GENERALIZED OSTROWSKI'S INEQUALITY ON TIME SCALES

BAŞAK KARPUZ AND UMUT MUTLU ÖZKAN
Department of Mathematics
Faculty of Science and Arts, ANS Campus
Afyon Kocatepe University
03200 Afyonkarahisar, Turkey.
bkarpuz@gmail.com
Department of Mathematics
Faculty of Science and Arts, ANS Campus
Afyon Kocatepe University
03200 Afyonkarahisar, Turkey.
umut_ozkan@aku.edu.tr

Received 31 July, 2008; accepted 08 October, 2008
Communicated by S.S. Dragomir

Abstract

In this paper, we generalize Ostrowski's inequality and Montgomery's identity on arbitrary time scales which were given in a recent paper [J. Inequal. Pure. Appl. Math., 9(1) (2008), Art. 6] by Bohner and Matthews. Some examples for the continuous, discrete and the quantum calculus cases are given as well.

Key words and phrases: Montgomery's identity, Ostrowski's inequality, time scales.

2000 Mathematics Subject Classification 26D15.

1. Introduction

In 1937, Ostrowski gave a very useful formula to estimate the absolute value of derivation of a differentiable function by its integral mean. In [9], the so-called Ostrowski's inequality

$$
\left|f(t)-\frac{1}{b-a} \int_{a}^{b} f(\eta) d \eta\right| \leq\left\{\sup _{\eta \in(a, b)}\left|f^{\prime}(\eta)\right|\right\}\left(\frac{(t-a)^{2}+(b-t)^{2}}{2(b-a)}\right)
$$

is shown by the means of the Montgomery's identity (see [6, pp. 565]).
In a very recent paper [2], the Montgomery identity and the Ostrowski inequality were generalized respectively as follows:

Lemma A (Montgomery's identity). Let $a, b \in \mathbb{T}$ with $a<b$ and $f \in C_{\mathrm{rd}}^{1}\left([a, b]_{\mathbb{T}}, \mathbb{R}\right)$. Then

$$
f(t)=\frac{1}{b-a}\left(\int_{a}^{b} f^{\sigma}(\eta) \Delta \eta+\int_{a}^{b} \Psi(t, \eta) f^{\Delta}(\eta) \Delta \eta\right)
$$

holds for all $t \in \mathbb{T}$, where $\Psi:[a, b]_{\mathbb{T}}^{2} \rightarrow \mathbb{R}$ is defined as follows:

$$
\Psi(t, s):= \begin{cases}s-a, & s \in[a, t)_{\mathbb{T}} \\ s-b, & s \in[t, b]_{\mathbb{T}}\end{cases}
$$

for $s, t \in[a, b]_{\mathbb{T}}$.
Theorem \mathbf{A} (Ostrowski's inequality). Let $a, b \in \mathbb{T}$ with $a<b$ and $f \in C_{\mathrm{rd}}^{1}\left([a, b]_{\mathbb{T}}, \mathbb{R}\right)$. Then

$$
\left|f(t)-\frac{1}{b-a} \int_{a}^{b} f^{\sigma}(\eta) \Delta \eta\right| \leq\left\{\sup _{\eta \in(a, b)}\left|f^{\Delta}(\eta)\right|\right\}\left(\frac{h_{2}(t, a)+h_{2}(t, b)}{b-a}\right)
$$

holds for all $t \in \mathbb{T}$. Here, $h_{2}(t, s)$ is the second-order generalized polynomial on time scales.
In this paper, we shall apply a new method to generalize Lemma A, Theorem A, which is completely different to the method employed in [2], however following the routine steps in [2], our results may also be proved.
The paper is arranged as follows: in $\$ 2$, we quote some preliminaries on time scales from [1]; $\$ 3$ includes our main results which generalize Lemma A and Theorem Aby the means of generalized polynomials on time scales; in $\S 4$, as applications, we consider particular time scales \mathbb{R}, \mathbb{Z} and $q^{\mathbb{N}_{0}}$; finally, in $\S 5$, we give extensions of the results stated in $\S 3$.

