\infty} = \sup_{t \in [a,b]} |f(t)| < \infty.$$

In [2], B.G. Pachpatte presented an additional Čebyšev type inequality given in Theorem 1.3 below.

Theorem 1.3. Let $f, g : [a, b] \to \mathbb{R}$ be absolutely continuous functions whose derivatives $f', g' \in L_p[a, b], p > 1$, then we have,

$$(1.6) |P(C, D, f, g)| \le \frac{1}{(b-a)^2} M^{\frac{2}{q}} ||f'||_p ||g'||_p,$$

Čebyšev Type Inequalities

Zheng Liu

vol. 8, iss. 1, art. 13, 2007

Title Page

Contents

Page 4 of 15

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

where $P(\alpha, \beta, f, g)$ is as defined in (1.3),

$$C = \frac{1}{3} \left[\frac{f(a) + f(b)}{2} + 2f\left(\frac{a+b}{2}\right) \right],$$
$$D = \frac{1}{3} \left[\frac{g(a) + g(b)}{2} + 2g\left(\frac{a+b}{2}\right) \right],$$

(1.7)
$$M = \frac{(2^{q+1}+1)(b-a)^{q+1}}{3(q+1)6^q}$$

with $\frac{1}{p} + \frac{1}{q} = 1$, and

$$||f||_p = \left(\int_a^b |f(t)|^p dt\right)^{\frac{1}{p}} < \infty.$$

In this paper, we provide some generalizations of the above three theorems.

Čebyšev Type Inequalities

Zheng Liu

vol. 8, iss. 1, art. 13, 2007

Title Page

Contents

Page 5 of 15

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

2. Statement of Results

We use the following notation to simplify the detail of presentation. For suitable functions $f, g : [a, b] \to \mathbb{R}$ and real number $\theta \in [0, 1]$ we set,

$$\Gamma_{\theta} = \frac{\theta}{2} [f(a) + f(b)] + (1 - \theta) f\left(\frac{a+b}{2}\right),$$

$$\Delta_{\theta} = \frac{\theta}{2} [g(a) + g(b)] + (1 - \theta) g\left(\frac{a+b}{2}\right),$$

$$\overline{\Gamma}_{\theta} = \Gamma_{\theta} + \frac{(1 - 3\theta)(b-a)^{2}}{24} [f', a, b],$$

$$\overline{\Delta}_{\theta} = \Delta_{\theta} + \frac{(1 - 3\theta)(b-a)^{2}}{24} [f', a, b],$$

where [f; a, b] is as defined in (1.4).

We also use $P(\alpha, \beta, f, g)$ as defined in (1.3), where α and β are real constants. The results are stated as Theorems 2.1, 2.2 and 2.3.

Theorem 2.1. Let the assumptions of Theorem 1.1 hold, then for any $\theta \in [0, 1]$,

$$(2.1) |P(\Gamma_{\theta}, \Delta_{\theta}, f, g)| \leq \frac{(b-a)^{2}}{12} [\theta^{3} + (1-\theta)^{3}] \times \left[\frac{1}{b-a} \|f'\|_{2}^{2} - ([f; a, b])^{2} \right]^{\frac{1}{2}} \left[\frac{1}{b-a} \|g'\|_{2}^{2} - ([g; a, b])^{2} \right]^{\frac{1}{2}}.$$

Theorem 2.2. Let the assumptions of Theorem 1.2 hold, then for any $\theta \in [0, 1]$,

$$(2.2) |P(\overline{\Gamma}_{\theta}, \overline{\Delta}_{\theta}, f, g)| \le (b - a)^4 I^2(\theta) ||f'' - [f'; a, b]||_{\infty} ||g'' - [g'; a, b]||_{\infty},$$

Čebyšev Type Inequalities

Zheng Liu

vol. 8, iss. 1, art. 13, 2007

Title Page

Contents

44

>>

Page 6 of 15

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

where

(2.3)
$$I(\theta) = \begin{cases} \frac{\theta^3}{3} - \frac{\theta}{8} + \frac{1}{24}, & 0 \le \theta \le \frac{1}{2}, \\ \frac{1}{8}(\theta - \frac{1}{3}), & \frac{1}{2} < \theta \le 1. \end{cases}$$

Theorem 2.3. Let the assumptions of Theorem 1.3 hold, then for any $\theta \in [0, 1]$,

(2.4)
$$|P(\Gamma_{\theta}, \Delta_{\theta}, f, g)| \leq \frac{1}{(b-a)^2} M_{\theta}^{\frac{2}{q}} ||f'||_p ||g'||_p,$$

where

(2.5)
$$M_{\theta} = \frac{\theta^{q+1} + (1-\theta)^{q+1}}{(q+1)2^q} (b-a)^{q+1},$$

and
$$\frac{1}{p} + \frac{1}{q} = 1$$
.

