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We provide generalizations of some recently publisﬁ‘edbyéev type inequali-
ties.
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1. Introduction

In a recent paperl], B.G. Pachpatte proved the followir@ebyshev type inequali-

ties:

Theorem 1.1.Let f, g : [a,b] — R be absolutely continuous functions fanb] with
f', g € Lsla,b], then,

(1.1)

(1.2)

where

(1.3)

(1.4)
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F:f(a);rf(b) G:g(a);g(b)7 A:f(aer)’ B:g(aﬂLb), N'IW

rmb:L[ﬂ@wf

Theorem 1.2.Let f,g : [a,b] — R be differentiable functions so thdt, ¢’ are

. Cebysev Type Inequalities
absolutely continuous o, b], then, Zheng L
_ (b — ) " Y vol. 8, iss. 1, art. 13, 2007
L5)  |P(F.G fig)l < Zf" = [0 bllcllg” = 195, bl
where Title Page
F— f(a);‘f( ) (bza) [f'sa,b], Contents
<« »
g_ g tg®) p-ap .
2 12 T < >
P(a, 8, f,g9) and[f; a,b] are as defined inl(3) and (L.4), and Page 4 of 15
[ flloo = SUP |f(t)] < oo. Go Back
t€la,b
. Full Screen
In [2], B.G. Pachpatte presented an additioBabysSev type inequality given in
Theoreml.3below. Close
Theorem 1.3.Letf, g : [a,b] — R be absolutely continuous functions whose deriva- journal of inequalities
tivesf’, ¢’ € L,la,b], p > 1, then we have, in pure and applied
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whereP(«, 3, f, g) is as defined ini(.3),

0 L[H@EI0 oy (210)),
p[ral o) o (ne0Y],

3 2 2

_ (2q+1 + 1)(b _ a)qﬂ
(3.7) M= 3(q + 1)6¢

wm:([u@%@;<w

In this paper, we provide some generalizations of the above three theorems.

H 1 1 _
W|th;+5—1,and
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2. Statement of Results

We use the following notation to simplify the detail of presentation. For suitable
functionsf, g : [a,b] — R and real numbef € [0, 1] we set,

o= 517+ F0) + -0 (457,

8= Glata) + 9] + (- 019 (“57).

2
_ _ 2
FO = F@ + (1 392)ib a> [f,7 a, b]a
~ (1-30)(b—a)? ,
ZXO - ZXG + 24 Lf 7aalﬂ7

where[f; a, b is as defined in1(.4).

We also useP(«, 3, f, g) as defined in1.3), wherea andj are real constants.
The results are stated as Theoréeins 2.2 and?2.3.

Theorem 2.1. Let the assumptions of Theoreni hold, then for any € [0, 1],

(2.1) |P(Ty, N, f,9)] < (b ;;)2[93 +(1—6)%

<[ = 02| |1 (o)

1
2

Theorem 2.2. Let the assumptions of Theorén? hold, then for any € [0, 1],
(22)  [P(To, 80, f,9) < (b= a) PO f" = [fs 0. blllcllg” = [9s 0, ],
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where

02 0 1 1
) _'_ _7 O S 9 S _7
(2.3) 1(0) = { 3 8 " 24 2
£(0—13), l<p<1.
Theorem 2.3. Let the assumptions of Theorens hold, then for any € [0, 1],
1 H / /
(2.4) |P(Lo, Ao, fr9)] < mMequ [ iral
where

B 9q+1 + (1 _ g)qﬂ

(2.5) My = TS (b—a)r,

1 1
and5+5—1.
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3. Proof of Theorem?2.1
Define the function,

t—(a+6%2), te€ a4,
K(0,t) = N b
t—(b—0%2), te (20,

(3.1)
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and we obtain the following identities:
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Title Page
1 b Contents
(3.3) Ag — ) g(t) dt = O(g; a,b;0),
N < »
where - S
O(f;a,b;0) b / / s))(k(0,t) — k(6,s) dt ds. Page 8 of 15
— a
Go Back
Multiplying the left sides and right sides di.¢) and (3.3) we get,
Full Screen
Close
From (3.4),
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Using the Cauchy-Schwarz inequality for double integrals,