2. Time Scales Essentials

Definition 2.1. A time scale is a nonempty closed subset of reals.
Definition 2.2. On an arbitrary time scale \mathbb{T} the following are defined: the forward jump operator $\sigma: \mathbb{T} \rightarrow \mathbb{T}$ is defined by $\sigma(t):=\inf (t, \infty)_{\mathbb{T}}$ for $t \in \mathbb{T}$, the backward jump operator $\rho: \mathbb{T} \rightarrow \mathbb{T}$ is defined by $\rho(t):=\sup (-\infty, t)_{\mathbb{T}}$ for $t \in \mathbb{T}$, and the graininess function $\mu: \mathbb{T} \rightarrow \mathbb{R}_{0}^{+}$is defined by $\mu(t):=\sigma(t)-t$ for $t \in \mathbb{T}$. For convenience, we set $\inf \emptyset:=\sup \mathbb{T}$ and $\sup \emptyset:=\inf \mathbb{T}$.
Definition 2.3. Let t be a point in \mathbb{T}. If $\sigma(t)=t$ holds, then t is called right-dense, otherwise it is called right-scattered. Similarly, if $\rho(t)=t$ holds, then t is called left-dense, a point which is not left-dense is called left-scattered.
Definition 2.4. A function $f: \mathbb{T} \rightarrow \mathbb{R}$ is called $r d$-continuous provided that it is continuous at right-dense points of \mathbb{T} and its left-sided limits exist (finite) at left-dense points of \mathbb{T}. The set of rd-continuous functions is denoted by $C_{\mathrm{rd}}(\mathbb{T}, \mathbb{R})$, and $C_{\mathrm{rd}}^{1}(\mathbb{T}, \mathbb{R})$ denotes the set of functions for which the delta derivative belongs to $C_{\mathrm{rd}}(\mathbb{T}, \mathbb{R})$.
Theorem 2.1 (Existence of antiderivatives). Let f be a rd-continuous function. Then f has an antiderivative F such that $F^{\Delta}=f$ holds.

Definition 2.5. If $f \in C_{\mathrm{rd}}(\mathbb{T}, \mathbb{R})$ and $s \in \mathbb{T}$, then we define the integral

$$
F(t):=\int_{s}^{t} f(\eta) \Delta \eta \quad \text { for } t \in \mathbb{T}
$$

Theorem 2.2. Let f, g be rd-continuous functions, $a, b, c \in \mathbb{T}$ and $\alpha, \beta \in \mathbb{R}$. Then, the following are true:
(1) $\int_{a}^{b}[\alpha f(\eta)+\beta g(\eta)] \Delta \eta=\alpha \int_{a}^{b} f(\eta) \Delta \eta+\beta \int_{a}^{b} g(\eta) \Delta \eta$,
(2) $\int_{a}^{b} f(\eta) \Delta \eta=-\int_{b}^{a} f(\eta) \Delta \eta$,
(3) $\int_{a}^{c} f(\eta) \Delta \eta=\int_{a}^{b} f(\eta) \Delta \eta+\int_{b}^{c} f(\eta) \Delta \eta$,
(4) $\int_{a}^{b} f(\eta) g^{\Delta}(\eta) \Delta \eta=f(b) g(b)-f(a) g(a)-\int_{a}^{b} f^{\Delta}(\eta) g(\sigma(\eta)) \Delta \eta$.

Definition 2.6. Let $h_{k}: \mathbb{T}^{2} \rightarrow \mathbb{R}$ be defined as follows:

$$
h_{k}(t, s):= \begin{cases}1, & k=0 \tag{2.1}\\ \int_{s}^{t} h_{k-1}(\eta, s) \Delta \eta, & k \in \mathbb{N}\end{cases}
$$

for all $s, t \in \mathbb{T}$ and $k \in \mathbb{N}_{0}$.
Note that the function h_{k} satisfies

$$
h_{k}^{\Delta_{t}}(t, s)= \begin{cases}0, & k=0 \tag{2.2}\\ h_{k-1}(t, s), & k \in \mathbb{N}\end{cases}
$$

for all $s, t \in \mathbb{T}$ and $k \in \mathbb{N}_{0}$.
Property 1. Using induction it is easy to see that $h_{k}(t, s) \geq 0$ holds for all $k \in \mathbb{N}$ and $s, t \in \mathbb{T}$ with $t \geq s$ and $(-1)^{k} h_{k}(t, s) \geq 0$ holds for all $k \in \mathbb{N}$ and $s, t \in \mathbb{T}$ with $t \leq s$.