Čebyšev Type Inequalities

Zheng Liu

vol. 8, iss. 1, art. 13, 2007

Title Page

Contents

Page 7 of 15

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

3. Proof of Theorem 2.1

Define the function,

(3.1)
$$K(\theta, t) = \begin{cases} t - (a + \theta \frac{b-a}{2}), & t \in [a, \frac{a+b}{2}], \\ t - (b - \theta \frac{b-a}{2}), & t \in (\frac{a+b}{2}, b], \end{cases}$$

and we obtain the following identities:

(3.2)
$$\Gamma_{\theta} - \frac{1}{b-a} \int_{a}^{b} f(t) dt = O(f; a, b; \theta),$$

(3.3)
$$\Delta_{\theta} - \frac{1}{b-a} \int_{a}^{b} g(t) dt = O(g; a, b; \theta),$$

where

$$O(f; a, b; \theta) = \frac{1}{2(b-a)^2} \int_a^b \int_a^b (f'(t) - f'(s))(k(\theta, t) - k(\theta, s)) dt ds.$$

Multiplying the left sides and right sides of (3.2) and (3.3) we get,

(3.4)
$$P(\Gamma_{\theta}, \Delta_{\theta}, f, g) = O(f; a, b; \theta)O(g; a, b; \theta).$$

From (3.4),

$$(3.5) |P(\Gamma_{\theta}, \Delta_{\theta}, f, g)| = |O(f; a, b; \theta)||O(g; a, b; \theta)|.$$

Čebyšev Type Inequalities

Zheng Liu

vol. 8, iss. 1, art. 13, 2007

Title Page

Contents

44

Page 8 of 15

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Using the Cauchy-Schwarz inequality for double integrals,

$$(3.6) \quad |O(f;a,b;\theta)| \leq \frac{1}{2(b-a)^2} \int_a^b \int_a^b |f'(t) - f'(s)| |k(\theta,t) - k(\theta,s)| \, dt \, ds$$

$$\leq \left[\frac{1}{2(b-a)^2} \int_a^b \int_a^b (f'(t) - f'(s))^2 \, dt \, ds \right]^{\frac{1}{2}}$$

$$\times \left[\frac{1}{2(b-a)^2} \int_a^b \int_a^b (k(\theta,t) - k(\theta,s))^2 \, dt \, ds \right]^{\frac{1}{2}}.$$

By simple computation,

(3.7)
$$\frac{1}{2(b-a)^2} \int_a^b \int_a^b (f'(t) - f'(s))^2 dt ds$$
$$= \frac{1}{b-a} \int_a^b (f'(t))^2 dt - \left(\frac{1}{b-a} \int_a^b f'(t) dt\right)^2,$$

and

(3.8)
$$\frac{1}{2(b-a)^2} \int_a^b \int_a^b (k(\theta,t) - K(\theta,s))^2 dt ds = \frac{(b-a)^2}{12} [\theta^3 + (1-\theta)^3].$$

Using (3.7), (3.8) in (3.6),

$$(3.9) |O(f;a,b;\theta)| \le \frac{b-a}{2\sqrt{3}} [\theta^3 + (1-\theta)^3]^{\frac{1}{2}} \left[\frac{1}{b-a} ||f'||_2^2 - ([f;a,b])^2 \right]^{\frac{1}{2}}.$$

Similarly,

$$(3.10) |O(g;a,b;\theta)| \le \frac{b-a}{2\sqrt{3}} [\theta^3 + (1-\theta)^3]^{\frac{1}{2}} \left[\frac{1}{b-a} ||g'||_2^2 - ([g;a,b])^2 \right]^{\frac{1}{2}}.$$

Čebyšev Type Inequalities

Zheng Liu

vol. 8, iss. 1, art. 13, 2007

Title Page

Contents

Page 9 of 15

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Using (3.9) and (3.10) in (3.5), (2.1) follows.