@8 (0 b)l < 55 [ [ 1710 FOkE0) - k0, ats
< [ / / dtds}
% Cebysev Type Inequalities
_ 2 eng Liu
8 |:2(b_ a)z/a: /av (k(‘gjt) k(6’8>> dt ds:| . vol. 8, isjhl, :rtlj13, 2007
By simple computation,
Title Page
(37) / / 2 dt ds
b_ Contents
1t 1t ?
- (£))% dt — (t)dt K d
b_@/ﬂ(f()) (7= [ roa) |
< >
and
88 sy [ [ 00— K9 was = T ooy B
) 2b—a)? J, Ja ’ 8 5= 12 ’ Go Back
Using (37), (3.8) in (3.6), Full Screen
b—a 311 1 , 2 Cl
B9 (0(ab0)] < 20+ (-0t [ - (et
L journal of inequalities
Similarly, in pure and applied
1 mathematics
b— 1 1 2 .
(3.10)  [O(g;a,b;0)| < e 2160+ (1 0)°]3 lmllg’lli—([g;mb])ﬂ : s e
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Using (3.9) and 3.10) in (3.5), (2.1) follows.

Remarkl. If 6 = 1 andf = 01in (2.1), the inequalitiesi.1) and (L.2) are recaptured.
Thus Theoren2.1may be regarded as a generalization of Theoren
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4. Proof of Theorem?2.2

Define the function
%(t —a)t—(1—0)a—0b], te€la, “T“’],
L(0,t) =
Lt=b)[t—0a—(1—0)], te (=
It is not difficult to find the following identities:

b
@1) i [ fOd-Ti= QU £ ab)
b

1
b—a/,

(4.2) g(t)dt — Ng = Q(d', g"; a,b),

where .
! " ]‘ " !
Q50,0 = 5 [ L.0(" 0 - et e
Multiplying the left sides and right sides of.()) and ¢.2), we get,

(43) P(F% Z% f7 g) = Q(f/> f”; a, b)Q<g,7 g//; a, b)
From (@.3),
(44) |P(f97Z97 fv g)| = |Q(f,7 f”; a, b)”Q(g/a g”; a, b)|

By simple computation, we have,
! 1 1 b I !
@8) QU e < o LI - 50t d

1 " /. ’
< IO = el [ IL@.0)ar
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and similarly,

! e, 1 " /. ’
@8 QU )] < g0 = et [ ILe.0]dr

where

b g

(47) / |L(Q, t)| dt — (b - CL)3 % 3 Cebysev Type Inéqualities
a %(‘9 o %)’ 1 <0 S 1. Zheng Liu

vol. 8, iss. 1, art. 13, 2007

Consequently, the inequalitie®.?) and @.3) follow from (4.4) — (4.7).

Remark2. If § = 1 in (2.2) with (2.9), the inequality {.5) is recaptured. Thus
Theorem?.2 may be regarded as a generalization of Theotein
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5. Proof of Theorem?2.3

From (3.1), we can also find the following identities:

(5.1)

(5.2)

(5.4)

Ty —
0 b—a

1
Ay — ——
-

|})(Ib71&9atf7g)|

< ﬁ ([ wo.onre dt) (f 6.0 )
5 [(Fwonra) ()]
xw' ) ([

b 1
/a f(t)dt:b_a

b

t)dt =
g(t) T

([ o)

/bK(Q,t)f (t) dt
b
/ K(0,t) () dt

Multiplying the left sides and right sides di (1) and £.2) we get,

(5.3) P(Ty Ay, frg) = ﬁ </ab/<;(«9,t)f’(t) dt) (/abk(e,t)g’(t) dt) |

From (.3) and using the properties of modulus and Hélder’s integral inequality, we
have,

SR

17 ol -
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A simple computation gives,

(5.5) /b k(0 1)]7 dt

a+b
2 b—a b—a
—/a t—(a—l—@T) t—(b—& 5 )

a+6252 . q atb . q
:i/ (a+QE§E—¢>(ﬁ+/Q (t—a—&b2a)cﬁ

b—
+075*

p—pb=a q b q
b— b—
+/ i G—e G—Q ﬁ+/ (pw+9 a)dt
a+b 2 p—gl=a 2
2 2
2

2 [(0) e (5 0]

q

q b
i
a+b
2

- qg+1
gr+ 4 (1 — g)rt

(q+ 1)2¢
Consequently, the inequality @) with (2.5) follow from (5.4) and £.5).

Remark3. If we takef = 1 in (2.4) with (2.5), we recapture the inequality. ()
with (1.7). Thus Theoren2.3may be regarded as a generalization of Theotein

Remark4. If we takep = 2 in Theorem2.3, and replacef(t) andg(t) by f(t) —

(b — a)q+1 = M@.

[f;a,blt andg(t) — [g; a, bt in (2.4), respectively, then inequality (1) is recaptured.
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