3. Generalization by Generalized Polynomials

We start this section by quoting the following useful change of order formula for double(iterated) integrals which is employed in our proofs.

Lemma 3.1 ([]8, Lemma 1]). Assume that $a, b \in \mathbb{T}$ and $f \in C_{\mathrm{rd}}\left(\mathbb{T}^{2}, \mathbb{R}\right)$. Then

$$
\int_{a}^{b} \int_{\xi}^{b} f(\eta, \xi) \Delta \eta \Delta \xi=\int_{a}^{b} \int_{a}^{\sigma(\eta)} f(\eta, \xi) \Delta \xi \Delta \eta
$$

Now, we give a generalization for Montgomery's identity as follows:
Lemma 3.2. Assume that $a, b \in \mathbb{T}$ and $f \in C_{\mathrm{rd}}^{1}\left([a, b]_{\mathbb{T}}, \mathbb{R}\right)$. Define $\Psi, \Phi \in C_{\mathrm{rd}}^{1}\left([a, b]_{\mathbb{T}}, \mathbb{R}\right)$ by

$$
\Psi(t, s):=\left\{\begin{array}{ll}
h_{k}(s, a), & s \in[a, t)_{\mathbb{T}} \\
h_{k}(s, b), & s \in[t, b]_{\mathbb{T}}
\end{array} \quad \text { and } \quad \Phi(t, s):= \begin{cases}h_{k-1}(s, a), & s \in[a, t)_{\mathbb{T}} \\
h_{k-1}(s, b), & s \in[t, b]_{\mathbb{T}}\end{cases}\right.
$$

for $s, t \in[a, b]_{\mathbb{T}}$ and $k \in \mathbb{N}$. Then

$$
\begin{equation*}
f(t)=\frac{1}{h_{k}(t, a)-h_{k}(t, b)}\left(\int_{a}^{b} \Phi(t, \eta) f^{\sigma}(\eta) \Delta \eta+\int_{a}^{b} \Psi(t, \eta) f^{\Delta}(\eta) \Delta \eta\right) \tag{3.1}
\end{equation*}
$$

is true for all $t \in[a, b]_{\mathbb{T}}$ and all $k \in \mathbb{N}$.
Proof. Note that we have $\Psi^{\Delta_{s}}=\Phi$. Clearly, for all $t \in[a, b]_{\mathbb{T}}$ and all $k \in \mathbb{N}$, from (3.1), (2.1) and (2.2) we have

$$
\begin{align*}
& \int_{a}^{t} \Phi(t, \eta) f^{\sigma}(\eta) \Delta \eta+\int_{a}^{t} \Psi(t, \eta) f^{\Delta}(\eta) \Delta \eta \\
& =\int_{a}^{t} h_{k-1}(\eta, a) f^{\sigma}(\eta) \Delta \eta+\int_{a}^{t} h_{k}(\eta, a) f^{\Delta}(\eta) \Delta \eta \\
& =\int_{a}^{t} \int_{a}^{\sigma(\eta)} h_{k-1}(\eta, a) f^{\Delta}(\xi) \Delta \xi \Delta \eta+f(a) h_{k}(t, a) \\
& \quad \quad+\int_{a}^{t} \int_{a}^{\eta}\left[h_{k}(\xi, a) f^{\Delta}(\eta)\right]^{\Delta_{\xi}} \Delta \xi \Delta \eta \tag{3.2}
\end{align*}
$$