Remark 1. If $\theta = 1$ and $\theta = 0$ in (2.1), the inequalities (1.1) and (1.2) are recaptured. Thus Theorem 2.1 may be regarded as a generalization of Theorem 1.1.

Čebyšev Type Inequalities

Zheng Liu

vol. 8, iss. 1, art. 13, 2007

Title Page

Contents

Page 10 of 15

Go Back

Full Screen

journal of inequalities in pure and applied mathematics

Close

issn: 1443-5756

4. Proof of Theorem 2.2

Define the function

$$L(\theta,t) = \begin{cases} \frac{1}{2}(t-a)[t-(1-\theta)a-\theta b], & t \in [a, \frac{a+b}{2}], \\ \frac{1}{2}(t-b)[t-\theta a-(1-\theta)b], & t \in (\frac{a+b}{2}, b]. \end{cases}$$

It is not difficult to find the following identities:

(4.1)
$$\frac{1}{b-a} \int_a^b f(t) dt - \overline{\Gamma}_{\theta} = Q(f', f''; a, b),$$

(4.2)
$$\frac{1}{b-a} \int_a^b g(t) dt - \overline{\Delta}_{\theta} = Q(g', g''; a, b),$$

where

$$Q(f', f''; a, b) = \frac{1}{b-a} \int_{a}^{b} L(\theta, t) \{f''(t) - [f'; a, b]\} dt.$$

Multiplying the left sides and right sides of (4.1) and (4.2), we get,

$$(4.3) P(\overline{\Gamma}_{\theta}, \overline{\Delta}_{\theta}, f, g) = Q(f', f''; a, b)Q(g', g''; a, b).$$

From (4.3),

$$(4.4) |P(\overline{\Gamma}_{\theta}, \overline{\Delta}_{\theta}, f, g)| = |Q(f', f''; a, b)||Q(g', g''; a, b)|.$$

By simple computation, we have,

$$(4.5) |Q(f', f''; a, b)| \leq \frac{1}{b-a} \int_{a}^{b} |L(\theta, t)| |[f''(t) - [f'; a, b]| dt$$

$$\leq \frac{1}{b-a} ||f''(t) - [f'; a, b]||_{\infty} \int_{a}^{b} |L(\theta, t)| dt,$$

Čebyšev Type Inequalities

Zheng Liu

vol. 8, iss. 1, art. 13, 2007

Title Page

Contents

44 >>

4 >

Page 11 of 15

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

and similarly,

$$(4.6) |Q(f', f''; a, b)| \le \frac{1}{b-a} ||f''(t) - [f'; a, b]||_{\infty} \int_{a}^{b} |L(\theta, t)| dt,$$

where

(4.7)
$$\int_{a}^{b} |L(\theta, t)| dt = (b - a)^{3} \times \begin{cases} \frac{\theta^{3}}{3} - \frac{\theta}{8} + \frac{1}{24}, & 0 \le \theta \le \frac{1}{2}, \\ \frac{1}{8}(\theta - \frac{1}{3}), & \frac{1}{2} < \theta \le 1. \end{cases}$$

Consequently, the inequalities (2.2) and (2.3) follow from (4.4) - (4.7).

Remark 2. If $\theta = 1$ in (2.2) with (2.3), the inequality (1.5) is recaptured. Thus Theorem 2.2 may be regarded as a generalization of Theorem 1.2.

Čebyšev Type Inequalities

Zheng Liu

vol. 8, iss. 1, art. 13, 2007

Title Page

Contents

Page 12 of 15

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

5. Proof of Theorem 2.3

From (3.1), we can also find the following identities:

(5.1)
$$\Gamma_{\theta} - \frac{1}{b-a} \int_{a}^{b} f(t) dt = \frac{1}{b-a} \int_{a}^{b} K(\theta, t) f'(t) dt,$$

(5.2)
$$\Delta_{\theta} - \frac{1}{b-a} \int_{a}^{b} g(t) dt = \frac{1}{b-a} \int_{a}^{b} K(\theta, t) g'(t) dt.$$

Multiplying the left sides and right sides of (5.1) and (5.2) we get,

$$(5.3) P(\Gamma_{\theta}, \Delta_{\theta}, f, g) = \frac{1}{(b-a)^2} \left(\int_a^b k(\theta, t) f'(t) dt \right) \left(\int_a^b k(\theta, t) g'(t) dt \right).$$