Applying Lemma 3.1 and considering (2.1), the right-hand side of (3.2) takes the form

$$
\begin{align*}
& \int_{a}^{t} \int_{\xi}^{t} h_{k-1}(\eta, a) f^{\Delta}(\xi) \Delta \eta \Delta \xi+f(a) h_{k}(t, a)+\int_{a}^{t} \int_{a}^{\eta} h_{k-1}(\xi, a) f^{\Delta}(\eta) \Delta \xi \Delta \eta \\
& =\int_{a}^{t} \int_{a}^{t} h_{k-1}(\eta, a) f^{\Delta}(\xi) \Delta \eta \Delta \xi+f(a) h_{k}(t, a) \\
& =f(t) h_{k}(t, a) \tag{3.3}
\end{align*}
$$

and very similarly, from Lemma 3.1, (3.1), (2.1) and (2.2), we obtain

$$
\begin{aligned}
& \int_{t}^{b} \Phi(t, \eta) f^{\sigma}(\eta) \Delta \eta+\int_{t}^{b} \Psi(t, \eta) f^{\Delta}(\eta) \Delta \eta \\
& =\int_{t}^{b} h_{k-1}(\eta, b) f^{\sigma}(\eta) \Delta \eta+\int_{t}^{b} h_{k}(\eta, b) f^{\Delta}(\eta) \Delta \eta \\
& =\int_{t}^{b} \int_{t}^{\sigma(\eta)} h_{k-1}(\eta, b) f^{\Delta}(\xi) \Delta \xi \Delta \eta-f(t) h_{k}(t, b)-\int_{t}^{b} \int_{\eta}^{b}\left[h_{k}(\xi, b) f^{\Delta}(\eta)\right]^{\Delta \xi} \Delta \xi \Delta \eta, \\
& =\int_{t}^{b} \int_{\xi}^{b} h_{k-1}(\eta, b) f^{\Delta}(\xi) \Delta \eta \Delta \xi-f(t) h_{k}(t, b)-\int_{t}^{b} \int_{\eta}^{b} h_{k-1}(\xi, b) f^{\Delta}(\eta) \Delta \xi \Delta \eta \\
\text { (3.4) } & =-f(t) h_{k}(t, b) .
\end{aligned}
$$

By summing (3.3) and (3.4), we get the desired result.
Now, we give the following generalization of Ostrowski's inequality.
Theorem 3.3. Assume that $a, b \in \mathbb{T}$ and $f \in C_{\mathrm{rd}}^{1}\left([a, b]_{\mathbb{T}}, \mathbb{R}\right)$. Then

$$
\begin{aligned}
&\left|f(t)-\frac{1}{h_{k}(t, a)-h_{k}(t, b)} \int_{a}^{b} \Phi(t, \eta) f^{\sigma}(\eta) \Delta \eta\right| \\
& \leq M\left(\frac{h_{k+1}(t, a)+(-1)^{k+1} h_{k+1}(t, b)}{h_{k}(t, a)-h_{k}(t, b)}\right)
\end{aligned}
$$

is true for all $t \in[a, b]_{\mathbb{T}}$ and all $k \in \mathbb{N}$, where Φ is as introduced in (3.1) and $M:=$ $\sup _{\eta \in(a, b)}\left|f^{\Delta}(\eta)\right|$.

Proof. From Lemma 3.2 and 3.1 , for all $k \in \mathbb{N}$ and $t \in[a, b]_{\mathbb{T}}$, we get

$$
\begin{align*}
& \left|f(t)-\frac{1}{h_{k}(t, a)-h_{k}(t, b)} \int_{a}^{b} \Phi(t, \eta) f^{\sigma}(\eta) \Delta \eta\right| \\
& =\left|\frac{1}{h_{k}(t, a)-h_{k}(t, b)} \int_{a}^{b} \Psi(t, \eta) f^{\Delta}(\eta) \Delta \eta\right| \\
& =\left|\frac{1}{h_{k}(t, a)-h_{k}(t, b)}\left(\int_{a}^{t} h_{k}(\eta, a) f^{\Delta}(\eta) \Delta \eta+\int_{t}^{b} h_{k}(\eta, b) f^{\Delta}(\eta) \Delta \eta\right)\right| \\
& \leq \frac{M}{h_{k}(t, a)-h_{k}(t, b)}\left(\left|\int_{a}^{t} h_{k}(\eta, a) \Delta \eta\right|+\left|\int_{t}^{b} h_{k}(\eta, b) \Delta \eta\right|\right) \tag{3.5}
\end{align*}
$$