From (5.3) and using the properties of modulus and Hölder's integral inequality, we have,

$$(5.4) |P(\Gamma_{\theta}, \Delta_{\theta}, f, g)|$$

$$\leq \frac{1}{(b-a)^{2}} \left(\int_{a}^{b} |k(\theta, t)| |f'(t)| dt \right) \left(\int_{a}^{b} |k(\theta, t)| |g'(t)| dt \right)$$

$$\leq \frac{1}{(b-a)^{2}} \left[\left(\int_{a}^{b} |k(\theta, t)|^{q} dt \right)^{\frac{1}{q}} \left(\int_{a}^{b} |f'|^{p} dt \right)^{\frac{1}{p}} \right]$$

$$\times \left[\left(\int_{a}^{b} |k(\theta, t)|^{q} dt \right)^{\frac{1}{q}} \left(\int_{a}^{b} |g'|^{p} dt \right)^{\frac{1}{p}} \right]$$

$$= \frac{1}{(b-a)^{2}} \left(\int_{a}^{b} |k(\theta, t)|^{q} dt \right)^{\frac{2}{q}} ||f'||_{p} ||g'||_{p}.$$

Čebyšev Type Inequalities

Zheng Liu

vol. 8, iss. 1, art. 13, 2007

Title Page

Contents

44 >>

←

Page 13 of 15

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

A simple computation gives,

$$(5.5) \int_{a}^{b} |k(\theta,t)|^{q} dt$$

$$= \int_{a}^{\frac{a+b}{2}} \left| t - \left(a + \theta \frac{b-a}{2} \right) \right|^{q} dt + \int_{\frac{a+b}{2}}^{b} \left| t - \left(b - \theta \frac{b-a}{2} \right) \right|^{q} dt$$

$$= \int_{a}^{a+\theta \frac{b-a}{2}} \left(a + \theta \frac{b-a}{2} - t \right)^{q} dt + \int_{a+\theta \frac{b-a}{2}}^{\frac{a+b}{2}} \left(t - a - \theta \frac{b-a}{2} \right)^{q} dt$$

$$+ \int_{\frac{a+b}{2}}^{b-\theta \frac{b-a}{2}} \left(b - \theta \frac{b-a}{2} - t \right)^{q} dt + \int_{b-\theta \frac{b-a}{2}}^{b} \left(t - b + \theta \frac{b-a}{2} \right)^{q} dt$$

$$= \frac{2}{q+1} \left[\left(\frac{\theta}{2} \right)^{q+1} (b-a)^{q+1} + \left(\frac{1-\theta}{2} \right)^{q+1} (b-a)^{q+1} \right]$$

$$= \frac{\theta^{q+1} + (1-\theta)^{q+1}}{(q+1)2^{q}} (b-a)^{q+1} = M_{\theta}.$$

Consequently, the inequality (2.4) with (2.5) follow from (5.4) and (5.5).

Remark 3. If we take $\theta = \frac{1}{3}$ in (2.4) with (2.5), we recapture the inequality (1.6) with (1.7). Thus Theorem 2.3 may be regarded as a generalization of Theorem 1.3.

Remark 4. If we take p=2 in Theorem 2.3, and replace f(t) and g(t) by f(t)-[f;a,b]t and g(t)-[g;a,b]t in (2.4), respectively, then inequality (2.1) is recaptured.

Čebyšev Type Inequalities

Zheng Liu

vol. 8, iss. 1, art. 13, 2007

Title Page

Contents

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

References

- [1] B.G. PACHPATTE, New Čebyšev type inequalities via trapezoidal-like rules, J. Inequal. Pure and Appl. Math., 7(1) (2006), Art. 31. [ONLINE: http://jipam.vu.edu.au/article.php?sid=637].
- [2] B.G. PACHPATTE, On Čebyšev type inequalities involving functions whose derivatives belong to L_p spaces, J. Inequal. Pure and Appl. Math., 7(2) (2006), Art. 58. [ONLINE: http://jipam.vu.edu.au/article.php?sid=675].

Čebyšev Type Inequalities

Zheng Liu

vol. 8, iss. 1, art. 13, 2007

Title Page

Contents

Page 15 of 15

Go Back

Full Screen

journal of inequalities in pure and applied mathematics

Close

issn: 1443-5756