and considering Property 1 and (2.1) on the right-hand side of (3.5), we have

$$
\begin{aligned}
& \frac{M}{h_{k}(t, a)-h_{k}(t, b)}\left(\int_{a}^{t} h_{k}(\eta, a) \Delta \eta+\int_{t}^{b}(-1)^{k} h_{k}(\eta, b) \Delta \eta\right) \\
& =\frac{M}{h_{k}(t, a)-h_{k}(t, b)}\left(\int_{a}^{t} h_{k}(\eta, a) \Delta \eta+(-1)^{k+1} \int_{b}^{t} h_{k}(\eta, b) \Delta \eta\right) \\
& =M\left(\frac{h_{k+1}(t, a)+(-1)^{k+1} h_{k+1}(t, b)}{h_{k}(t, a)-h_{k}(t, b)}\right),
\end{aligned}
$$

which completes the proof.
Remark 1. It is clear that Lemma 3.2 and Theorem 3.3 reduce to Lemma A and Theorem A respectively by letting $k=1$.

4. Applications for Generalized Polynomials

In this section, we give examples on particular time scales for Theorem 3.3. First, we consider the continuous case.

Example 4.1. Let $\mathbb{T}=\mathbb{R}$. Then, we have $h_{k}(t, s)=(t-s)^{k} / k!=(-1)^{k}(s-t)^{k} / k!$ for all $s, t \in \mathbb{R}$ and $k \in \mathbb{N}$. In this case, Ostrowski's inequality reads as follows:

$$
\begin{aligned}
\left\lvert\, f(t)-\frac{k!}{(t-a)^{k}+(-1)^{k+1}(b-t)^{k}}\right. & \int_{a}^{b} \Phi(t, \eta) f(\eta) d \eta \mid \\
& \leq \frac{M}{k+1}\left(\frac{(t-a)^{k+1}+(b-t)^{k+1}}{(t-a)^{k}+(-1)^{k+1}(b-t)^{k}}\right)
\end{aligned}
$$

where M is the maximum value of the absolute value of the derivative f^{\prime} over $[a, b]_{\mathbb{R}}$, and $\Phi(t, s)=(s-a)^{k} / k!$ for $s \in[a, t)_{\mathbb{R}}$ and $\Phi(t, s)=(s-b)^{k} / k!$ for $s \in[t, b]_{\mathbb{R}}$.

Next, we consider the discrete calculus case.
Example 4.2. Let $\mathbb{T}=\mathbb{Z}$. Then, we have $h_{k}(t, s)=(t-s)^{(k)} / k!=(-1)^{k}(s-t+k)^{(k)} / k$! for all $s, t \in \mathbb{Z}$ and $k \in \mathbb{N}$, where the usual factorial function ${ }^{(k)}$ is defined by $n^{(k)}:=n!/ k!$ for $k \in \mathbb{N}$ and $n^{(0)}:=1$ for $n \in \mathbb{Z}$. In this case, Ostrowski's inequality reduces to the following inequality:

$$
\begin{aligned}
\left\lvert\, f(t)-\frac{k!}{(t-a)^{(k)}+(-1)^{k+1}(b-t+k)^{(k)}}\right. & \sum_{\eta=a}^{b-1} \Phi(t, \eta) f(\eta+1) \mid \\
& \leq \frac{M}{k+1}\left(\frac{(t-a)^{(k+1)}+(b-t+k)^{(k+1)}}{(t-a)^{(k)}+(-1)^{k+1}(b-t+k)^{(k)}}\right),
\end{aligned}
$$

where M is the maximum value of the absolute value of the difference Δf over $[a, b-1]_{\mathbb{Z}}$, and $\Phi(t, s)=(s-a)^{(k)} / k!$ for $s \in[a, t-1]_{\mathbb{Z}}$ and $\Phi(t, s)=(s-b)^{(k)} / k!$ for $s \in[t, b]_{\mathbb{Z}}$.

Before giving the quantum calculus case, we need to introduce the following notations from [7]:

$$
\begin{aligned}
{[k]_{q} } & :=\frac{q^{k}-1}{q-1} \quad \text { for } q \in \mathbb{R} /\{1\} \text { and } k \in \mathbb{N}_{0}, \\
{[k]!} & :=\prod_{j=1}^{k}[j]_{q} \quad \text { for } k \in \mathbb{N}_{0}, \\
(t-s)_{q}^{k} & :=\prod_{j=0}^{k-1}\left(t-q^{j} s\right) \quad \text { for } s, t \in q^{\mathbb{N}_{0}} \text { and } k \in \mathbb{N}_{0} .
\end{aligned}
$$

It is shown in [1, Example 1.104] that

$$
h_{k}(t, s):=\frac{(t-s)_{q}^{k}}{[k]!} \quad \text { for } s, t \in q^{\mathbb{N}_{0}} \text { and } k \in \mathbb{N}_{0}
$$

holds.
And finally, we consider the quantum calculus case.
Example 4.3. Let $\mathbb{T}=q^{\mathbb{N}_{0}}$ with $q>1$. Therefore, for the quantum calculus case, Ostrowski's inequality takes the following form:

$$
\begin{aligned}
&\left|f(t)-\frac{[k]!(q-1) a}{(t-a)_{q}^{k}-(t-b)_{q}^{k}} \sum_{\eta=0}^{\log _{q}(b /(q a))} q^{\eta} \Phi\left(t, q^{\eta} a\right) f\left(q^{\eta+1} a\right)\right| \\
& \leq \frac{M}{[k+1]_{q}}\left(\frac{(t-a)_{q}^{k+1}+(-1)^{k+1}(t-b)_{q}^{k+1}}{(t-a)_{q}^{k}-(t-b)_{q}^{k}}\right)
\end{aligned}
$$

where M is the maximum value of the absolute value of the q-difference $D_{q} f$ over $[a, b / q]_{q^{N_{0}}}$, and $\Phi(t, s)=(s-a)_{q}^{k} /[k]$! for $s \in[a, t / q]_{q^{\mathbb{N}_{0}}}$ and $\Phi(t, s)=(s-b)^{k} /[k]!$ for $s \in[t, b]_{q^{\mathbb{N}_{0}}}$. Here, the q-difference operator D_{q} is defined by $D_{q} f(t):=[f(q t)-f(t)] /[(q-1) t]$.

5. Generalization by Arbitrary Functions

In this section, we replace the generalized polynomials $h_{k}(t, s)$ appearing in the definitions of $\Phi(t, s)$ and $\Psi(t, s)$ by arbitrary functions.

Since the proof of the following results can be done easily, we just give the statements of the results without proofs.

Lemma 5.1. Assume that $a, b \in \mathbb{T}, f \in C_{\mathrm{rd}}^{1}\left([a, b]_{\mathbb{T}}, \mathbb{R}\right)$, and that $\psi, \phi \in C_{\mathrm{rd}}^{1}\left([a, b]_{\mathbb{T}}, \mathbb{R}\right)$ with $\psi(b)=\phi(a)=0$ and $\psi(t)-\phi(t) \neq 0$ for all $t \in[a, b]_{\mathbb{T}}$. Set $\Psi, \Phi \in C_{\mathrm{rd}}\left([a, b]_{\mathbb{T}}, \mathbb{R}\right)$ by

$$
\Psi(t, s):=\left\{\begin{array}{ll}
\phi(s), & s \in[a, t)_{\mathbb{T}} \tag{5.1}\\
\psi(s), & s \in[t, b]_{\mathbb{T}}
\end{array} \quad \text { and } \quad \Phi(t, s):=\Psi^{\Delta_{s}}(t, s)\right.
$$

for $s, t \in[a, b]_{\mathbb{T}}$. Then

$$
\begin{aligned}
f(t) & =\frac{1}{\psi(t)-\phi(t)} \int_{a}^{b}[\Psi(t, \eta) f(\eta)]^{\Delta_{\eta}} \Delta \eta \\
& =\frac{1}{\psi(t)-\phi(t)}\left(\int_{a}^{b} \Phi(t, \eta) f^{\sigma}(\eta) \Delta \eta+\int_{a}^{b} \Psi(t, \eta) f^{\Delta}(\eta) \Delta \eta\right)
\end{aligned}
$$

is true for all $t \in[a, b]_{\mathbb{T}}$.

Theorem 5.2. Assume that $a, b \in \mathbb{T}$, $f \in C_{\mathrm{rd}}^{1}\left([a, b]_{\mathbb{T}}, \mathbb{R}\right)$, and that $\psi, \phi \in C_{\mathrm{rd}}^{1}\left([a, b]_{\mathbb{T}}, \mathbb{R}\right)$ with $\psi(b)=\phi(a)=0$ and $\psi(t)-\phi(t) \neq 0$ for all $t \in[a, b]_{\mathbb{T}}$. Then

$$
\left|f(t)-\frac{1}{\psi(t)-\phi(t)} \int_{a}^{b} \Phi(t, \eta) f^{\sigma}(\eta) \Delta \eta\right| \leq \frac{M}{|\psi(t)-\phi(t)|}\left(\int_{a}^{b}|\Psi(t, \eta)| \Delta \eta\right)
$$

is true for all $t \in[a, b]_{\mathbb{T}}$, where Ψ, Φ are as introduced in (5.1) and $M:=\sup _{\eta \in(a, b)}\left|f^{\Delta}(\eta)\right|$.
Remark 2. Letting $\phi(t)=h_{k}(t, a)$ and $\psi(t)=h_{k}(t, b)$ for some $k \in \mathbb{N}$, we obtain the results of $\S 3$, which reduce to the results in [2, §3] by letting $k=1$. This is for Ostrowski-polynomial type inequalities.

Remark 3. For instance, we may let $\phi(t)=\mathrm{e}_{\lambda}(t, a)-1$ and $\psi(t)=\mathrm{e}_{\lambda}(t, b)-1$ for some $\lambda \in \mathcal{R}^{+}\left([a, b]_{\mathbb{T}}, \mathbb{R}^{+}\right)$to obtain new Ostrowski-exponential type inequalities.

References

[1] M. BOHNER AND A. PETERSON, Dynamic Equations on Time Scales: An Introduction with Applications, Boston, MA, Birkhäuser Boston Inc., 2001.
[2] M. BOHNER AND T. MATTHEWS, Ostrowski inequalities on time scales, J. Inequal. Pure Appl. Math., 9(1) (2008), Art. 6. [ONLINE: http://jipam.vu.edu.au/article.php?sid= 940].
[3] S.S. DRAGOMIR, The discrete version of Ostrowski's inequality in normed linear spaces, J. Inequal. Pure Appl. Math., 3(1) (2002), Art. 2. [ONLINE: http://jipam.vu.edu.au/ article.php?sid=155.
[4] S.S. DRAGOMIR, Ostrowski type inequalities for isotonic linear functionals, J. Inequal. Pure Appl. Math., 3(5) (2002), Art. 68. [ONLINE: http://jipam.vu.edu.au/article.php?sid= 220].
[5] B. GAVREA AND I. GAVREA, Ostrowski type inequalities from a linear functional point of view, J. Inequal. Pure Appl. Math., 1(2) (2000), Art. 11. [ONLINE: http://jipam.vu.edu.au/ article.php?sid=104].
[6] D.S. MITRINOVIĆ, J. E. PEČARIĆ AND A.M. FINK, Inequalities Involving Functions and their Integrals and Derivatives, Mathematics and its Applications, Dordrecht, Kluwer Academic Publishers, vol. 53, 1991.
[7] V. KAC AND P. CHEUNG, Quantum Calculus, Universitext, Springer, New York, NY, USA, 2002.
[8] B. KARPUZ, Unbounded oscillation of higher-order nonlinear delay dynamic equations of neutral type with oscillating coefficients, (submitted).
[9] A. OSTROWSKI, Über die absolutabweichung einer differenzierbaren funktion von ihrem integralmittelwert, Comment. Math. Helv., 10(1) (1937), 226-227.

